
Математическая логика
и логическое программирование

mk.cs.msu.ru → Лекционные курсы
→ Математическая логика и логическое программирование (3-й поток)

Блок 53

Алгоритм проверки моделей
для логики ветвящегося времени

Лектор:
Подымов Владислав Васильевич

E-mail:
valdus@yandex.ru

ВМК МГУ, 2025, сентябрь–декабрь
Математическая логика и логическое программирование, Блок 53 1/23

https://mk.cs.msu.ru

Напоминание
Модель Крипке M над множеством атомарных высказываний AP:

open paid

paid , servet

paid , servec

Примеры формул CTL ϕ над тем же множеством AP:
open &¬paid &¬servet &¬servec
¬EF(¬paid &(servec ∨ servet))
AG(paid→AF(servec ∨ servet))
EF(paid & EG¬servet)
AG(¬paid→AX(paid→EFservet))

M |= ϕ ⇔
формула ϕ выполняется в каждом начальном состоянии системы M
Математическая логика и логическое программирование, Блок 53 2/23

Алгоритм проверки моделей для CTL
Алгоритм проверки соотношения M |= ϕ для МК M и формулы ϕ CTL
будет излагаться «сверху вниз» от общей схемы (главной процедуры)
к деталям реализации этой схемы (остальным процедурам)

По ходу изложения будет приводиться
обоснование корректности (правильности) каждой процедуры

«Описание алгоритма
+ обоснование корректности
+ оценка сложности» —
типичное сочетание в «умном» изложении алгоритмов, позволяющее
I понять, как это реализовать,
I убедиться, что это действительно работает правильно, и
I оценить, достаточно ли эффективно решение для желаемых целей

Но оценку сложности приводить не будем,
чтобы не перегружать рассказ излишними деталями

Математическая логика и логическое программирование, Блок 53 3/23

Алгоритм проверки моделей для CTL
Sat(M, ψ) — так будем обозначать множество состояний МК M,
в которых выполняется формула ψ: Sat(M, ψ) = {s | s ∈ S , M, s |= ψ}

Лемма. Для любых МК M = (S ,S0, 7→,L) и формулы ϕ CTL верно:
M |= ϕ ⇔ S0 ⊆ Sat(M, ϕ)

Доказательство. Напрямую следует из
определений соотношения M |= ϕ и множества Sat(M, ϕ) H

Главная процедура

Дано: конечная МК M; формула ϕ CTL

Результат: ответ на вопрос «M |= ϕ?»

Тело процедуры:

1. Вычислить множество X = Πsat(M, ϕ) = Sat(M, ϕ)

2. Проверить соотношение S0 ⊆ X

3. Вернуть результат проверки пункта 2

Математическая логика и логическое программирование, Блок 53 4/23

Алгоритм проверки моделей для CTL

Формулу ϕ CTL назовём упрощённой, если она задаётся БНФ
ϕ ::= t | p | (ϕ&ϕ) | (¬ϕ) | (EXϕ) | (EGϕ) | (E(ϕUϕ))

Формулы ψ1 и ψ2 CTL назовём равносильными (ψ1 ∼ ψ2),
если для любой МК M верно Sat(M, ψ1) = Sat(M, ψ2)

Процедура Πsat(M, ϕ)

Дано: конечная МК M; формула ϕ CTL

Результат: Sat(M, ϕ)

Тело процедуры:

1. Построить упрощённую формулу ψ, равносильную исходной:
ψ = Simplify(ϕ)

2. Вернуть множество Sat(M, ψ) для упрощённой формулы:
Πs

sat(M, ψ)

Математическая логика и логическое программирование, Блок 53 5/23

Алгоритм проверки моделей для CTL

Лемма (о равносильностях в CTL)
Для любых формул ϕ и ψ CTL
справедливы следующие равносильности:

I ϕ→ψ ∼ ¬ϕ ∨ ψ

I ϕ ∨ ψ ∼ ¬(¬ϕ&¬ψ)

I AXϕ ∼ ¬EX¬ϕ

I AFϕ ∼ ¬EG¬ϕ

I AGϕ ∼ ¬EF¬ϕ

I EFϕ ∼ E(tUϕ)

I A(ϕUψ) ∼ ¬E(¬ψU(¬ϕ&¬ψ)) &¬EG¬ψ

Математическая логика и логическое программирование, Блок 53 6/23

Лемма о равносильностях в CTL
ϕ→ψ ∼ ¬ϕ ∨ ψ и ϕ ∨ ψ ∼ ¬(¬ϕ&¬ψ) — в точности как и
в логиках высказываний и предикатов

AXϕ ∼ ¬EX¬ϕ: покажем, что для любых МК M = (S ,S0, 7→,L) и её
состояния s верно M, s |= AXϕ ⇔ M, s |= ¬EX¬ϕ
Верно M, s |= AXϕ
⇔ (по семантике комбинации AX)

Для любого состояния s ′, такого что s 7→ s ′, верно M, s ′ |= ϕ

⇔ (т.к. ∀x (A→B) ∼ ¬∃x (A &¬B))
Не существует состояние s ′, такое что s 7→ s ′ и неверно M, s ′ |= ϕ

⇔ (по семантике ¬)
Не существует состояние s ′, такое что s 7→ s ′ и верно M, s ′ |= ¬ϕ
⇔ (по семантике комбинации EX)

Неверно M, s 6|= EX¬ϕ
⇔ (по семантике ¬)

Верно M, s |= ¬EX¬ϕ
Математическая логика и логическое программирование, Блок 53 7/23

Лемма о равносильностях в CTL
AFϕ ∼ ¬EG¬ϕ и AGϕ ∼ ¬EF¬ϕ — аналогично
EFϕ ∼ E(tUϕ) — очевидно следует
из семантики комбинаций EF и EU и формулы t

A(ϕUψ) ∼ ¬E(¬ψU(¬ϕ&¬ψ)) &¬EG¬ψ:
M, s |= A(ϕUψ)

⇔ (по семантике комбинации AU)
∀ пути π из s в M ∃i : M, π[i] |= ψ и ∀j < i верно M, π[j] |= ϕ

⇔ (по двойственности ∀-∃ и &-∨)
Не ∃ путь π из s в M: ∀i верно (M, π[i] 6|= ψ или ∃j < i : M, π[j] 6|= ϕ)
⇔ (применяем метод пристального взгляда)

1. Не ∃ путь π из s в M и номер i :
M, π[i] 6|= ϕ, M, π[i] 6|= ψ и ∀j < i верно M, π[j] 6|= ψ

и

2. не ∃ путь π из s в M: ∀i верно M, π[i] 6|= ψ

⇔ (по семантике E, U, G, ¬ и &)
M, s |= ¬E(¬ψU(¬ϕ&¬ψ)) &¬EG¬ψ H
Математическая логика и логическое программирование, Блок 53 8/23

Алгоритм проверки моделей для CTL
Процедура Simplify(ϕ)

Дано: формула ϕ CTL
Результат: упрощённая формула ψ CTL, такая что ϕ ∼ ψ
Тело процедуры:

1. Пока это возможно, преобразовывать формулу ϕ согласно
равносильностям из последней леммы, заменяя подформулу,
отвечающую левой части равносильности, на правую часть

2. Вернуть формулу, получившуюся после всех преобразований

Корректность процедуры Simplify обеспечивается тем, что
I наряду с последней леммой для CTL справедлива такая же

теорема о равносильной замене, как и для логики предикатов, и
I цикл упрощающих преобразований обязательно завершается: если

в исходной формуле содержится n подформул, отвечающих левым
частям равносильностей, то после не более чем 2n преобразований
формула обязательно станет упрощённой, и цикл завершится

Математическая логика и логическое программирование, Блок 53 9/23

Алгоритм проверки моделей для CTL
Процедура Πs

sat(M, ϕ)

Дано: конечная МК M = (S ,S0, 7→,L); упрощённая формула ϕ CTL

Результат: Sat(M, ϕ)

Тело процедуры:

1. Если ϕ = t, то вернуть S

2. Если ϕ = p ∈ AP, то вернуть {s | s ∈ S , p ∈ L(s)}
3. Если ϕ = ψ1 &ψ2, то вернуть Πs

sat(M, ψ1) ∩ Πs
sat(M, ψ2)

4. Если ϕ = ¬ψ, то вернуть S \ Πs
sat(M, ψ)

5. Если ϕ = EXψ, то вернуть ΠEX(M, ψ)

6. Если ϕ = EGψ, то вернуть ΠEG(M, ψ)

7. Если ϕ = E(ψ1Uψ2), то вернуть ΠEU(M, ψ1, ψ2)

Корректность этой процедуры для пунктов 1–4 очевидна
(обеспечивается семантикой формул)

Осталось предложить подходящие процедуры ΠEX, ΠEG и ΠEU
Математическая логика и логическое программирование, Блок 53 10/23

Алгоритм проверки моделей для CTL
Pre(Γ, v) — так для графа Γ и его вершины v обозначим
множество вершин, из которых v достижима по одной дуге:

Pre(Γ, v) = {w | (w 7→ v) ∈ Γ}
Pre(Γ,X) — так для графа Γ и множества X его вершин обозначим
множество вершин, из которых по одной дуге достижима
хотя бы одна вершина из X : Pre(Γ,V) =

⋃
v∈V

Pre(Γ, v)

Лемма. Для любой МК M и любой формулы ϕ CTL справедливо
равенство Sat(M,EXϕ) = Pre(M,Sat(M, ϕ))

Доказательство
s ∈ Sat(M,EXϕ) ⇔ (по определению Sat)
M, s |= EXϕ ⇔ (по семантике E и X)
∃ состояние s ′: s → s ′ и M, s ′ |= ϕ ⇔ (по определению Sat)
∃ состояние множества Sat(M, ϕ), достижимое из s по одной дуге
⇔ (по определению Pre)

s ∈ Pre(M,Sat(M, ϕ)) H
Математическая логика и логическое программирование, Блок 53 11/23

Алгоритм проверки моделей для CTL

Процедура ΠEX(M, ϕ)

Дано: конечная МК M; упрощённая формула ϕ CTL

Результат: Sat(M,EXϕ)

Тело процедуры:

1. Вычислить X = Πs
sat(M, ϕ)

2. Вернуть множество Pre(M,X)

Математическая логика и логическое программирование, Блок 53 12/23

Алгоритм проверки моделей для CTL
Лемма. Для любой конечной МК M и любых формул ϕ1, ϕ2 CTL
верно следующее: s ∈ Sat(M,E(ϕ1Uϕ2)) ⇔
в M существует путь s1 → · · · → sk ,
такой что s1 = s, sk ∈ Sat(M, ϕ2) и {s1, . . . , sk−1} ⊆ Sat(M, ϕ1)

Доказательство.
s ∈ Sat(M,E(ϕ1Uϕ2))

⇔ (по определению Sat)
M, s |= E(ϕ1Uϕ2)

⇔ (по определению E и U)
∃ бесконечный путь π из s в M и номер k :
M, π[k] |= ϕ2 и ∀i < k верно M, π[i] |= ϕ1

⇔ (переформулировка)
∃ путь s1 7→ · · · 7→ sk в M (префикс пути π):
s1 = s, M, sk |= ϕ2 и ∀i ∈ {1, . . . , k − 1} верно M, si |= ϕ1

⇔ (по определению Sat)
∃ путь s1 7→ · · · 7→ sk в M:
s1 = s, sk ∈ Sat(M, ϕ2) и {s1, . . . , sk−1} ⊆ Sat(M, ϕ1) H
Математическая логика и логическое программирование, Блок 53 13/23

Алгоритм проверки моделей для CTL
Процедура ΠEU(M, ϕ1, ϕ2)
Дано: конечная МК M; упрощённые формулы ϕ1, ϕ2 CTL
Результат: Sat(M,E(ϕ1Uϕ2))
Тело процедуры:

1. Вычислить X1 = Πs
sat(M, ϕ2) и Z = Πs

sat(M, ϕ1)

2. Последовательно вычислять множества X2,X3, . . .

по схеме Xi = Xi−1 ∪ (Pre(M,Xi−1) ∩ Z),
пока для очередного Xi не окажется верно Xi = Xi−1

3. Вернуть последнее вычисленное множество Xi

Корректность этой процедуры обосновывается
I последней леммой,
I наблюдением «на грани очевидного» о том, что

в множество Xi входят все вершины всех путей вида s1 → · · · → si ,
где si ∈ Sat(M, ϕ2) и {s1, . . . , si−1} ⊆ Sat(M, ϕ1), и

I гарантированным равенством Xi = Xi−1 хотя бы для одного i
в связи с конечностью M

Математическая логика и логическое программирование, Блок 53 14/23

Алгоритм проверки моделей для CTL

Вершина u достижима из вершины v в ориентированном графе Γ, если
в Γ существует путь из v в u (быть может, тривиальный, если u = v)

Ориентированный граф сильно связен,
если любые его две вершины достижимы друг из друга

Компонента сильной связности (КСС) ориентированного графа — это
максимальный по включению вершин и дуг
сильно связный подграф этого графа

Компонента сильной связности нетривиальна (НКСС),
если в ней содержится хотя бы одна дуга

Математическая логика и логическое программирование, Блок 53 15/23

Алгоритм проверки моделей для CTL
Лемма. В конечном ориентированном графе Γ из вершины s
исходит хотя бы один бесконечный путь ⇔
в Γ из s достижима хотя бы одна НКСС
Доказательство.

(⇐) Пусть π — путь из s, оканчивающийся в вершине v НКСС

По выбору v , существует путь из v в v с хотя бы одной дугой

Пусть π′ — указанный путь из v в v без первой вершины v

Тогда в Γ содержится и бесконечный путь, исходящий из s:
ππ′π′ . . . π′ . . .

(⇒) Рассмотрим бесконечный путь π в Γ, исходящий из s

Так как граф Γ конечен, то в π содержится хотя бы одна вершина v ,
встречающасяся хотя бы два раза: π[i] = π[i + k] = v , k > 0

Тогда все вершины множества {π[i + 1], . . . , π[i + k]} достижимы друг
из друга, то есть входят в некоторую НКСС,
и эта НКСС достижима из s по пути π[1]→ · · · → π[i] H
Математическая логика и логическое программирование, Блок 53 16/23

Алгоритм проверки моделей для CTL
Для ориентированного графа Γ и подмножества V его вершин
записью Γ|V обозначим подграф графа Γ, порождённый множеством V :
I Множество вершин Γ|V — это V
I (s1, s2) ∈ Γ|V ⇔ {s1, s2} ⊆ V и (s1, s2) ∈ Γ

I Если граф Γ размечен, то все метки переносятся из Γ в Γ|V

Лемма. Для любой конечной модели Крипке M
и любой формулы ϕ CTL верно следующее: s ∈ Sat(M,EGϕ) ⇔
s ∈ M|Sat(M,ϕ) и из s в M|Sat(M,ϕ) достижима хотя бы одна НКСС

Доказательство.

s ∈ Sat(M,EGϕ) ⇔ M, s |= EGϕ ⇔
в M существует бесконечный путь π, исходящий из s
и такой что M, π[i] |= ϕ для каждого момента времени i ⇔
в Γ = M|Sat(M,ϕ) существует бесконечный путь, исходящий из s ⇔
в Γ содержится s и из неё достижима хотя бы одна НКСС H
Математическая логика и логическое программирование, Блок 53 17/23

Алгоритм проверки моделей для CTL
Процедура ΠEG(M, ϕ)

Дано: конечная МК M; упрощённая формула ϕ CTL
Результат: Sat(M,EGϕ)

Тело процедуры:

I Вычислить множество Z = Sat(M, ϕ)

I Вычислить граф Γ = M|Z
I Каким-либо известным эффективным алгоритмом вычислить

множество X1 всех вершин, входящих в какие-либо НКСС в Γ

I Последовательно вычислять множества X2,X3, . . .

по схеме Xi = Xi−1 ∪ Pre(Γ,Xi−1),
пока для очередного Xi не окажется верно Xi = Xi−1

I Вернуть последнее вычисленное множество Xi

Корректность этой процедуры обосновывается
аналогично корректности ΠEU
Математическая логика и логическое программирование, Блок 53 18/23

Алгоритм проверки моделей для CTL (пример)

M: p, q
s11

p
s31

p
s12

ps22

p
s32

p
s13

q s23

s33

ϕ = AXA(pUq)

M |= ϕ?

ψ = Simplify(ϕ) = ¬EX¬(¬E(¬qU(¬q &¬p)) &¬EG¬q)

Πs
sat(M, q) = {s11, s23}

S = {s11, s12, s13, s22, s23, s31, s32, s33}

Πs
sat(M,¬q) = S \ Πs

sat(M, q) = {s12, s13, s22, s31, s32, s33}

Πs
sat(M, p) = {s11, s12, s13, s22, s31, s32}

Πs
sat(M,¬p) = S \ Πs

sat(M, p) = {s23, s33}

Πs
sat(M,¬q &¬p) = Πs

sat(M,¬q) ∩ Πs
sat(M,¬p) = {s33}

Математическая логика и логическое программирование, Блок 53 19/23

Алгоритм проверки моделей для CTL (пример)

M: p, q
s11

p
s31

p
s12

ps22

p
s32

p
s13

q s23

s33

ϕ = AXA(pUq)

M |= ϕ?

ψ = Simplify(ϕ) = ¬EX¬(¬E(¬q︸︷︷︸
χ1

U (¬q &¬p)︸ ︷︷ ︸
χ2

) &¬EG¬q)

Πs
sat(M, χ1) = {s12, s13, s22, s31, s32, s33}

Πs
sat(M, χ2) = {s33}

Πs
sat(M,E(χ1Uχ2)) =?
I X1 = Πs

sat(M, χ2), Z = Πs
sat(M, χ1)

I X2 = X1 ∪ (Pre(M,X1) ∩ Z) = {s32, s33}
I X3 = X2 ∪ (Pre(M,X2) ∩ Z) = {s22, s31, s32, s33}
I X4 = X3 ∪ (Pre(M,X3) ∩ Z) = {s22, s31, s32, s33} = X3

Πs
sat(M,E(χ1Uχ2)) = X4 = {s22, s31, s32, s33}

Математическая логика и логическое программирование, Блок 53 20/23

Алгоритм проверки моделей для CTL (пример)

M: p, q
s11

p
s31

p
s12

ps22

p
s32

p
s13

q s23

s33

ϕ = AXA(pUq)

M |= ϕ?

ψ = Simplify(ϕ) = ¬EX¬(¬E(¬qU(¬q &¬p)) &¬EG ¬q︸︷︷︸
χ

)

Πs
sat(M, χ) = {s12, s13, s22, s31, s32, s33}

Πs
sat(M,EGχ) =?
I Z = Πs

sat(M, χ)
I В графе M|Z содержится ровно одна нетривиальная компонента

сильной связности, и её вершины: X1 = {s22, s32, s33}
I X2 = X1 ∪ Pre(M|Z ,X1) = {s22, s31, s32, s33}
I X3 = X2 ∪ Pre(M|Z ,X2) = {s22, s31, s32, s33} = X2

Πs
sat(M,EGχ) = X3 = {s22, s31, s32, s33}

Математическая логика и логическое программирование, Блок 53 21/23

Алгоритм проверки моделей для CTL (пример)

M: p, q
s11

p
s31

p
s12

ps22

p
s32

p
s13

q s23

s33

ϕ = AXA(pUq)

M |= ϕ?

ψ = Simplify(ϕ) = ¬EX¬(¬E(¬qU(¬q &¬p))︸ ︷︷ ︸
χ1

&¬EG¬q︸ ︷︷ ︸
χ2

)

S = {s11, s12, s13, s22, s23, s31, s32, s33}
Πs

sat(M, χ1) = {s22, s31, s32, s33}
Πs

sat(M, χ2) = {s22, s31, s32, s33}

Πs
sat(M,¬χ1) = S \ Πs

sat(M, χ1) = {s11, s12, s13, s23}
Πs

sat(M,¬χ2) = S \ Πs
sat(M, χ1) = {s11, s12, s13, s23}

Πs
sat(M,¬χ1 &¬χ2) = Πs

sat(M, χ1) ∩ Πs
sat(M, χ2) = {s11, s12, s13, s23}

Математическая логика и логическое программирование, Блок 53 22/23

Алгоритм проверки моделей для CTL (пример)

M: p, q
s11

p
s31

p
s12

ps22

p
s32

p
s13

q s23

s33

ϕ = AXA(pUq)

M |= ϕ?

ψ = Simplify(ϕ) = ¬EX¬ (¬E(¬qU(¬q &¬p)) &¬EG¬q)︸ ︷︷ ︸
χ

S = {s11, s12, s13, s22, s23, s31, s32, s33}
Πs

sat(M, χ) = {s11, s12, s13, s23}
Πs

sat(M,¬χ) = S \ Πs
sat(M, χ) = {s22, s31, s32, s33}

Πs
sat(M,EX¬χ) = Pre(M,Πs

sat(M,¬χ)) = {s22, s23, s31, s32, s33}
Πs

sat(M, ψ) = S \ Πs
sat(M,EX¬χ) = {s11, s12, s13}

S0 = {s11, s31} 6⊆ Πs
sat(M, ψ)

Следовательно, M 6|= ϕ
Математическая логика и логическое программирование, Блок 53 23/23

