Математические модели последовательных вычислений

 $\mathsf{mk.cs.msu.ru} o \mathsf{Лекционные}$ курсы o Математические модели последовательных вычислений

Блок 13

Схемы Ляпунова-Янова

Лектор: Подымов Владислав Васильевич E-mail:

valdus@yandex.ru

ВМК МГУ, 2022/2023, весенний семестр

Блок 13 1/12

Схема Ляпунова-Янова строится над двумя заранее заданными конечными множествами (алфавитами):

- операторных символов
- ЛОГИЧЕСКИХ СИМВОЛОВ

Операторные символы отвечают командам преобразования данных

• (как, например, команда присваивания)

Логические символы отвечают условиям ветвления: булевым выражениям, в зависимости от принимаемого значения передающим управления

ightharpoonup (как, например, команда ветвления **if** — **then** — **else**)

Блок 13 2/12

Схема Ляпунова-Янова над алфавитами операторых символов $\mathcal A$ и логических символов $\mathcal P$ — это конечный ориентированный размеченный граф, все вершины которого разделены на 4 класса:

Вход (

Из него исходит ровно одна дуга В него не входит ни одной дуги В схеме содержится ровно один вход

2. Выход (())

Из него не исходит ни одной дуги В схеме содержится ровно один выход

3. Преобразователь (а)

Он помечен символом из ${\cal A}$ Из него исходит ровно одна дуга

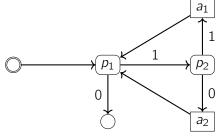
4. Распознаватель (р)

Он помечен символом из ${\cal P}$ Из него исходит ровно две дуги, одна помечена символом 0, другая — символом 1

Блок 13 3/1

Пример

то этой программе соответствует такая схема Ляпунова-Янова:



Блок 13 4/12

Чтобы придать смысл операторным и логическим символам, следует задать

- ▶ множество состояний данных, над которыми выполняется схема,
- способ преобразования состояний данных операторными символами и
- > значение каждого логического символа в каждом состоянии данных

Состояниями данных схемы являются слова в алфавите $\mathcal A$ (конечные последовательности элементов $\mathcal A$)

Иными словами, про состояние данных ничего не известно, кроме того, выполнение какой последовательности операторов привело в это состояние, и преобразование такого состояния — это дописывание соответствующего операторного символа в конец

 \mathcal{A}^* — так будем обозначать множество всех слов в алфавите \mathcal{A}

Блок 13 5/12

Значение каждого логического символа на каждом слове из операторных символов задаётся функцией разметки $\mu:\mathcal{A}^* imes\mathcal{P} o\{0,1\}$

Состояние вычисления схемы Σ — это пара (v,α) , где v — вершина схемы и $\alpha \in \mathcal{A}^*$

Вычисление схемы π на функции разметки μ — это (конечная или бесконечная) последовательность состояний вычисления $(v_1,\alpha_1),(v_2,\alpha_2),(v_3,\alpha_3),\ldots,$

устроенная так:

1.
$$v_1=\bigcirc$$
, $\alpha_1=\lambda$, $v_1\to v_2$ и $\alpha_2=\lambda$

2. Если
$$v_i = a$$
, то $v_i \rightarrow v_{i+1}$ и $\alpha_{i+1} = \alpha_i a$

3. Если
$$v_i = p$$
, то $v_i \xrightarrow{\mu(\alpha_i, p)} v_{i+1}$ и $\alpha_{i+1} = \alpha_i$

4. Если $v_i = \bigcirc$, то (v_i, α_i) — последняя вершина последовательности

Блок 13 6/12

Результат $\overline{\pi}(\mu)$ вычисления схемы π на функции разметки μ определяется так:

- 1. Если вычисление π на μ конечно и оканчивается парой (v_i,α_i) , то $\overline{\pi}(\mu)=\alpha_i$
- 2. Если вычисление π на μ бесконечно, то $\overline{\pi}(\mu) = \bot$, где \bot специальный символ, обозначающий «зацикливание» и не принадлежащий \mathcal{A}^*

 ${\cal L}$ — так обозначим множество всех функций разметки (над заданными алфавитами операторных и логических символов)

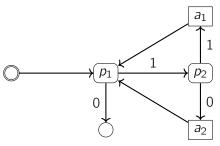
Семантика схемы описывается отображением $\overline{\pi}:\mathcal{L}\to (\mathcal{A}^*\cup\{\bot\})$, описанным выше

Схемы π_1 и π_2 над одинаковыми множествами операторных и логических символов эквивалентны, если $\overline{\pi}_1=\overline{\pi}_2$

Проблема эквивалентности схем Ляпунова-Янова формулируется так: для двух произвольно заданных схем Ляпунова-Янова проверить, эквивалентны ли эти схемы

Блок 13 7/I

Пример вычисления схемы Ляпунова-Янова



Вычисление этой схемы на функции разметки μ , такой что

- $\blacktriangleright \ \mu(\lambda, p_1) = \mu(\lambda, p_2) = \mu(a_1, p_1) = 1$ и
- $\mu(a_1, p_2) = \mu(a_1 a_2, p_1) = 0,$

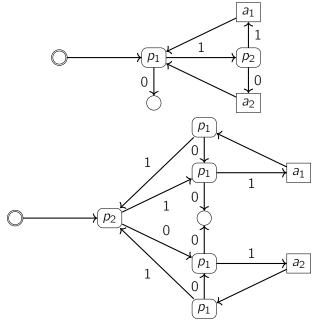
устроено так:

$$(\bigcirc, \lambda), (p_1, \lambda), (p_2, \lambda), (a_1, \lambda), (p_1, a_1), (p_2, a_1), (a_2, a_1), (p_1, a_1a_2), (a_1a_2)$$

Значит, $\overline{\pi}(\mu) = a_1 a_2$

Блок 13

Пример эквивалентных схем Ляпунова-Янова



Блок 13 9/12

Теорема. Проблема эквивалентности схем Ляпунова-Янова разрешима

Доказательство.

Транслируем произвольно заданную схему π в конечный автомат A_{π} следующим образом

Состояниями автомата являются вход, выход и преобразователи Начальное состояние — это вход

Заключительное состояние — это выход

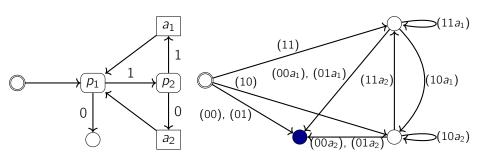
Переход $q_1 \to q_2$ включается в автомат тогда и только тогда, когда существует набор значений (b_1, \ldots, b_n) всех логических символов (p_1, \ldots, p_n) , такой что в π можно попасть из q_1 в q_2 , проходя по пути только распознаватели и выбирая для p_i дугу, помеченную b_i Проверку такой достижимости несложно переформулировать как

проверку выполнимости булевой формулы, отвечающей преобразователям, соединяющим q_1 с q_2 Если q_1 — вход, то дуга $q_1 \to q_2$ помечается (b_1,\dots,b_n) , а иначе —

 $q_1=oxed{f a}$ и дуга $q_1 o q_2$ помечается (b_1,\ldots,b_n,a)

Доказательство.

Пример схемы и соответствующего автомата



 Несложно убедиться, что
 схемы Ляпунова-Янова эквивалентны тогда и

только тогда, когда эквивалентны соответствующие им автоматы ▼

5лок 13

Схемы Ляпунова-Янова — это очень простая модель с *относительно простым* решением проблемы эквивалентности

Но в этой модели не учитываются многие особенности устройства «реальных» программ и соответствующие взаимосвязи между операторами и логическими условиями

В частности, никак не учитывается наличие переменных и выражений, использующихся в присваиваниях и условиях «реальных» программ

Переход от схем Ляпунова-Янова к схемам, учитывающим эти особенности (стандартным схемам программ), аналогичен переходу от логики высказываний к логике предикатов

Блок 13