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Вступление

Задача MC-TCTL: для заданного корректного временно́го автомата A и
заданной tctl-формулы ϕ проверить соотношение A |= ϕ

Задача MC-CTL: для заданной модели Крипке M и заданной
ctl-формулы ϕ проверить соотношение M |= ϕ

Синтаксис CTL строго шире синтаксиса TCTL

Семантика CTL похожа на семантику TCTL, но существенно
различается из-за особенностей отсчёта времени

Эти две логики настолько похожи друг на друга, что можно
попробовать свести решение MC-TCTL к решению MC-CTL

Чтобы нагляднее различать отношения выполнимости в смысле CTL и
в смысле TCTL, будем отношение выполнимости для TCTL записывать
так: |=R
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Общая схема MC-TCTL
Дано: временной автомат A, tctl-формула ϕ над множествами
атомарных высказываний AP и часов C
Требуется проверить справедливость соотношения A |=R ϕ
Схема проверки:

Автомат A Tctl-формула ϕ

Модель Крипке RS(A, ϕ) ϕ как ctl-формула

RS(A, ϕ) |= ϕ?

Ответ: A |=R ϕ ⇔ RS(A, ϕ) |= ϕ

Модель RS(A, ϕ) будет называться системой регионов для автомата A
и формулы ϕ
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Общая схема MC-TCTL
AC (A) и AC (ϕ) — так будем обозначать все атомарные временны́е
ограничения, содержащиеся соответственно в A и в ϕ
Система RS(A, ϕ) будет строиться над множеством AP ∪ AC (ϕ)
(и тогда можно считать ϕ ctl-формулой)
Каждая конфигурация автомата будет отвечать некоторому состоянию
системы RS(A, ϕ):
I Множесто всех оценок часов будет разбито на классы

эквивалентности (регионы)
I Оценка ν будет отвечать её региону [ν]

I Конфигурация (s, ν) будет отвечать состоянию (s, [ν])

I [(0, 0, . . . , 0)] = {(0, 0, . . . , 0)}
Шаг вычисления (s1, ν1)→ (s2, ν2) автомата будет отвечать пути
(s1, [ν1])→ · · · → (s2, [ν2]) в системе регионов
(и, в частности, все покрывающиеся конфигурации станут явными)
Состояние (s, [ν]) будет размечаться высказываниями из AP согласно s
и ограничениями из AC (ϕ) согласно ν
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Общая схема MC-TCTL
Пример: попробуем при помощи «пристального взгляда» построить
подходящую модель Крипке (хотя и не в точности RS(A, ϕ)) для таких
автомата A и tctl-формулы ϕ:

a bx < 2 x < 3
x ≥ 1

x
AGAF(x = 1)

, {0}

, (0, 2), (0,−1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

Единственное начальное состояние модели — это со значением 0
часов x
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Общая схема MC-TCTL
Пример: попробуем при помощи «пристального взгляда» построить
подходящую модель Крипке (хотя и не в точности RS(A, ϕ)) для таких
автомата A и tctl-формулы ϕ:

a bx < 2 x < 3
x ≥ 1

x
AGAF(x = 1)

, {0} , (0, 2)

, (0,−1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

Начав вычисление в ( , 0), A обязан продвинуть время, и может
продвинуть часы до любого значения интервала (0, 2)

Для начала запишем все такие продвижения времени как один переход в
модели
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Общая схема MC-TCTL
Пример: попробуем при помощи «пристального взгляда» построить
подходящую модель Крипке (хотя и не в точности RS(A, ϕ)) для таких
автомата A и tctl-формулы ϕ:

a bx < 2 x < 3
x ≥ 1

x
AGAF(x = 1)

, {0}

, (0, 2)

, (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

Для значений часов из [1, 2) открыт верхний переход автомата,
а для значений из (0, 1) этот переход закрыт

Чтобы детерминированно воспроизвести шаги вычисления автомата,
следует разбить состояние ( , (0, 2)) на два: ( , (0, 1)) и ( , [1, 2))

Математические методы верификации схем и программ, Блок 34 7/26



Общая схема MC-TCTL
Пример: попробуем при помощи «пристального взгляда» построить
подходящую модель Крипке (хотя и не в точности RS(A, ϕ)) для таких
автомата A и tctl-формулы ϕ:

a bx < 2 x < 3
x ≥ 1

x
AGAF(x = 1)

, {0}

, (0, 2)

, (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

Когда автомат непрерывно ожидает (продвигает время), начав в ( , 0),
значение часов последовательно проходит через интервалы {0}, (0, 1) и
[1, 2)

Чтобы воспроизвести все варианты такого ожидания, соединим
соответствующие состояния по порядку
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Общая схема MC-TCTL
Пример: попробуем при помощи «пристального взгляда» построить
подходящую модель Крипке (хотя и не в точности RS(A, ϕ)) для таких
автомата A и tctl-формулы ϕ:

a bx < 2 x < 3
x ≥ 1

x
AGAF(x = 1)

, {0}

, (0, 2)

, (0, 1) , [1, 2)

, [1, 2)

, [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

Для каждой конфигурации вида ( , d), где 1 ≤ d < 2,

верно соотношение ( , d)
x≥1−−→

↪−−−−−→ ( , d)

Добавим в модель переход, воспроизводящий все такие шаги
вычисления автомата
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Общая схема MC-TCTL
Пример: попробуем при помощи «пристального взгляда» построить
подходящую модель Крипке (хотя и не в точности RS(A, ϕ)) для таких
автомата A и tctl-формулы ϕ:

a bx < 2 x < 3
x ≥ 1

x
AGAF(x = 1)

, {0}

, (0, 2)

, (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

Когда автомат ожидает, начав в ( , d), где 1 ≤ d < 2,
значение часов может пройти через остаток интервала [1, 2)
и через часть интервала [2, 3)

Добавим в модель переход, воспроизводящий такое ожидание
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Общая схема MC-TCTL
Пример: попробуем при помощи «пристального взгляда» построить
подходящую модель Крипке (хотя и не в точности RS(A, ϕ)) для таких
автомата A и tctl-формулы ϕ:

a bx < 2 x < 3
x ≥ 1

x
AGAF(x = 1)

, {0}

, (0, 2)

, (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

Для каждой конфигурации ( , d), где 1 ≤ d < 3,

верно соотношение ( , d)
x−→

↪−−−→ ( , 0)

Добавим в модель переходы, отвечающие всем таким шагам
вычисления автомата
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Общая схема MC-TCTL
Пример: попробуем при помощи «пристального взгляда» построить
подходящую модель Крипке (хотя и не в точности RS(A, ϕ)) для таких
автомата A и tctl-формулы ϕ:

a bx < 2 x < 3
x ≥ 1

x
AGAF(x = 1)

, {0}

, (0, 2)

, (0, 1)

, [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

(x = 1) ≡ (x ≤ 1 &¬(x < 1)):
в формуле ϕ содержатся ограничения x ≤ 1 и x < 1

Чтобы детерминированно разметить состояния модели
этими ограничениями, следует разбить в каждом состоянии модели
интервал [1, 2) на два: {1} и (1, 2)
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Общая схема MC-TCTL
Пример: попробуем при помощи «пристального взгляда» построить
подходящую модель Крипке (хотя и не в точности RS(A, ϕ)) для таких
автомата A и tctl-формулы ϕ:

a bx < 2 x < 3
x ≥ 1

x
AGAF(x = 1)

, {0} , (0, 2), (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

Получилась модель Крипке M, содержащая
в точности все шаги вычисления автомата A
и все неявно покрытые конфигурации таких шагов

Нетрудно видеть, что A |=R ϕ и M |= ϕ
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Общая схема MC-TCTL
Пример: попробуем при помощи «пристального взгляда» построить
подходящую модель Крипке (хотя и не в точности RS(A, ϕ)) для таких
автомата A и tctl-формулы ϕ:

a bx < 2 x < 3
x ≥ 1

x
AGAF(x = 1)

, {0} , (0, 2), (0, 1) , [1, 2)

, [1, 2) , [2, 3)

, {1} , (1, 2)

, {1} , (1, 2) , [2, 3)

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, [2, 3)

Теперь перейдём к трудной части: в общем случае ...

I как устроить множества оценок (регионы), чтобы обеспечить
требуемое соответствие, детерминированность и конечность?

I как совместить состояния автомата, регионы и переходы,
чтобы чудесным образом превратить «|=R» в «|=»?
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Временны́е регионы

Разбиение оценок часов на классы основывается на региональном
отношении эквивалентности оценок часов (≈)

Полное подробное определение этого отношения будет приведено далее,
и оно будет описываться постепенно (поэтапно)

Временной регион — это класс эквивалентности отношения ≈

Временны́е регионы — это множества оценок часов, использующиеся в
качестве второго компонента состояния системы регионов

R — так будем обозначать семейство всех временны́х регионов
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Временны́е регионы
Особенности устройства отношения ≈, которые необходимы для
соответствия содержательному краткому описанию системы регионов и
для всех технических тонкостей, возникших в примере, строго можно
определить так:
I Конечность: общее число классов эквивалентности отношения ≈

конечно
I ⇒ множество состояний системы регионов конечно, и можно к ней

применять известные алгоритмы анализа конечных моделей Крипке
I Неразличимость временны́ми ограничениями: если ν1 ≈ ν2 и

ag ∈ AC (A) ∪ AC (ϕ), то ν1 |= ag ⇔ ν2 |= ag
I ⇒ детерминированность относительно предусловий и разметки состояний

I Корректный сброс: если ρ — регион и X — множество часов, то
ρ[X ] = {ν[X ] | ν ∈ ρ} — тоже регион
I ⇒ детерминированность относительно сброса часов при выполнении

переходов автомата
I Корректное ожидание: для любого региона ρ существует

единственный регион ρ+, следующий за ρ при непрерывном
ожидании автомата
I ⇒ детерминированность относительно продвижения времени автоматом
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Временны́е регионы
Первая (неудачная) попытка определить ≈

btc и frac(t) — так будем обозначать соответственно целую и дробную
часть числа действительного числа́ t

ν1 ≈1 ν2 ⇔ для любых часов x верно следующее:

1. bν1(x)c = bν2(x)c
2. frac(ν1(x)) = 0 ⇔ frac(ν2(x)) = 0

Пример: регионы отношения ≈1 для пары часов x , y изображены ниже
как связные одноцветные области числовой плоскости

ν(x)

ν(y)

0 1 2

1

2
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Временны́е регионы
Первая (неудачная) попытка определить ≈

ν(x)

ν(y)

0 1 2

1

2

Хорошие свойства ≈1:
I Неразличимость временны́ми ограничениями
I Корректный сброс

Плохие свойства ≈1:
I |R| =∞
I Невозможно однозначно определить ρ+

I примеры пар (ρ, ρ+) изображены выше стрелками
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Временны́е регионы
Вторая (неудачная) попытка определить ≈

ν1 ≈2 ν2 ⇔ для любых часов x , y верно следующее:

1. bν1(x)c = bν2(x)c
2. frac(ν1(x)) = 0 ⇔ frac(ν2(x)) = 0

3. frac(ν1(x)) ≤ frac(ν1(y)) ⇔ frac(ν2(x)) ≤ frac(ν2(y))

Пример: регионы отношения ≈2 для пары часов x , y изображены ниже
как связные одноцветные области числовой плоскости

ν(x)

ν(y)

0 1 2

1

2
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Временны́е регионы
Вторая (неудачная) попытка определить ≈

ν(x)

ν(y)

0 1 2

1

2

Хорошие свойства ≈2:
I Неразличимость временны́ми ограничениями
I Корректный сброс
I Корректное ожидание

Плохие свойства ≈2:
I |R| =∞
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Временны́е регионы
Определение ≈ (третья попытка, удачная)
kx — так будем обозначать максимальное целое число, встречающееся
в правых частях ограничений из AC (A) ∪ AC (ϕ)
ν1 ≈ ν2 ⇔ для любых часов x , y верно следующее:
1. ν1(x) > kx ⇔ ν2(x) > kx
2. если ν1(x) ≤ kx и ν1(y) ≤ ky , то

I bν1(x)c = bν2(x)c,
I frac(ν1(x)) = 0 ⇔ frac(ν2(x)) = 0 и
I frac(ν1(x)) ≤ frac(ν1(y)) ⇔ frac(ν2(x)) ≤ frac(ν2(y))

Пример: регионы для пары часов x , y и констант kx = 2, ky = 1
изображены ниже как связные одноцветные области числовой плоскости

ν(x)

ν(y)

0 1 2

1

2
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Оценка числа́ регионов
Утверждение. |C|! ·

∏
x∈C

kx ≤ |R| ≤ |C|! · 2|C|−1 ·
∏
x∈C

(2kx + 2)

Доказательство. Ограничимся пояснениями всех множителей в оценках:
I

∏
x∈C

kx — это количество единичных |C|-мерных кубов, которыми

можно покрыть декартово произведение всех интервалов [0, kx ]

I |C |! — столькими способами можно упорядочить дробные части
значений часов
I В оценке снизу: по крайней мере столько регионов содержится во

внутренности одного единичного куба

I 2kx + 2 — это общее число попарно различных интервалов
значений часов x в регионах: {0}; (0, 1); {1}; (1, 2); {2}; . . .

I 2|C |−1 — столькими способами можно для заданного порядка
дробных частей объявить, какие из этих дробных частей равны H

Следствие (конечность отношения ≈). |R| <∞
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Другие свойства регионов

Утверждение (неразличимость временны́ми ограничениями)
Для любых часов x , оценок ν1 и ν2, таких что ν1 ≈ ν2, и числа́
k ∈ N0 верно:

ν1 |= x < k ⇔ ν2 |= x < k и
ν1 |= x ≤ k ⇔ ν2 |= x ≤ k

Временно́е ограничение g над атомарными ограничениями ACCA ∪ACCϕ
выполняется в регионе ρ (ρ |= g), если
для любой оценки часов ν из ρ верно ν |= g

Утверждение (корректный сброс). Для любого региона ρ и любого
множества часов X множество ρ[X ] является регионом
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Другие свойства регионов
Регион называется открытым для часов x , если он содержит оценку ν,
такую что ν(x) > kx

Регион называется открытым, если он открыт для всех часов, а
иначе — закрытым

ρ+ — это регион, следующий за регионом ρ:
I Если ρ открыт, то ρ+ = ρ

I Иначе ρ+ — регион, для которого верно следующее:
I ρ+ 6= ρ
I Если ν ∈ ρ и (ν + d) ∈ ρ+, где d ∈ R>0,

то для любого d ′ из R>0, такого что d ′ < d , верно (ν + d ′) ∈ ρ ∪ ρ+

Утверждение (корректное ожидание)
За любым регионом ρ следует ровно один регион

Для лучшего понимания регионов можете попробовать строго дока-
зать последние три утверждения
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Системы регионов
Для временно́го автомата A = (S , s0, I,T ,L) и tctl-формулы ϕ ...

I региональным состоянием будем называть пару (s, ρ) ∈ S ×R

I системой регионов будем называть модель Крипке RS(A, ϕ),
задающуюся как подграф следующего графа Γ, порождённый
множеством всех вершин, достижимых из начальной:

I Вершины Γ — это всевозможные региональные состояния

I Вершина (s0, {(0, 0, . . . , 0)}) — начальная

I Каждая вершина (s, ρ) помечена множеством
L(s) ∪ {ag|ag ∈ AC (ϕ), ρ |= ag}

I Дуга (s, ρ)→ (s ′, ρ′) входит в Γ ⇔ верно хотя бы одно из двух:
1. ρ′ = ρ+, s ′ = s и ρ+ |= I(s)
2. В A существует переход s

g,X−−→ s ′, такой что ρ |= g, ρ′ = ρ[X ], и
ρ′ |= I(s ′)
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Системы регионов
Пример

a b x < 3x < 2
x ≥ 1

x
AGAF(x = 1)

Система регионов для изображённых автомата и формулы устроена так
(атомарные временны́е ограничения, помечающие состояние,
изображены как подходящие интервалы значений часов x):

a, {0} a, (0, 1) a, {1} a, (1, 2)

b, {1} b, (1, 2) b, {2} b, (2, 3)

Теорема. Для любого корректного временно́го автомата A и
любой tctl-формулы ϕ верно:

A |=R ϕ ⇔ RS(A, ϕ) |= ϕ

Доказательство опустим: его объём и трудность намного превосходят
пользу включения его в рассказ
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