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Дано:
I Конечная модель Крипке M = (S ,S0,→,L)

I Ctl-формула Φ

Требуется проверить справедливость соотношения M |= Φ

То есть требуется проверить включение S0 ⊆ Sat(M,Φ)

Базовый алгоритм работает с явным представлением модели Крипке
как размеченного ориентированного графа

Алгоритм будет описан как набор рекурсивно вызываемых процедур
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Основная процедура PMC , отвечающая алгоритму, устроена так

Дано: конечная модель Крипке M = (S ,S0,→,L), ctl-формула Φ
Требуется проверить соотношение M |= Φ

Устройство процедуры:

1. Вычислить множество X = Sat(M,Φ) при помощи описанной далее
процедуры Psat

2. Проверить включение S0 ⊆ X

3. Вернуть результат проверки предыдущего пункта

Корректность основной процедуры обеспечивается
I определением выполнимости ctl-формулы на модели и
I обсуждающейся далее корректностью процедуры Psat
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Процедура Psat

Дано: конечная модель Крипке M = (S ,S0,→,L), ctl-формула Φ
Требуется вычислить множество Sat(M,Φ)

Устройство процедуры:

1. Используя известные равносильности, преобразовать Φ в
равносильную упрощённую формулу Ψ в базисе EX, EG, EU:

Ψ ::= t | p | Ψ & Ψ | ¬Ψ | EXΨ | EGΨ | E(ΨUΨ)

2. Psat(M,Φ) = P′sat(M,Ψ)
I Процедура P′sat вычисления множества Sat для упрощённых формул

будет описана дальше

Корректность этой процедуры обеспечивается равенством
Sat(M,Φ) = Sat(M,Ψ), следующим из равносильности Φ ∼ Ψ
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Процедура P′sat
Дано: конечная модель Крипке M = (S ,S0,→,L), упрощённая
ctl-формула Φ
Требуется вычислить множество Sat(M,Φ)

Устройство процедуры:
I Если Φ = t, то P′sat(M,Φ) = S

I Если Φ = p ∈ AP, то P′sat(M,Φ) = {s | s ∈ S , p ∈ L(s)}
I Если Φ = Ψ1 & Ψ2, то P′sat(M,Φ) = P′sat(M,Ψ1) ∩P′sat(M,Ψ2)

I Если Φ = ¬Ψ, то P′sat(M,Φ) = S \P′sat(M,Ψ)

I Если Φ = EXΨ, то P′sat(M,Φ) = PEX(M,Ψ)

I Если Φ = EGΨ, то P′sat(M,Φ) = PEG(M,Ψ)

I Если Φ = E(Ψ1UΨ2), то P′sat(M,Φ) = PEU(M,Ψ1,Ψ2)

Корректность этой процедуры для первых четырёх пунктов очевидна
(обеспечивается семантикой ctl-формул)
Осталось предложить подходящие процедуры PEX, PEG и PEU
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Для ориентированного графа Γ и его вершины v и множества вершин V
записями Pre(Γ, v) и Pre(Γ,V ) обозначим множество вершин, из
которых достижимы по одной дуге соответственно вершина v и хотя бы
одна вершина множества V :

Pre(v) = {v ′ | (v ′ → v) ∈ Γ}
Pre(V ) =

⋃
v∈V

Pre(Γ, v)

Утверждение. Для любой модели Крипке M и любой ctl-формулы
Φ справедливо равенство Sat(M,EXΦ) = Pre(M,Sat(M,Φ))

Доказательство.

s ∈ Sat(M,EXΦ)
⇔M, s |= EXΦ
⇔ существует состояние s ′, такое что s → s ′ и M, s ′ |= Φ
⇔ хотя бы одно состояние (s ′) множества Sat(M,Φ) достижимо из s по
одной дуге
⇔ s ∈ Pre(Sat(M,Φ)) H
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Процедура PEX

Дано: конечная модель Крипке M = (S ,S0,→,L), упрощённая
ctl-формула Φ
Требуется вычислить множество Sat(M,EXΦ)

Устройство процедуры:
1. Вычислить X = P′sat(M,Φ)

2. Вернуть множество Pre(X )

Корректность этой процедуры следует из
I последнего утверждения и
I предполагаемой (по индукции) корректности процедуры P′sat
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Утверждение. Для любых конечной модели Крипке M, состояния
s и ctl-формул Φ1, Φ2 верно следующее:
s ∈ Sat(M,E(Φ1UΦ2)) ⇔ в M существует путь s1 → · · · → sk , такой
что s1 = s, sk ∈ Sat(M,Φ2) и {s1, . . . , sk−1} ⊆ Sat(M,Φ1)

Доказательство.

s ∈ Sat(M,E(Φ1UΦ2)

⇔ M, s |= E(Φ1UΦ2)

⇔ существуют бесконечный путь π из s в M и момент времени k , такие
что M, π[k ] |= Φ2 и для любого момента времени i , меньшего k , верно
M, π[i ] |= Φ1

⇔ в M существует путь s1 → · · · → sk (π[1]→ · · · → π[k ]), такой что
M, sk |= Φ2 и для всех i ∈ {1, . . . , k − 1} верно M, si |= Φ1

⇔ в M существует путь s1 → · · · → sk , такой что sk ∈ Sat(M,Φ2) и
{s1, . . . , sk−1} ⊆ Sat(M,Φ1) H
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Процедура PEU
Дано: конечная модель Крипке M = (S ,S0,→,L), упрощённые
ctl-формулы Φ, Ψ
Требуется вычислить множество Sat(M,E(ΦUΨ)
Устройство процедуры:
1. Вычислить Z = P′sat(M,Φ)

2. Вычислить X0 = P′sat(M,Ψ)

3. Последовательно вычислять множества X1,X2, . . . по следующей
схеме, пока для очередного вычисленного множества Xi не будет
получено равенство Xi = Xi−1: Xi = Xi−1 ∪ (Pre(Xi−1) ∩ Z )

4. Вернуть последнее вычисленное множество Xi

Корректность процедуры обосновывается
I последним утверждением,
I наблюдением «на грани очевидного» о том, что в множество Xi

входят все вершины всех путей вида s1 → · · · → sj , где j ≤ i ,
sj ∈ Sat(M,Φ2) и {s1, . . . , sj−1} ⊆ Sat(M,Φ1), и

I гарантированным равенством Xi = Xi−1 хотя бы для одного i в
связи с конечностью M
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Утверждение. В конечном ориентированном графе Γ из вершины s
исходит хотя бы один бесконечный путь ⇔ в Γ из s достижима хотя
бы одна нетривиальная компонента сильной связности

Доказательство этого утверждения несложно извлекается из теоремы о
проверке пустоты автомата Бюхи
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Для графа Γ и подмножества V его вершин записью Γ|V обозначим
подграф графа Γ, порождённый множеством V :
I Множество вершин Γ|V — это V
I Дуга (s1, s2) входит в Γ|V ⇔ {s1, s2} ⊆ V и эта дуга входит в Γ

I Метки вершин и дуг переносятся из Γ в Γ|V

Утверждение. Для любой конечной модели Крипке M и любой
ctl-формулы Φ верно следующее: s ∈ Sat(M,EGΦ) ⇔ в графе
M|Sat(M,Φ) содержится вершина s и из неё достижима хотя бы одна
нетривиальная компонента сильной связности

Доказательство.

s ∈ Sat(M,EGΦ) ⇔ M, s |= EGΦ
⇔ в M существует бесконечный путь π, исходящий из s и такой что
M, π[i ] |= Φ для каждого момента времени i
⇔ в Γ = M|Sat(M,Φ) существует бесконечный путь, исходящий из s
⇔ в Γ содержится s и из неё достижима хотя бы одна нетривиальная
компонента сильной связности H
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Процедура PEG

Дано: конечная модель Крипке M = (S ,S0,→,L), упрощённая
ctl-формула Φ
Требуется вычислить множество Sat(M,EGΦ)

Устройство процедуры:
1. Вычислить множество Z = Sat(M,Φ)

2. Вычислить граф Γ = M|Z
3. Каким-либо известным эффективным алгоритмом вычислить

множество X0 всех вершин, входящих в какие-либо нетривиальные
компоненты сильной связности графа Γ

4. Последовательно вычислять множества X1,X2, . . . по следующей
схеме, пока не будет получено равенство Xi = Xi−1:

Xi = Xi−1 ∪ Pre(Γ,Xi−1)

5. Вернуть последнее вычисленное множество Xi

Корректность этой процедуры показывается аналогично корректности
процедуры SatEU
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Пример

M:
ps0

p
s1

q
s2

p
s3

p, q
s4

ϕ = EXp &¬E(qUEGp)

В процессе работы алгоритмом строятся следующие множества
состояний

Sat(M, p) = {s0, s1, s3, s4}

Sat(M,EXp) = PEX(M, p) = Pre(Sat(M, p)) = {s0, s2, s3, s4}

Sat(M, q) = {s2, s4}
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Пример

M:
ps0

p
s1

q
s2

p
s3

p, q
s4

ϕ = EXp &¬E(qUEGp)

В процессе работы алгоритмом строятся следующие множества
состояний

Sat(M,EGp) = PEG(M, p):

I Z = Sat(M, p) = {s0, s1, s3, s4}

I X0 = {s3, s4} (все вершины н.к.с.с. в M|Z )

I X1 = X0 ∪ Pre(M|X ,X0) = {s0, s3, s4}

I X2 = X1 ∪ Pre(M|X ,X1) = X1

I PEG(M, p) = X2 = {s0, s3, s4}
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Пример

M:
ps0

p
s1

q
s2

p
s3

p, q
s4

ϕ = EXp &¬E(qUEGp)

В процессе работы алгоритмом строятся следующие множества
состояний

Sat(M,E(qUEGp)) = PEU(M, q,EGp):

I Z = Sat(M, q) = {s2, s4}

I X0 = Sat(M,EGp) = {s0, s3, s4}

I X1 = X0 ∪ (Pre(X0) ∩ Z ) = {s0, s2, s3, s4}

I X2 = X1 ∪ (Pre(X1) ∩ Z ) = X1

I PEU(M, q,EGp) = X2 = {s0, s2, s3, s4}

Математические методы верификации схем и программ, Блок 22 15/16



Пример

M:
ps0

p
s1

q
s2

p
s3

p, q
s4

ϕ = EXp &¬E(qUEGp)

В процессе работы алгоритмом строятся следующие множества
состояний

Sat(M,¬E(qUEGp)) = S \ Sat(M,E(qUEGp)) = {s1}

Sat(M, ϕ) = Sat(M,EXp) ∩ Sat(M,¬E(qUEGp)) = ∅

Так как {s0} 6⊆ ∅, можно заключить, что M 6|= ϕ

А какова сложность базового алгоритма относительно количества
вершин и дуг в модели и количества операций в формуле?
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