Математические методы верификации схем и программ

 $\mathsf{mk.cs.msu.ru} o \mathsf{Лекционные}$ курсы o Математические методы верификации схем и программ

Блок 7

Модели Крипке

Особенности моделирования систем

Лектор:

Подымов Владислав Васильевич

E-mail:

valdus@yandex.ru

Обычно модель в рамках метода model checking устроена так:

- ▶ Моделью задаётся множество состояний: «слепков» системы, в которых записаны рассматриваемые особенности системы в заданные моменты времени выполнения
- Состояния могут изменяться посредством выполнения переходов, изменяющих текущее состояние согласно выполнению заданных действий системой
- ▶ Выполнение системы в неограниченном времени соответствует вычислению модели: бесконечной последовательности состояний, получающейся из заданного состояния выполнением переходов

Model checking применяется *в основном* для анализа систем с **конечным** числом состояний

Это ещё один недостаток метода, затрудняющий его широкое использование: на практике число состояний системы нередко бесконечно или конечно, но настолько велико, что можно считать его практически бесконечным

Тем не менее, существуют и важные классы систем, заведомо обладающие конечным числом состояний: контроллеры, драйверы, многие коммуникационные протоколы, не слишком объёмная аппаратура, ...

Обсуждение моделей вычислительных систем начнём немного издалека, с классической головоломки про волка, козу и капусту

На левом берегу реки располагаются волк $(\begin{cal} \begin{cal} \begin{cal$

может переправиться на противоположный берег в лодке, взяв с собой не более одного пассажира ($\mbox{$\widetilde{\mbox{\wp}}$}$, $\mbox{$\widetilde{\mbox{\wp}}$}$)

Оставшись на берегу без 🧽, 😯 может съесть 🗘, а 🗘 может съесть

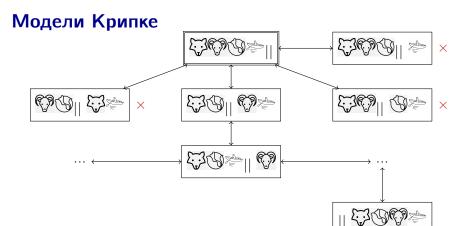
Как 🏲 может безопасно переправить 💝, 🕅 и 🖑 на правый берег?

Чтобы решить эту головоломку, достаточно

- ▶ перебрать всевзоможные варианты расположения ^२, ³, ³ и ³, получающиеся из начального расположения согласно
 всевозможным действиям ²
 - это состояния системы
- разделить состояния на "плохие" (кто-то кого-то может съесть) и "хорошие" (остальные)
 - пометим плохие состояния символом ×

ightharpoonup посмотреть, как достичь состояния "все на правом берегу", ни разу не встретив imes

5/2



- □ состояния системы
- начальное состояние
- ightarrow **переходы** системы
- × **атомарное высказывание**: свойство состояний системы, которое мы по тем или иным причинам посчитали необходимым для

рассмотрения

_ _

Для множества X записью 2^X будем обозначать множество всех подмножеств X

Модель Крипке над множеством атомарных высказываний AP — это система $M = (S, S_0, \rightarrow, L)$, где:

- \triangleright S множество состояний
- ▶ S_0 множество начальных состояний, $S_0 \subseteq S$
- ightharpoonup → $\subseteq S \times S$ тотальное отношение переходов
- ► $L: S \rightarrow 2^{AP}$ функция разметки

Тотальность отношения переходов означает, что для любого состояния s существует состояние s', такое что $s \to s'$

Событием будем называть произвольное множество атомарных высказываний (элемент семейства 2^{AP})

$$(M = (S, S_0, \to, L) - модель Крипке над AP)$$

Соотношение $L(s) = \sigma$ можно понимать так: состояние s обладает свойствами, отвечающими атомарным высказываниям из σ , и не обладает остальными свойствами, отвечающими атомарным высказываниям

Будем говорить, что модель M конечна, если конечны множества S и AP

Модель M представляет собой особый размеченный ориентированный граф: S — это вершины, \rightarrow — это дуги, остальное — это метки вершин

В связи с этим будем графовые обозначения и графовую терминологию по отношению к моделям Крипке

Путь, исходящий из начального состояния модели, будем называть начальным

Бесконечный начальный путь будем наывать вычислением модели

$$(M = (S, S_0, \rightarrow, L)$$
 — модель Крипке над AP)

Трассой будем называть бесконечную последовательность событий

Трассой пути $s_0 \to s_1 \to s_2 \to \dots$ будем называть трассу, состоящую из событий, помечающих состояния этого пути:

$$L(s_0), L(s_1), L(s_2), \ldots$$

Для последовательности $\mathfrak{S}=(x_0,x_1,x_2,\dots)$ (в том числе для пути и для трассы) будем использовать такие обозначения:

- ▶ $\mathfrak{S}[i] = x_i i$ -й элемент последовательности, нумерация с ноля
- $\mathfrak{S}^i = (x_i, x_{i+1}, \dots)$ суффикс последовательности, начинающийся с i-го элемента

Моделирование программ

Рассмотрим императивную программу π , выполняющуюся в интерпретации $\mathcal I$ на произвольной оценке данных множества Θ Модель $M_{\pi,\mathcal I,\Theta}=(S,S_0,\to,L)$, отвечающая такому выполнению, может быть устроена так:

- ightharpoonup S это множество всех состояний вычисления программы
- ▶ → отношение переходов программы, в которое добавлены всевозможные пары вида $\langle \pmb{\emptyset} \mid \theta \rangle \to \langle \pmb{\emptyset} \mid \theta \rangle$
- ightharpoonup AP всевозможные пары (x,d), где x переменная программы d предмет из $\mathcal I$
- $(\mathbf{x}, d) \in L(\langle \pi' \mid \theta \rangle) \Leftrightarrow \overline{\theta(\mathbf{x})} = d$

Фрагментами такой модели Крипке являются вычисления программы в $\mathcal I$ на $\theta,\, \theta \in \Theta$

Для других видов программ модель можно устроить дословно так же, если для программ определена операционная семантика

Моделирование программ

Для примера рассмотрим программу, в которой в бесконечно (в цикле) выполняется присваивание

$$x := x + y;$$

в двухбитовой арифметике с переполнением в модели императивных программ, но с заменой термов t в оценках данных на соответствующие предметы \overline{t}

Пусть известно, что в начале работы программы $\mathbf{x}=\mathbf{0}$, а значение у может быть любым

Тогда некоторые компоненты связности соответствующей модели Крипке устроены так (*можете представить себе и остальные по аналогии*):

$$(x,0),(y,0)$$

$$(x,0),(y,2) \longleftrightarrow (x,2),(y,2)$$

Моделирование схем

(кто знает термин «последовательная схема» — можете представить её вместо схемы из функциональных элементов с задержкой, СФЭЗ)

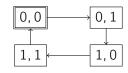
Модель $M=(S,S_0,\to,L)$, отвечающая СФЭЗ (последовательной схеме), может быть устроена так:

- ▶ Все элементы задержки пронумерованы: 1, 2, ..., n
- $S = \{0, 1\}^n$ (все состояния схемы)
- $ightharpoonup S_0 = \{(0,0,\ldots,0)\}$ (начальное состояние схемы)
- $s \to s' \Leftrightarrow$ при переходе к следующему моменту времени (*по переднему фронту тактового сигнала*) возможна такая смена состояния схемы
- ightharpoonup AP = {1, 2, . . . , n} × {0, 1} (номер и состояние регистра)
- $(i,b) \in L(b_0,b_1,\ldots,b_n) \Leftrightarrow b_i = b$

Моделирование схем

(кто знает термин «последовательная схема» — можете представить её вместо схемы из функциональных элементов с задержкой, СФЭЗ)

Например, модель Крипке для этой схемы может быть устроена так:



Моделирование параллелизма

Современные вычислительные системы зачастую состоят из набора компонентов, исполняющихся одновременно (параллельно) и взаимодействующих друг с другом

В зависимости от природы системы, при построении модели используется один из двух видов параллелизма (или их комбинация):

- Асинхронное исполнение (чередующееся исполнение; семантика чередующихся вычислений; interleaving): шаг вычисления системы отвечает одному шагу одного компонента, а остальные компоненты не делают ни одного шага
- ▶ Синхронное исполнение: шаг вычисления системы отвечает одновременному выполнению шага вычисления всех компонентов

Моделирование параллелизма

Параллельная композиция моделей Крипке $M=(S,S_0,\to,L)$ и $M'=(S',S'_0,\mapsto,L')$ над непересекающимися множествами атомарных высказываний — это модель $M|M'=(S\times S',S_0\times S'_0,\leadsto,\mathcal{L})$, где:

- $L(s,s') = L(s) \cup L'(s')$
- ▶ Отношение переходов → определяется видом параллелизма

Синхронное исполнение характерно для аппаратных систем и других имеющих встроенные средства синхронизации компонентов

Переходы синхронной композиции моделей (*без взаимодействия компонентов*) определяются так:

$$(s_1,s_1') \leadsto (s_2,s_2') \quad \Leftrightarrow \quad s_1 \to s_2 \text{ in } s_1' \mapsto s_2'$$

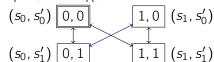
Моделирование параллелизма

$$M = (S, S_0, \rightarrow, L) \quad M' = (S', S_0', \mapsto, L') \quad M|M' = (S \times S', S_0 \times S_0', \rightsquigarrow, \mathcal{L})$$

Например:

Модели Крипке, описывающие поведение левой и правой задержек:

Синхронная композиция этих моделей:



Моделирование параллелизма

Асинхронное исполнение характерно для систем без встроенных средств синхронизации компонентов, в том числе (c «примесью» синхронности) для программных систем

Переходы асинхронной композиции моделей (*без взаимодействия компонентов*) определяются так:

$$(s_1,s_1') \leadsto (s_2,s_2') \quad \Leftrightarrow \quad (s_1 o s_2 \text{ и } s_1' = s_2') ext{ или } (s_1 = s_2 \text{ и } s_1' \mapsto s_2')$$

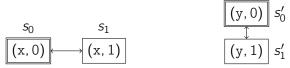
Моделирование параллелизма

Для примера рассмотрим две параллельно работающие программы, в цикле выполняющие одно присваивание:

$$\pi_1 : x := x + 1;$$
 $\pi_2 : y := y + 1;$

Для простоты будем считать, что эти программы выполняются в условиях однобитовой арифметики с переполнением

Модели Крипке для этих программ устроены так:



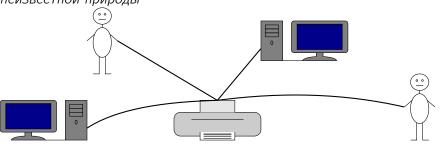
Асинхронная композиция этих моделей:

$$(s_0, s'_0) \underbrace{(x, 0), (y, 0)}_{\text{(x, 0), (y, 1)}} \underbrace{(x, 1), (y, 0)}_{\text{(x, 1), (y, 1)}} (s_1, s'_0)$$

$$(s_0, s'_1) \underbrace{(x, 0), (y, 1)}_{\text{(x, 1), (y, 1)}} \underbrace{(x, 1), (y, 1)}_{\text{(x, 1), (y, 1)}} (s_1, s'_1)$$

Моделирование взаимодействия

Пример: с сетевым принтером пытаются взаимодействовать участники неизвестной природы



Принтер работает последовательно: принимает информацию и производит печать согласно содержащейся в нём программе

Программы остальных участников, если они есть, неизвестны

Моделирование взаимодействия

Предположим, что в контроллере принтера есть однобитовый регистр R, доступный на чтение и запись всем желающим послать запрос на печать:

 $R=t\Leftrightarrow$ принтер свободен для печати

Тогда программу π , посредством которой можно организовать взаимодействие участника с принтером, можно устроить так:

while t do

L1: while $\neg R$ do \emptyset od

L2: R := f;

L3: послать данные для печати

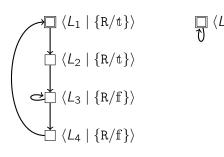
L4: R := t;

bo

Моделирование взаимодействия

Модель Крипке для π :

(функция разметки опущена)



Моделирование взаимодействия

Программа в вычислительной системе может взаимодействовать с другими программами: общие переменные, обмен сообщениями, сигналы, . . .

Такое взаимодействие выражается в том, что состояние вычисления программы может измениться под воздействием её **окружения**

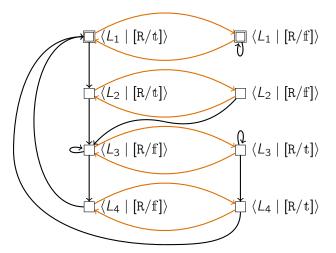
Например, регистр R в примере может быть изменён любым участником

Чтобы учесть такое изменение, следует добавить в модель Крипке переходы, отвечающие всем возможностям окружения повлиять на состояние вычисления программы

5лок 7 22/28

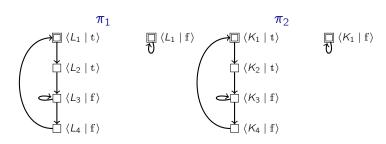
Моделирование взаимодействия

Модель Крипке для программы π с окружением, способным произвольно переключать значение регистра \mathbb{R} :



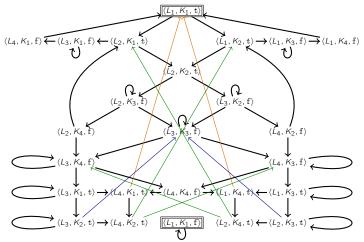
Моделирование взаимодействия

Рассмотрим две (одинаковые) программы взаимодействия с сетевым принтером, выполняющиеся согласно следующим моделям Крипке:



Моделирование взаимодействия

Модель Крипке, описывающая асинхронное исполнение π_1 , π_2 с общим регистром R, выглядит так:



5лок 7 25/28

Гранулярность и атомарность в моделях

При моделировании параллельных систем большую роль играет гранулярность переходов, то есть степень их детализации Переход должен соответствовать атомарному действию:

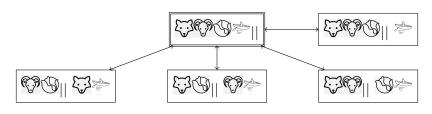
- ▶ такому, в выполнение которого не может вмешаться другое действие
- не имеющему промежуточных наблюдаемых состояний
- не подразбивающемуся на более простые действия

Если детализация переходов будет слишком мала (переходы слишком «крупны»), то в модели могут отсутствовать некоторые ошибки, наблюдающиеся при частичном выполнении и «перекрытии» действий Если же детализация переходов будет слишком велика, то это может

- ▶ существенно увеличить размер модели и снизить эффективность её верификации и
- добавить в композицию такие состояния, которых не бывает в реальной системе

Гранулярность и атомарность в моделях

Например,



Нужно ли рассматривать отдельное действие «плавание по реке»?

А «посадка в лодку» и «высадка из лодки»?

Можно ли в качестве атомарного выбрать действие плавания туда и обратно?

5лок 7 27/28

Гранулярность и атомарность в моделях

Другой пример

Рассмотрим две параллельно выполняющиеся программы, каждая из которых выполняет одну команду

$$\pi_1 : x := x + y;$$
 $\pi_2 : y := x + y;$

Устроит ли нас, если эти две команды будут считаться атомарными?

Из оценки данных $\{x/2,y/3\}$ в вычислениях можно достичь только оценок $\{x/5,y/3\}, \{x/5,y/8\}, \{x/2,y/5\}$ и $\{x/7,y/5\}$

Реализация этих команд на языке ассемблера может содержать и более одной команды:

load \$1, x load \$3, x load \$2, y load \$4, y add \$1, \$2 add \$3, \$4 store \$1, x store \$3, y

Если атомарными считать ассемблерные команды, то достижимы и другие оценки — например, $\{x/5,y/5\}$, и такой результат может быть и нежелательным

Блок 7