
Математическая логика
и логическое программирование

mk.cs.msu.ru → Лекционные курсы
→ Математическая логика и логическое программирование (3-й поток)

Блок 43

Логические программы:
встроенные предикаты и функции

Лектор:
Подымов Владислав Васильевич

E-mail:
valdus@yandex.ru

ВМК МГУ, 2024/2025, осенний семестр
Математическая логика и логическое программирование, Блок 43 1/13

https://mk.cs.msu.ru


Вступление
При помощи ХЛП можно решать любые разрешимые задачи, но всё же
чего-то не хватает
Например, если хочется написать ХЛП, складывающую два числа́ из
N0, то это не получится сделать сильно проще, чем:
1. Использовать представление чисел списками нолей и единиц,

хранящими двоичную запись с младшим разрядом в голове:
I Например, 13 = (1011)2 = 1.1.0.1.nil

2. Для операций использовать соответствующие предикаты
I Например, предикат сложения: plus(X, Y, Z) = t ⇔ Z = X+ Y

3. Реализовать необходимые предикаты для выбранного
представления:

plus(nil, L, L);
plus(L,nil, L);
plus(0.L, X.M, X.N)← ...;
plus(1.L, X.M, Y.N)← ...;
...

Выходит не очень удобно для использования — а нельзя ли лучше?
Математическая логика и логическое программирование, Блок 43 2/13



Вступление

Дальше (в этом блоке слайдов и в следующих) будут обсуждаться
конструкции, которые содержатся в языке Prolog и существенно
повышают удобство практического использования логических программ

Но введение этих конструкций сопряжено с техническими и
идеологическими трудностями, из-за которых будем иногда
I «забывать» про декларативную семантику и обсуждать только

операционную
I «вспоминать» про декларативную семантику и пытаться

преодолеть трудности, иногда полноценно, а иногда только отчасти

Чтобы подчеркнуть расхождение между тем, что будет рассказываться
про логические программы дальше, и тем, что рассказывалось до сих
пор, не будем называть программы с дальнейшими добавлениями и
уточнениями «хорновскими», называя их просто «логические
программы»

Математическая логика и логическое программирование, Блок 43 3/13



Встроенные предикаты и функции
В языке логических программ на практике содержатся встроенные
предикаты и функции: предикатные и функциональные символы,
имеющие предзаданный смысл, выходящий за рамки SLD-резолюции, и
предназначенные для записи в телах правил и запросов

Смысл встроенных предикатов будет обсуждаться только в рамках
операционной семантики, и он будет задаваться как сочетание критерия
выполнимости и унификатора:

I Если в качестве подцели выбран не встроенный предикат, то шаг
вычисления состоит в обычном построении SLD-резольвенты

I Иначе:
I Если выполнен критерий выполнимости встроенного предиката,

выбранного в качестве подцели, то
I этот предикат удаляется из запроса, и
I к оставшейся части запроса применяется унификатор

I Иначе построенное вычисление считается тупиковым (невозможно
выполнить следующий шаг)

Математическая логика и логическое программирование, Блок 43 4/13



Типы данных

В «удобных» языках программирования, как правило, есть хотя бы
минимальный набор типов данных

Для примера подробно обсу́дим тип integer целых чисел:
0, 1, (−1), 2, (−2), . . .

С точки зрения логики предикатов,
I 0, 1, (−1), 2, (−2), . . . — это целочисленные константы
I integer — это одноместный предикатный символ: integer(x) = «x —

целое число»

Математическая логика и логическое программирование, Блок 43 5/13



Типы данных: integer

integer в логических программах — это встроенный одноместный
предикат:
I Критерий выполнимости integer(t): t — это целочисленная

константа
I Унификатор: ε

Например:

?integer(3), p(X)

?p(X)
ε

?integer(0.nil)
тупик

?integer(1 + 2)
тупик

?integer(X)
тупик

Математическая логика и логическое программирование, Блок 43 6/13



Типы данных: integer, +, −, · (∗), / (div), % (mod)

Для целых чисел можно естественно ввести

I операции: +, −, · (она же ∗), / (она же div), % (она же mod), ...
I С точки зрения логики предикатов, это функциональные символы

подходящей местности в инфиксной записи с естественным смыслом

I отношения: <, ≤, >, ≥, ...
I С точки зрения логики предикатов, это предикатные символы

подходящей местности в инфиксной записи с естественным смыслом
I Особое место в этом списке занимает отношение равенства, его

обсу́дим отдельно позже

Небольшая поправка: знаки операций и отношений, используемые в
Prolog, могут отличаться, читайте документацию

Математическая логика и логическое программирование, Блок 43 7/13



Типы данных: integer, <, ≤, >, ≥
Отношение ./∈ {<,≤, >,≥} над целыми числами в логических
программах — это встроенный двуместный предикат в инфиксной
записи:
I Критерий выполнимости t1 ./ t2: t1 и t2 — целочисленные

константы, входящие в отношение ./
I Унификатор: ε

Например:

?1 < 3, p(X)

?p(X)
ε

?3 < 1
тупик

?X < 2
тупик

?1 < 1 + 2
тупик

Как видно по самому правому и самому левому примерам, выражение
1 + 2 расценивается программой не как число 3, а именно как
выражение — запись, сама по себе не являющаяся числом

Чтобы вычислить это выражение (преобразовать его в число),
требуется применить соответствующий предикат
Математическая логика и логическое программирование, Блок 43 8/13



Вычисляющий предикат (is)
is — это встроенный двуместный предикат (записывающийся
инфиксно), предназначенный для вычисления значения выражения с
записью в переменную:
I Критерий выполнимости t1 is t2:

I t1 — переменная и
I t2 — выражение (терм), имеющее значение (без переменных и

построенное корректно относительно типов)
I Унификатор: {t1/val}, где val — значение выражения t2

Например:
?X is 1 + 2, p(X), r(Y)

?p(3), r(Y)
{X/3}

?3 is 1 + 2
тупик

?X is 1 + Y
тупик

?1 + 2 is 3
тупик

?1 + 2 is X
тупик

Небольшая поправка:
I В интерпретаторе языка Prolog с немалой вероятностью во втором

слева примере будет не тупик, а шаг вычисления с унификатором ε
I Выше изложена семантика is в «исходном» варианте языка Prolog,

а остальное здесь считается «отклонением от стандарта»
Математическая логика и логическое программирование, Блок 43 9/13



Предикаты равенства и неравенства (=, ==, \=, =\=)
В Prolog используется два вида равенства термов:
I Сильное: посимвольное совпадение
I Слабое: унифицируемость

== — встроенный двуместный предикат сильного равенства в
инфиксной записи:
I Критерий выполнимости t1 == t2: термы t1 и t2 посимвольно

совпадают
I Унификатор: ε

Например:

?X+ 1== X+ 1, p(X)

?p(X)
ε

?X== 1 + 2
тупик

?3== 1 + 2
тупик

?X+ 1== 1 + X
тупик

?X+ 1== 2 + X
тупик

?1 + 2== 2 + 1
тупик

Математическая логика и логическое программирование, Блок 43 10/13



Предикаты равенства и неравенства (=, ==, \=, =\=)

=\= — встроенный двуместный предикат сильного неравенства в
инфиксной записи:
I Критерий выполнимости t1 =\= t2: t1 и t2 не совпадают

посимвольно
I Унификатор: ε

Например:

?X+ 1=\= X+ 1
тупик

?X=\= 1 + 2, p(X)

?p(X)
ε

?3=\= 1 + 2, p(X)

?p(X)
ε

?X+ 1=\= 1 + X, p(X)

?p(X)
ε

?X+ 1=\= 2 + X, p(X)

?p(X)
ε

?1 + 2=\= 2 + 1, p(X)

?p(X)
ε

Математическая логика и логическое программирование, Блок 43 11/13



Предикаты равенства и неравенства (=, ==, \=, =\=)

= — встроенный двуместный предикат слабого равенства в инфиксной
записи:
I Критерий выполнимости t1 = t2: У(t1, t2) 6= ∅
I Унификатор: какой-либо наиболее общий унификатор t1 и t2

Например:

?X+ 1 = X+ 1, p(X)

?p(X)
ε

?X = 1 + 2, p(X), r(Y)

?p(1 + 2), r(Y)
{X/1 + 2}

?3 = 1 + 2
тупик

?X+ 1 = 1 + X, p(X), r(Y)

?p(1), r(Y)
{X/1}

?X+ 1 = 2 + X
тупик

?1 + 2 = 2 + 1
тупик

Математическая логика и логическое программирование, Блок 43 12/13



Предикаты равенства и неравенства (=, ==, \=, =\=)

\= — встроенный двуместный предикат слабого неравенства в
инфиксной записи:
I Критерий выполнимости t1 \= t2: У(t1, t2) = ∅
I Унификатор: ε

Например:

?X+ 1 \= X+ 1
тупик

?X \= 1 + 2
тупик

?3 \= 1 + 2, p(X)

?p(X)
ε

?X+ 1 \= 1 + X
тупик

?X+ 1 \= 2 + X, p(X)

?p(X)
ε

?1 + 2 \= 2 + 1, p(X)

?p(X)
ε

Математическая логика и логическое программирование, Блок 43 13/13


