Распределённые алгоритмы

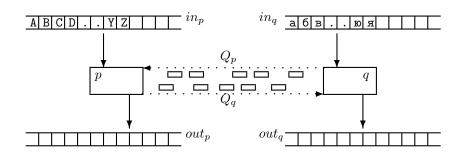
mk.cs.msu.ru o Лекционные курсы o Распределённые алгоритмы

Блок 11

Живость симметричного протокола раздвижного окна Лектор:
Подымов Владислав Васильевич
E-mail:
valdus@yandex.ru

ВМК МГУ, 2023/2024, весенний семестр

Напоминание



Живость BSWP(k) для каждого номера k блоков данных, $k \in \mathbb{N}_0$: в любом вычислении содержится конфигурация, в которой все значения $out_p[0], \ldots, out_p[k], out_q[0], \ldots, out_q[k]$ отличны от $\bot \forall \pi \in \Pi(S) : \exists \sigma \in \pi : \forall i \in \{0, 1, \ldots, k\} : out_p[i] \neq \bot \& out_q \neq \bot$

Блок 11 2)

Напоминание

- $ightharpoonup \ell_p : \mathbb{N}_0 = 0$
- $r_p : \mathbb{N}_0 = 0$
- \triangleright in_p: ARR[T]
- ightharpoonup out_p: $ARR[\mathcal{T}] = (\bot, \bot, \bot, \ldots);$
- Действие S_p : $\{\ell_p < r_p + \mathfrak{c}_p\}$
 - 1. Выбрать $i \in \mathbb{N}_0$: $\ell_p \leq i < r_p + \mathfrak{c}_p$
 - 2. $send(\mathbf{pack}, in_p[i], i)$
- **Действие** \mathbf{R}_p : {очередь Q_p непуста}
 - 1. receive(<u>pack</u>, w, i)
 - 2. Если $out_p[i] = \bot$:
 - $2.1 \quad out_p[i] := w;$
 - 2.2 $\ell_p := \max(\ell_p, i \mathfrak{c}_q + 1);$
 - 2.3 $r_p := \min(j \mid out_p[j] = \bot);$
- **Действие** L_p {очередь Q_p непуста}
 - 1. $receive(\underline{\mathbf{pack}}, w, i)$

К сожалению, если не наложить на устройство и выполнения BSWP дополнительных ограничений, то он не будет обладать свойством живости

Ограничения на устройство протокола:

- ightharpoonup Все элементы in_p и in_q отличны от \perp
- $ightharpoonup \mathfrak{c}_{
 ho},\mathfrak{c}_{q}\in\mathbb{N}_{0}$ и $\mathfrak{c}_{
 ho}+\mathfrak{c}_{q}>0$

Ограничения справедливости:

- F1 Если бесконечно часто возникает возможность отправки пакета, то этот пакет будет отправляться бесконечно часто
- F2 Если пакет отправляется бесконечно часто, то он и принимается бесконечно часто

BSWP с этими ограничениями будем обозначать BSWP*

Оказывается, что этих ограничений достаточно для обеспечения живости протокола

Блок 11 4/9

Лемма (об узости окна). В любой достижимой конфигурации BSWP* верно:

$$r_p - \mathfrak{c}_q \le \ell_p \le r_q \le \ell_q + \mathfrak{c}_p \le r_p + \mathfrak{c}_p$$

Доказательство.

По теореме о безопасности инварианта, любая достижимая конфигурация BSWP* обладает свойством P_{BSWP}

Неравенство $r_p - \mathfrak{c}_q \leq \ell_p$ следует из

- ▶ p^0 : $\forall i \in \{0, 1, ..., r_p 1\} : out_p[i] \neq \bot$
- ▶ p^2 : $\forall i \in \mathbb{N}_0 : out_p[i] \neq \bot \Rightarrow out_p[i] = in_q[i] \& (\ell_p > i \mathfrak{c}_q)$

Неравенство $\ell_p \leq r_q$ — это p^3

Неравенство $r_q \leq \ell_q + \mathfrak{c}_p$ (то есть $r_q - \mathfrak{c}_p \leq \ell_q$) следует из q^0 и q^2

Неравенство $\ell_q + \mathfrak{c}_p \le r_p + \mathfrak{c}_p$ (то есть $\ell_q \le r_p$) — это q^3 ▼

Таким образом, значения r_q и $\ell_q+\mathfrak{c}_p$, задающие створки окна узла q отстоят друг от друга не более чем на $\mathfrak{c}_p+\mathfrak{c}_q$ (и аналогично для p)

5/9

Лемма (об открытости окна). В любой достижимой конфигурации BSWP* выполнено хотя бы одно из предусловий действий отправки пакета \mathbf{S}_p ($\ell_p < r_p + \mathfrak{c}_p$), \mathbf{S}_q ($\ell_q < r_q + \mathfrak{c}_q$)

Доказательство.

По лемме об узости окна, верны неравенства $r_p-\mathfrak{c}_q\leq \ell_p\leq r_q\leq \ell_q+\mathfrak{c}_p\leq r_p+\mathfrak{c}_p$

В частности, это означает, что $\ell_p \leq r_q$ и $\ell_q + \mathfrak{c}_p \leq r_p + \mathfrak{c}_p$

To есть $\ell_p \le r_q$ и $\ell_q \le r_p$

Кроме того, согласно ограничению $\mathfrak{c}_p+\mathfrak{c}_q>0$, верно $r_p-\mathfrak{c}_q< r_p+\mathfrak{c}_p$ Следовательно, хотя бы одно из неравенств леммы об узости окна является строгим

Последнее означает, в частности, что $r_p - \mathfrak{c}_q < r_q \lor r_q < r_p + \mathfrak{c}_p$ То есть $r_p < r_a + \mathfrak{c}_q \lor r_q < r_p + \mathfrak{c}_p$

Следовательно, верно $\ell_{\it p} \leq r_{\it q} < r_{\it p} + \mathfrak{c}_{\it p} \lor \ell_{\it q} \leq r_{\it p} < r_{\it q} + \mathfrak{c}_{\it q}$

справедливости (F1) и (F2) обладает свойством живости BSWP

Теорема (живость BSWP). С.п. S BSWP* в условиях

 $\forall k \in \mathbb{N}_0 : \forall \pi \in \Pi(S) : \exists \sigma \in \pi : \forall i \in \{0, 1, \dots, k\} : out_p[i] \neq \bot$ & out_q $\neq \bot$ Доказательство.

 $(\forall i \in \{0,1,\ldots,r_q-1\}: out_q[i] \neq \bot)$ и безопасности BSWP, достаточно показать, что каждое из значений r_p , r_q увеличивается бесконечно часто

Предположим от противного, что это не так

Согласно p^0 ($\forall i \in \{0, 1, ..., r_p - 1\}$: $out_p[i] \neq \bot$), q^0

По лемме об узости окна, верны неравенства $r_p - \mathfrak{c}_q \le r_q \le r_p + \mathfrak{c}_p$ и $r_q - \mathfrak{c}_p \le r_p \le r_q + \mathfrak{c}_q$, а значит, значения обеих переменных r_p , r_q увеличиваются лишь конечное число раз

Пусть k_p , k_q — наибольшие значения r_p и r_a соответственно

Блок 11 7_.

Теорема (живость BSWP). С.п. S BSWP* в условиях справедливости (F1) и (F2) обладает свойством живости BSWP $\forall k \in \mathbb{N}_0: \forall \pi \in \Pi(S): \exists \sigma \in \pi: \forall i \in \{0,1,\ldots,k\}: out_p[i] \neq \bot \& out_q \neq \bot$

По лемме об открытости окна, бесконечно часто допустимо действие отправления хотя бы одного из пакетов (**pack**, $in_p[k_q]$, k_q), (**pack**, $in_q[k_p]$, k_p)

Пусть, для ясности, это пакет (**pack**, $in_q[k_p]$, k_p)

Доказательство.

Согласно (F1), этот пакет отправляется бесконечно часто

Согласно (F2), этот пакет принимается бесконечно часто

По устройству протокола и ограничению $in_q[k_p] \neq \bot$, приём этого сообщения приводит к увеличению значения r_p (противоречие) \blacktriangledown

Д.з. 1. Покажите, что последняя теорема перестаёт быть верной, если убрать хотя бы одно из ограничений (F1), (F2), и для этого приведите соответствующие «неживые» сценарии выполнения протокола

Д.з. 2. Докажите, что если в BSWP* выполняется равенство $\mathfrak{c}_p+\mathfrak{c}_q=1$ и начальные значения ℓ_p и ℓ_q заменить соответственно на $-\mathfrak{c}_q$ и $-\mathfrak{c}_p$, то во всех достижимых конфигурациях будут выполняться равенства $\ell_p+\mathfrak{c}_q=r_p$ и $\ell_q+\mathfrak{c}_p=r_q$

Блок 11 9/9