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Вступление
Три отношения эквивалентности ∼ моделей Крипке с
соответствующими фрагментами L языка CTL*:

1. Трассовая эквивалентность и LTL

2. Симуляционная эквивалентность и ACTL*

3. Бисимуляционная эквивалентность и CTL*

Если модель M1 специфицирована в терминах фрагмента L, то можно
быть уверенным в том, что на любой модели M2, такой что M1 ∼ M2,
выполняются в точности те же формулы, что и на M1

А как проверить такую эквивалентность?
Про трассовую эквивалентность упоминалось, что её проверка — это
трудная задача
Поэтому трассовую эквивалентность оставим в стороне
Симуляционная и бисимуляционная эквивалентности похожи, и
алгоритмы проверки для них тоже похожи
Поэтому подробно рассмотрим только бисимуляционную
эквивалентность
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Бисимуляция состояний модели
M(s) — так будем обозначать модель Крипке, получающуюся из модели
M заменой множества начальных состояний на {s}
Состояния s1 и s2 модели Крипке M бисимуляционно эквивалентны
(s1 ∼M

b s2), если M(s1) ∼b M(s2)
Проверку бисимуляционной эквивалентности конечных моделей M1, M2
можно свести к проверке бисимуляционной эквивалентности двух
состояний одной конечной модели:

1. Добавим в каждую из моделей Mi одно новое состояние si с меткой
∅

2. Проведём из si дуги во все начальные состояния

3. Переименуем состояния M1 и M2 так, чтобы их множества
состояний не пересекались

4. Объединим все состояния и переходы моделей в модель M с
пустым множеством начальных состояний

5. M1 ∼b M2 ⇔ s ′1 ∼M
b s ′2, где s ′1 и s ′2 — состояния, получающиеся

из s1 и s2 после переименования
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Бисимуляция состояний модели

Пример

Чтобы проверить бисимуляционную эквивалентность моделей

a b и a b

ab

,

достаточно проверить бисимуляционную эквивалентность состояний s1
и s2 в модели

a b a b

ab

s1 s2
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Бисимуляция состояний модели

Рассмотрим модель M = (S ,S0,→,L)

Отношение R ⊆ S × S называется отношением бисимуляции на модели
M, если для любой пары (s, r) ∈ R отношение R является отношением
бисимуляции между M(s) и M(r)

Это определение отличается от определения отношения бисимуляции
для пары моделей только тем, что
I вместо двух моделей рассматривается одна, взятая два раза, и
I не требуется соответствие начальных состояний
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Бисимуляция состояний модели
Пример

coins0 s1

tea s2

tea s3
Примеры отношений бисимуляции на этой модели:

1. {(s0, s0), (s1, s1), (s2, s2), (s3, s3)}
2. {(s0, s0), (s1, s1), (s2, s2), (s2, s3), (s3, s2), (s3, s3)}
3. {(s0, s0), (s1, s1), (s2, s3), (s3, s2)}
4. ∅

Утверждение. Если R1 и R2 — отношения бисимуляции на
конечной модели Крипке M, то отношение R1 ∪R2 также является
отношением бисимуляции на M
Можете попробовать доказать это самостоятельно (это не сверхслож-
но)
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Бисимуляция состояний модели
Следствие. Если R1, . . . ,Rn — все отношения бисимуляции на

конечной модели Крипке M, то
n⋃

i=1
Ri — отношение бисимуляции

на M, наибольшее по теоретико-множественному включению

≈M — так будем обозначать отношение бисимуляции на конечной
модели Крипке M, наибольшее по теоретико-множественному
включению (существующее согласно следствию выше, и очевидным
образом единственное)

Пример

M: coins0 s1

tea s2

tea s3

≈M= {(s0, s0), (s1, s1), (s2, s2), (s2, s3), (s3, s2), (s3, s3)}
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Бисимуляция состояний модели
Утверждение. Для любой конечной модели Крипке M отношение
≈M является отношением эквивалентности

Утверждение. Для любой конечной модели Крипке M отношения
∼M

b и ≈M совпадают

И это можете попробовать доказать самостоятельно (и это не очень
сложно)

Следовательно, проверку соотношения s1 ∼M
b s2 можно устроить так:

1. Вычислить все классы эквивалентности отношения ≈M

2. Проверить, лежат ли s1 и s2 в одном классе эквивалентности

Осталось показать, как можно вычислить все классы эквивалентности
отношения ≈M

S/≈ — так для отношения эквивалентности ≈ на множестве S будем
обозначать семейство всех классов эквивалентности отношения ≈
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Вычисление классов эквивалентности ≈M

Дано: конечная модель Крипке M = (S ,S0,→,L)

Требуется: вычислить семейство S/≈M

Общая идея алгоритма похожа на идею алгоритма минимизации
детерминированного конечного автомата и на вычисление наибольшей
неподвижной точки преобразователя предикатов:
I На каждом шаге имеем некоторое разбиение множества S на

предполагаемые классы эквивалентности
I Если можно «тривиально» заключить, что некоторые два

состояния, предполагающиеся эквивалентными, на самом деле
неэквивалентны, то соответственно разобъём предполагаемый
класс эквивалентности на два

I Иначе полученное семейство множеств состояний выдаётся в ответ
I Начнём со «слабого» предположения: разбиения, из которого

можно получить ответ такими подразбиениями классов
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Вычисление классов эквивалентности ≈M

Разбиением множества S будем называть любое конечное семейство
{B1, . . . ,Bn} попарно непересекающихся предикатов, такое что

S =
n⋃

i=1
Bi

PostM(s) — так будем обозначать множество всех состояний s ′, таких
что в M содержится переход s → s ′

Предикат C назовём разветвителем предиката B, если существует пара
состояний s1, s2 ∈ B, такая что
I PostM(s1) ∩ C 6= ∅ (из s1 можно перейти в C) и
I PostM(s2) ∩ C = ∅ (из s2 нельзя перейти в C)

Содержательно, существование разветвителя — это «тривиальный»
индикатор того, что состояния неэквивалентны
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Вычисление классов эквивалентности ≈M

Уточнением предиката B относительно предиката C будем называть
семейство предикатов Ref (B|C ), устроенное так:
I Если C — разветвитель предиката B, то Ref (B|C ) = {D,E}, где

I D = {s | s ∈ B, PostM(s) ∩ C 6= ∅}
I E = {s | s ∈ B, PostM(s) ∩ C = ∅}

I Иначе Ref (B|C ) = {B}

Уточнением семейства предикатов B = {B1, . . . ,Bn} относительно
предиката C будем называть семейство предикатов

Ref (B|C ) =
n⋃

i=1
Ref (Bi |C )

Уточнением разбиения B = {B1, . . . ,Bn} будем называть разбиение
Ref (B) = Ref (. . .Ref (Ref (B|B1)|B2) . . . |Bn)
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Вычисление классов эквивалентности ≈M

Алгоритм A вычисления классов эквивалентности ≈M для
M = (S ,S0,→,L) над AP:

1. Вычислить разбиение
B0 = {BX |BX = {s | s ∈ S , L(s) = X}, BX 6= ∅,X ⊆ AP}
I То есть эквивалентными полагаются состояния с одинаковой

разметкой атомарными высказываниями

2. Последовательно для каждого i ∈ {1, 2, . . . }:
2.1 Вычислить Bi = Ref (Bi−1)
2.2 Если Bi = Bi−1, то завершить алгоритм и выдать ответ Bi
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Вычисление классов эквивалентности ≈M
Пример

a
s0

a
s1 s2

a
s3

a
s4 s5

B0 = [{s0, s1, s3, s4}, {s2, s5}]
B1 = Ref ([{s0, s1, s3, s4}, {s2, s5}])

= Ref (Ref ([{s0, s1, s3, s4}, {s2, s5}]|{s0, s1, s3, s4})|{s2, s5})
= Ref ([{s0, s3, s4}, {s1}, {s2, s5}]|{s2, s5})
= [{s0, s3}, {s4}, {s1}, {s2, s5}]

B2 = Ref ([{s0, s3}, {s4}, {s1}, {s2, s5}])
= . . .

= [{s0}, {s3}, {s4}, {s1}, {s2, s5}]
B3 = Ref (B2) = · · · = B2

Ответ: [{s0}, {s3}, {s4}, {s1}, {s2, s5}]
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Вычисление классов эквивалентности ≈M
Уточнением отношения эквивалентности R на множестве S назовём
отношение эквивалентности Ref (R), такое что S/Ref (R) = Ref (S/R)
Утверждение. Для любой конечной модели Крипке M и любого
отношения эквивалентности R на состояниях этой модели верно:
1. R — отношение бисимуляции ⇔ Ref (R) = R
2. Ref (R) ⊆ R
3. Если ≈M⊆ R, то ≈M⊆ Ref (R)

Теорема. Для любой конечной модели Крипке M = (S ,S0,→,L)
алгоритм A завершается и выдаёт в ответ семейство S/≈M

Можете доказать утверждение и теорему самостоятельно

Для самостоятельного размышления:

1. Какова сложность предложенного алгоритма по времени работы?

2. Можно ли предложить алгоритм с меньшим порядком сложности?

3. Попробуйте предложить (с обоснованием) аналогичный алгоритм
для симуляционной эквивалентности
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Фактор-модель

[s]≈ — так будем обозначать класс эквивалентности элемента s по
отношению ≈

Фактор-моделью модели Крипке M = (S ,S0,→,L) называется модель
M≈ = (S ′,S ′0, 7→,L′), устроенная так:
I S ′ = S/≈M

I S ′0 = {[s]≈M | s ∈ S0}
I 7→= {([s]≈M , [r ]≈M ) | s → r}
I L′([s]≈M ) = L(s)
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Фактор-модель

Пример

M: coin

tea

tea

Фактор-модель M≈ устроена так:
M: coin tea

Утверждение. Для любой конечной модели Крипке M верно
M ∼b M≈

И это тоже можете попробовать доказать самостоятельно
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