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Вступление
Пример/наблюдение 1

Модели Крипке бывают простые
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Вступление
Пример/наблюдение 1

Сложные модели придумываются для
I точного соответствия поведению исходной системы и
I детального воспроизведения шагов выполнения системы

Но такие модели трудно строить (вычислять) и трудно анализировать

С другой стороны, простые модели
I легко строятся и
I легко анализируются

Но простой моделью лишь приблизительно (неточно) описывается
поведение исходной системы и предоставляется лишь поверхностная
информация о шагах выполнения системы
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Вступление
Пример/наблюдение 1

Хотелось бы иметь возможность «переключать» степень простоты
модели, чтобы использовать преимущества, отвечающие текущим
целям исследования системы

Например, было бы неплохо уметь разрабатывать точную детальную
модель так, чтобы она затем не слишком трудно перестраивалась в
простую для достаточно эффективной верификации

Но для этого требуются гарантии того, что две заданные модели
настолько схожи, что обладают одинаковыми спектрами свойств
относительно поставленной задачи верификации
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Вступление
Пример/наблюдение 2

Представим себе, что
I для системы S была построена модель M,
I для этой модели было показано соответствие набору спецификаций
ϕ1, . . . , ϕk ,

I но после этого в модель были внесены изменения (исправления,
улучшения, оптимизации), и в результате получена модель M ′

Хотелось бы иметь возможность переносить результаты о правильности
модели c M на M ′, избегая трудоёмкого процесса проверки
соответствия модели спецификациям и ограничившись только анализом
различий моделей M и M ′

Но тогда требуется придумать отношение схожести между двумя
моделями, гарантирующее одинаковое соответствие или несоответствие
спецификациям ϕ1, . . . , ϕk для схожих моделей
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Трассовая эквивалентность моделей

Если в качестве языка спецификаций выбрать язык LTL, то нетрудно
заметить (вспомнить), что:
I Каждая ltl-формула ϕ является формой записи множества

«хороших» трасс Tr(ϕ)

I Верификация модели M состоит в том, чтобы проверить, что все
трассы модели являются «хорошими»: Tr(M) ⊆ Tr(ϕ)

Тогда можно схожесть моделей определить так

Модели M1 и M2 трассово эквивалентны, если Tr(M1) = Tr(M2)

Математические методы верификации схем и программ, Блок 34 6/23



Трассовая эквивалентность моделей
Утверждение. Для любых трассово эквивалентных моделей M1,
M2 и любой ltl-формулы ϕ верно:

M1 |= ϕ ⇔ M2 |= ϕ

Но иметь одну только трассовую эквивалентность в качестве меры
схожести моделей недостаточно:
I Аналогичное утверждение для многих других языков спецификаций

оказывается неверным
I Например, для CTL

I Проверка трассовой эквивалентности конечных моделей Крипке —
это очень трудная задача
I Более точно — PSPACE-полная, но не хочется тратить время на

разъяснение этого факта

Необходимо иметь и такие определения схожести моделей, которые
были бы более «простыми» и подходили для других языков
спецификаций
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Отношение симуляции

Рассмотрим две модели Крипке над общим множеством атомарных
высказываний AP (в этом блоке множество AP считается всегда
заданным по умолчанию):

M ′ = (S ′,S ′0,→,L′), M ′′ = (S ′′,S ′′0 , 7→,L′′)

Отношение R ⊆ S ′ × S ′′ называется отношением симуляции между M ′ и
M ′′, если для него выполнены два условия:

1. Для любого состояния s ′0 из S ′0 существует состояние s ′′0 из S ′′0 ,
такое что (s ′0, s

′′
0 ) ∈ R

2. Для любой пары s ′, s ′′, такой что R(s ′, s ′′), верно следующее:
2.1 L′(s ′) = L′′(s ′′)
2.2 Для любого состояния r ′, такого что s ′ → r ′, существует состояние

r ′′, такое что s ′′ 7→ r ′′ и R(r ′, r ′′)

Будем говорить, что модель M ′ симулируется моделью M ′′ (M ′ � M ′′),
если существует отношение симуляции между M ′ и M ′′
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Отношение симуляции
Пример

M1: coins0

s1 tea s2

s3 coffee s4

M2: coinr0 r1

tea r2

coffee r3

Пример отношения симуляции между M1 и M2:
{(s0, r0), (s1, r1), (s2, r2), (s3, r1), (s4, r3)}

Это несложно проверить:
I Для s0 в отношении существует пара
I Состояния каждой пары одинаково размечены атомарными

высказываниями
I Каждой паре и каждому переходу в первой модели отвечает

подходящий переход из парного состояния во второй модели (такой
что пара концов переходов входит в отношение)
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Отношение симуляции
Симуляцию можно представить себе как игру между моделями M1, M2:
I M1 выбирает своё начальное состояние
I M2 выбирает начальное состояние с такой же разметкой
I Затем пошагово происходит следующее:

I Каждая модель Mi находится в некотором состоянии si (на первом
шаге — в выбранных начальных состояниях)

I M1 выбирает переход из s1 и выполняет его, изменяя своё текущее
состояние

I M2 выбирает переход из s2 так, чтобы перейти в состояние с такой
же разметкой

I M2 проигрывает партию игры, если не может выбрать подходящее
начальное состояние или подходящий очередной переход, и
выигрывает, если партия бесконечна

Тогда M1 � M2 означает, что существует выигрышная стратегия M2, то
есть способ выбора начального состояния и переходов в ответ на
любые действия M1 так, чтобы выиграть
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Отношение симуляции
Например:

M1: coins0

s1 tea s2

s3 coffee s4

M2: coinr0 r1

tea r2

coffee r3
Тогда
I пары переходов, которые ранее подсвечивались зелёным для

обоснования того, что отношение
{(s0, r0), (s1, r1), (s2, r2), (s3, r1), (s4, r3)},

является отношением симуляции между M1 и M2, и
I пары состояний, входящие в это отношение,

представляют собой соответственно
I выигрышный способ ответного выбора переходов для M2 и
I всевозможные расклады партии, возникающие при таком способе

игры
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Отношение симуляции

Утверждение. Отношение � рефлексивно и транзитивно

Доказательство.

Рефлексивность (M � M) подтверждается отношением {(s, s) | s ∈ S},
где S — множество состояний модели M

Транзитивность: если M1 � M2 и M2 � M3, то M1 � M3

Пусть Mi = (S i ,S i
0,→i ,Li)

Рассмотрим отношения R1 и R2 симуляции для (M1,M2) и для
(M2,M3) соответственно

Тогда отношение симуляции R для M1 и M3 может быть устроено так:
R = {(s1, s3) | ∃s2 : (s1, s2) ∈ R1, (s2, s3) ∈ R2}

Несложно убедиться, что для этого отношения выполнены все пункты
определения симуляции H
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Симуляционная эквивалентность
Модели M1 и M2 симуляционно эквивалентны (M1 ∼s M2), если
M1 � M2 и M2 � M1

Пример

M1: coins0

s1 tea s2

s3 coffee s4

M2: coinr0 r1

tea r2

coffee r3
Эти модели не являются симуляционно эквивалентными, т.к. M2 6� M1:
I В отношение симуляции R, если оно существует, должна входить

хотя бы одна пара вида (r1,_)

I Согласно функции разметки, для R могут подойти только пары
(r1, s1) и (r1, s3)

I Ни одна из этих пар не подходит:
I (r1, s1) — т.к. из s1 не исходит переход, отвечающий r1 → r3
I (r1, s3) — т.к. из s1 не исходит переход, отвечающий r1 → r2
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Симуляционная эквивалентность
Другой пример

M1: coins0

s1 tea s2

s3 coffee s4

M2: coinr0 r1

tea r2

coffee r3
Эти модели симуляционно эквивалентны, что подтверждается такими
двумя отношениями симуляции:
I M1 � M2: {(s0, r0), (s1, r1), (s2, r2), (s3, r1), (s4, r3)}
I M2 � M1: {(r0, s0), (r1, s1), (r2, s2), (r3, s4)}

Утверждение. ∼s — отношение эквивалентности
Доказательство.
Рефлексивность и транзитивность следуют из рефлексивности и
транзитивности отношения �
Симметричность очевидна: M1 ∼s M2 ⇔ M1 � M2 и M2 � M1 ⇔
M2 � M1 и M1 � M2 ⇔ M2 ∼ M1 H
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Свойства симуляционной эквивалентности
Будем говорить, что пути π1, π2 в моделях Крипке
M1 = (S1,S1

0 ,→1,L1), M2 = (S2,S2
0 ,→2,L2) R-соответствуют друг другу

для отношения R ⊆ S1 × S2, если для любого момента времени k верно
(π1[k ], π2[k ]) ∈ R

Утверждение. Для любых
I моделей Крипке M1 = (S1,S1

0 ,→1,L1), M2 = (S2,S2
0 ,→2,L2),

I отношения симуляции R для M1 и M2,
I состояний s1 ∈ S1 и s2 ∈ S2, таких что (s1, s2) ∈ R, и
I пути π1 в M1, исходящего из s1

существует R-соответствующий путь π2 в M2, исходящий из s2

Это утверждение несложно доказывается индукцией по длине пути

Следствие. Если M1 � M2, то Tr(M1) ⊆ Tr(M2)

Следствие. Если M1 ∼s M2, то модели M1 и M2 трассово
эквивалентны
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Свойства симуляционной эквивалентности
Actl∗-формулой будем называть ctl*-формулу частного вида,
подходящего под БНФ

Φ ::= t | p | ¬p | (Φ & Φ) | (Φ ∨ Φ) | (Aϕ),
ϕ ::= Φ | ϕ&ϕ | ϕ ∨ ϕ | (Xϕ) | (ϕUϕ) | (ϕRψ),

где
I p ∈ AP и
I ϕRψ = ¬(¬ϕU¬ψ)

Теорема. Для любых моделей M1, M2, таких что M1 � M2, и
любой actl*-формулы ϕ, верно: если M1 |= ϕ, то M2 |= ϕ

Можете попробовать сами доказать это индукцией по структуре
формулы с использованием последнего утверждения о соответствующих
путях (это не очень трудно)

Следствие. Для любых моделей M1, M2, таких что M1 ∼s M2, и
любой actl*-формулы ϕ верно: M1 |= ϕ ⇔ M2 |= ϕ

Хотя ACTL* — это достаточно широкий фрагмент CTL* (шире LTL),
но хотелось бы иметь аналогичное утверждение и про весь язык CTL*
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Бисимуляция (отношение, эквивалентность)
Отношение R− = {(y , x) | (x , y) ∈ R} называется обратным к
отношению R ⊆ X × Y
Рассмотрим модели Крипке M ′ = (S ′,S ′0,→,L′) и M ′′ = (S ′′,S ′′0 , 7→,L′′)
Отношение R ⊆ S ′ × S ′′ называется отношением бисимуляции между
M ′ и M ′′, если R и R− — отношения симуляции между M ′ и M ′′ и
между M ′′ и M ′ соответственно
Модели M1 и M2 бисимуляционно эквивалентны (M1 ∼b M2), если
существует отношение бисимуляции между этими моделями
Пример

as0 b s1 ar0 b r1

a r2br3
Эти две модели бисимуляционно эквивалентны, что подтверждается
таким отношением бисимуляции:

{(s0, r0), (s0, r2), (s1, r1), (s1, r3)}
Бисимуляционная эквивалентность похожа на изоморфизм графов, но
допускает, в числе прочего, «частичную развёртку» модели
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Бисимуляция (отношение, эквивалентность)

Другой пример

M1: coins0

s1 tea s2

tea s3

s4 coffee s5

M2: coinr0

r1 tea r2

r3

coffee r4

coffee r5

Эти модели бисимуляционно эквивалентны, что подтверждается
отношением бисимуляции

{(s0, r0), (s1, r1), (s2, r2), (s3, r2), (s4, r3), (s5, r4), (s5, r5)}

Бисимуляция допускает и «дублирование» состояний в модели
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Бисимуляция (отношение, эквивалентность)
И ещё один пример

M1: coins0

s1 tea s2

s3 coffee s4

M2: coinr0 r1

tea r2

coffee r3

Ранее было показано, что эти модели симуляционно эквивалентны

Но они не являются бисимуляционно эквивалентными, так как
если существует отношение бисимуляции R между M1 и M2, то:
I Так как R — отношение симуляции между M1 и M2, то в нём

должна содержаться хотя бы одна пара вида (s3,_)

I Согласно функции разметки, такой парой может быть только (s3, r1)

I Так как R− — отношение симуляции между M2 и M1 и переходу
r1 → r2 не соответствует ни один переход из s3, то пара (s3, r1) не
может содержаться в R (противоречие)
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Бисимуляционная эквивалентность и её свойства
Утверждение. ∼b — отношение эквивалентности

Доказательство. Рефлексивность и транзитивность следуют из того,
что
I отношение бисимуляции между двумя моделями является и

отношением симуляции между этими моделями
I отношение � рефлексивно и транзитивно

Симметричность очевидна: если R — отношение бисимуляции между
M1 и M2, то R− — отношение бисимуляции между M2 и M1 H

Утверждение. Любые две бисимуляционно эквивалентные модели
симуляционно эквивалентны

Доказательство. Достаточно заметить, что (по определению) если R —
отношение бисимуляции между M1 и M2, то R и R− — отношения
симуляции между M1 и M2 и между M2 и M1 соответственно H
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Бисимуляционная эквивалентность и её свойства

Утверждение. Для любых
I моделей Крипке M1 = (S1,S1

0 ,→1,L1), M2 = (S2,S2
0 ,→2,L2),

I отношения бисимуляции R для M1 и M2,
I состояний s1 ∈ S1 и s2 ∈ S2, таких что (s1, s2) ∈ R,
I номера i , i ∈ {1, 2} и
I пути πi из si в Mi

существует путь π3−i из s3−i в M3−i , R-соответствующий πi

Это утверждение несложно доказывается индукцией по длине пути
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Бисимуляционная эквивалентность и её свойства

Утверждение. Для любых
I бисимуляционно эквивалентных моделей M1, M2,
I отношения бисимуляции R между этими моделями,
I состояний s1, s2 этих моделей, таких что (s1, s2) ∈ R,
I R-соответсвующих путей π1, π2 в этих моделях,
I формулы состояния Φ CTL* и
I формулы пути ϕ CTL*

верны равносильности
M1, s1 |= Φ ⇔ M2, s2 |= Φ
M1, π1 |= ϕ ⇔ M2, π2 |= ϕ

Можете попробовать сами доказать это индукцией по структуре
формулы с привлечением предыдущего утверждения
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Бисимуляционная эквивалентность и её свойства

Теорема. Для любых бисимуляционно эквивалентных моделей M1,
M2 и любой ctl*-формулы ϕ верно:

M1 |= ϕ ⇔ M2 |= ϕ

Итого определено три отношения эквивалентности ∼ моделей Крипке с
соответствующими фрагментами L языка CTL*:

1. Трассовая эквивалентность и LTL

2. Симуляционная эквивалентность и ACTL*

3. Бисимуляционная эквивалентность и CTL*

Если для спецификации модели M1 используется фрагмент L, то можно
быть уверенным в том, что на любой модель M2, такая что M1 ∼ M2
для соответствующего ∼, настолько же удовлетворяет всем
спецификациям, насколько и M1
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