
Математическая логика
и логическое программирование

mk.cs.msu.ru → Лекционные курсы
→ Математическая логика и логическое программирование (3-й поток)

Блок 53

Модельные императивные программы
Постановка задачи верификации программ

Лектор:
Подымов Владислав Васильевич

E-mail:
valdus@yandex.ru

ВМК МГУ, 2024/2025, осенний семестр
Математическая логика и логическое программирование, Блок 53 1/12

https://mk.cs.msu.ru

Вступление
Формальная верификация:

Система Требования правильности

Модель системы Формальная спецификация

Удовлетворяет?

Удовлетворяет?

Обсудим то, как можно использовать логику предикатов для
формальной верификации императивных программ

I Как может быть устроена математическая модель программы?

I Как можно записывать требования к программе
с использованием логики предикатов?

I Как проверить, удовлетворяет ли модель программы
записанным требованиям?

Математическая логика и логическое программирование, Блок 53 2/12

Императивные программы: синтаксис
Далее считаются заданными сигнатура σ логики предикатов
и множество предметных переменных Var

Синтаксис императивных программ зададим следующей БНФ:
π ::= stmt | stmt π
stmt ::= ∅∅∅ | (пустая команда)

x := t; | (присваивание)
if C then π else π fi | (ветвление)
while C do π od (цикл)

Здесь:
I π — программа
I stmt — команда программы (или, по-другому, инструкция)
I x ∈ Var
I t — выражение: произвольный терм, такой что Vart ⊆ Var
I C — условие: произвольная формула без кванторов,

такая что VarC ⊆ Var

Математическая логика и логическое программирование, Блок 53 3/12

Императивные программы: синтаксис

В примерах будут использоваться

I сигнатура, содержащая общеизвестные арифметические символы,
включая
I константы 0, 1,
I функциональные символы +(2), −(2), ·(2),
I предикатные символы =(2), >(2), ≥(2)

I арифметическая интерпретация ArX логики предикатов
над множеством чисел X , в которой эти символы оцениваются
«естественно» как соответствующие чи́сла, операции и отношения,
в том числе 0, 1, +, −, ·, =, >, ≥ — соответственно как
I чи́сла 0 и 1,
I операции сложения, вычитания и умножения чисел и
I отношения равенства чисел

и их строгого и нестрогого неравенства в бо́льшую сторону

Математическая логика и логическое программирование, Блок 53 4/12

Императивные программы: синтаксис

Пример: реализация алгоритма Эвклида
вычисления наибольшего общего делителя чисел в переменных x, y

while ¬(x = y) do
if x > y then
x := x− y;

else
y := y− x;

fi
od

Математическая логика и логическое программирование, Блок 53 5/12

Императивные программы: операционная семантика

Значение программы — это вычисляемая ей функция
преобразования входных данных в выходные данные

Для задания этой функции определим следующие понятия:
I Состояние данных: совокупность значений переменных,

преобразуемая при выполнении программы
I Состояние управления: описание того, как текущее состояние

данных будет изменяться программой в дальнейшем выполнении
I Состояние вычисления: состояние данных + состояние управления,

то есть описание значений данных сейчас
и в оставшейся части выполнения программы

Математическая логика и логическое программирование, Блок 53 6/12

Императивные программы: операционная семантика

Состояние данных над переменными Var в интерпретации
с предметной областью D — это отображение σ : Var→ D
Обозначение: [x1/σ(x1), . . . , xn/σ(xn)], если Var = {x1, . . . , xn}

Состояние управления — это произвольная программа

Состояние вычисления — это пара 〈π | σ〉,
где π — состояние управления и σ — состояние данных

Σ — множество всех состояний данных

Σ̃ — множество всех состояний вычисления

σ{x ← d} — состояние данных, получающееся из состояния данных σ
в результате присваивания переменной x значения d :

σ{x ← d}(x) = d
σ{x ← d}(y) = σ(y), если y 6= x

Математическая логика и логическое программирование, Блок 53 7/12

Императивные программы: операционная семантика

Шаг выполнения программы в интерпретации I описывается
двуместным отношением переходов I−→ на множестве Σ̃,
состоящим из всех пар следующего вида:

I 〈x := t; | σ〉 I−→ 〈∅∅∅ | σ{x ← tσ}〉

I 〈if C then π1 else π2 fi | σ〉
I−→ 〈π1 | σ〉, если I |= Cσ

I 〈if C then π1 else π2 fi | σ〉
I−→ 〈π2 | σ〉, если I 6|= Cσ

I 〈while C do π od | σ〉 I−→ 〈∅∅∅ | σ〉, если I 6|= Cσ

I 〈while C do π od | σ〉 I−→ 〈π while C do π od | σ〉, если I |= Cσ

I 〈π1 π2 | σ〉
I−→ 〈π′1 π2 | σ′〉, если 〈π1 | σ〉

I−→ 〈π′1 | σ′〉

I 〈∅∅∅ π | σ〉 I−→ 〈π | σ〉

Математическая логика и логическое программирование, Блок 53 8/12

Императивные программы: операционная семантика

Трасса программы π из состояния данных σ в интерпретации I — это
последовательность состояний вычисления вида

〈π | σ〉 I−→ 〈π1 | σ1〉
I−→ 〈π2 | σ2〉

I−→ . . .

Вычислениями программы называются бесконечные трассы
и трассы, оканчивающиеся состоянием управления ∅∅∅

Последнее состояние данных конечной трассы
называется результатом этой трассы

Запись 〈π | σ〉 I−→
∗
σ̃ будет означать, что существует конечная трасса

программы π из состояния данных σ в интерпретации I,
оканчивающаяся состоянием вычисления σ̃

Программой π в интерпретации I вычисляется
частичная функция I[π] : Σ→ Σ следующего вида:

I[π](σ) = σ′ ⇔ 〈π | σ〉 I−→
∗
〈∅∅∅ | σ′〉

Математическая логика и логическое программирование, Блок 53 9/12

Императивные программы: операционная семантика (пример)
Var = {x, y}

π = while ¬(x = y) do if x > y then x := x− y; else y := y− x; fi od
Вычисление π из [x/2, y/4] в ArZ, где Z — множество всех целых чисел:

〈π | [x/2, y/4]〉

〈if x > y then x := x− y; else y := y− x; fi π | [x/2, y/4]〉
ArZ т.к. ArZ |= ¬(x = y)[x/2, y/4]

〈y := y− x; π | [x/2, y/4]〉
ArZ т.к. ArZ 6|= (x > y)[x/2, y/4]

〈∅∅∅ π | [x/2, y/2]〉
ArZ т.к. [x/2, y/4]{y← (y− x)[x/2, y/4]} = [x/2, y/2]

〈π | [x/2, y/2]〉
ArZ

〈∅∅∅ | [x/2, y/2]〉
ArZ т.к. ArZ 6|= ¬(x = y)[x/2, y/2]

Результат этого вычисления: [x/2, y/2]

Следовательно, ArZ[π]([x/2, y/4]) = [x/2, y/2]
Математическая логика и логическое программирование, Блок 53 10/12

Задача верификации программ

Требования правильности выполнения программы могут быть записаны
как два отношения на состояниях данных:
I предусловие ϕ,

задающее общий вид допустимых входных данных
I постусловие ψ,

описывающее устройство правильных выходных данных

Принято рассматривать два вида правильности выполнения программы
относительно заданных предусловия и постусловия:
I частичная корректность: результат любого конечного вычисления

программы на допустимых входных данных правилен
I полная корректность: любое вычисление программы на допустимых

входных данных конечно, и результат этого вычисления правилен

Остановимся подробнее на частичной корректности программ

Математическая логика и логическое программирование, Блок 53 11/12

Задача верификации программ

Тройка Хоара (по-другому — триплет Хоара) — это запись вида
{ϕ}π{ψ}, где

I ϕ — формула логики предикатов, называемая предусловием
I π — программа
I ψ — формула логики предикатов, называемая постусловием

Триплет {ϕ}π{ψ} истинен в интерпретации I (I |= {ϕ}π{ψ}),
если для любых состояний данных σ, σ′ верно следующее:

если I |= ϕσ и значение σ′ = I[π](σ) определено, то I |= ψσ′

Программа π частично корректна в интерпретации I
относительно предусловия ϕ и постусловия ψ, если I |= {ϕ}π{ψ}

Задача верификации императивных программ:
для заданных программы π, предусловия ϕ, постусловия ψ и
интерпретации I проверить справедливость соотношения I |= {ϕ}π{ψ}

Математическая логика и логическое программирование, Блок 53 12/12

