
Распределённые алгоритмы
mk.cs.msu.ru → Лекционные курсы → Распределённые алгоритмы

Блок 43

Паксос

Лектор:
Подымов Владислав Васильевич

E-mail:
valdus@yandex.ru

ВМК МГУ, 2025, февраль–май
Блок 43 1/19

https://mk.cs.msu.ru


Вступление и общие особенности
Паксос — это семейство алгоритмов консенсуса над произвольным
наперёд заданным множеством решений, широко применяющихся на
практике, например, для
I согласования транзакций в распределённых базах данных,
I согласования истории блоков в блокчейне,
I согласованного доступа к файлам в распределённых файловых

системах (например, в менеджере блокировок Google Chubby для
Google File System) и

I в целом в тех случаях, когда требуется разумный и достаточно
эффективный консенсус в сети, допускающей много «сильных»
неисправностей

Ввиду известных результатов о невозможности консенсуса, придётся
«пожертвовать» свойством завершаемости: алгоритм будет
завершаться только если в сети достаточно много исправных узлов,
достаточно быстро обменивающихся сообщениями

Блок 43 2/19



Вступление и общие особенности

Название «Паксос» (Paxos) можно считать бессмысленным: его
предложил в 1998 году Л. Лэмпорт в первом описании этого алгоритма
в рамках иллюстрации его как схемы голосования в вымышленном
парламенте на (реально существующем) греческом острове Паксос

Обсудим этот вариант алгоритма (из статьи «Part-time parliament»),
переизложенный понятнее в 2001 году (в статье «Paxos made simple»)

В этом алгоритме используется особая модель отказов:
1. Узлы могут выходить из строя и восстанавливаться с частичным

восстановлением состояния на момент сбоя
I О том, какие именно части состояния восстанавливаются, будет

рассказано позже

2. Сообщения могут доставляться сколь угодно долго, теряться и
дублироваться, но не могут искажаться
I То есть, в частности, нет полноценных византийских отказов

Блок 43 3/19



Роли

Узлам сети раздаются роли в голосовании: заявитель, избиратель,
наблюдатель

Одному узлу может быть присвоено и несколько ролей

Все узлы знают свои роли и роли всех других узлов

Заявитель выдвигает на голосование заявку, содержащую решение

Каждый избиратель одобряет или отклоняет заявку, и на основании
этих действий совокупность всех избирателей (электорат) может
выбрать заявку

Все узлы принимают решение, содержащееся в заявке, выбранной
электоратом

Блок 43 4/19



Т1 и выбор большинством голосов
Самый простой способ организовать выборы — это предоставить выбор
одному избирателю p:
I Заявители доносят свои заявки до p
I Какую заявку p одобрил, такую электорат {p} и выбирает

Так как требуется одобрить заявку даже в том случае, если она всего
одна, то естественно возникает следующее требование к выборам:

Т1. Избиратель должен одобрить первую полученную заявку

Но в такой схеме выборов выход из строя всего одного узла-избирателя
приводит к тому, что никакое значение не будет выбрано

Чтобы преодолеть эту проблему, можно увеличить число избирателей:

1. Каждый избиратель может одобрить или отклонить заявку

2. Заявка выбирается только в том случае, если она одобрена
большинством избирателей

Блок 43 5/19



Т1 и выбор большинством голосов

Если каждый избиратель будет одобрять только первую полученную
заявку, то выборы могут быть легко сорваны даже без отказов узлов и
ошибок передачи сообщений — например:
I Электорату из пяти избирателей поступили заявки a, b и c
I Два избирателя первой получили (и одобрили) заявку a, два —

заявку b и один — заявку c
I Ни для одной заявки не набрано большинство голосов

Чтобы преодолеть эту проблему, следует разрешить избирателю
одобрять не только первую полученную заявку, но и другие

Но тогда избирателем может быть одобрено и электоратом выбрано
несколько разных решений, а для консенсуса необходимо выбрать
только одно

Блок 43 6/19



Нумерация заявок

Чтобы можно было отслеживать статус конкретных заявок (как с
одинаковыми, так и с разными значениями), пронумеруем их: при
выдвижении заявитель присваивает заявке номер так, чтобы
I различные заявки имели различные номера и
I номера заявок были линейно упорядочены

Например, если узлам сети присвоены уникальные идентификаторы из
линейно упорядоченного множества, то
I номером заявки может служить пара [p, n], где p — идентификатор

заявителя и n — то, какую по счёту заявку он выдвигает, и
I линейно сравнивать такие номера заявок можно, например,

лексикографически

Заявкой будем считать пару (v , n), состоящую из значения v (решения)
и номера n (элемента линейно упорядоченного множества)

Блок 43 7/19



Т2, Т2И

Тогда консенсус можно обеспечить, предъявив такое «глобальное»
требование к электорату и заявителям:

Т2. Если выбирается заявка (v , n), то заявка (w ,m) для m > n может
быть выбрана только в том случае, если w = v

T2 не запрещает выбирать несколько заявок, если значения этих заявок
одинаковы

Чтобы соблюсти Т2, ограничим свободу действий избирателя так:

Т2И. Если выбирается заявка (v , n), то заявка (w ,m) для m > n может
быть одобрена избирателем только в том случае, если w = v

Утверждение. Если для каждого избирателя верно Т2И, то верно
и Т2

Блок 43 8/19



Т2З
Так как возможны потери сообщений, то Т1 и Т2И могут друг другу
противоречить, если не ограничивать свободу выдвижения заявок —
например:

1. Выдвигаются заявки (a, 1) и (b, 2) для электората {p, q, r}
2. Заявка (a, 1) одобряется p и q и выбирается большинством голосов

3. После этого r получает заявку (b, 2) и по Т1 обязан её одобрить, а
по Т2И — отклонить

Чтобы таких противоречий не возникало, ограничим свободу действий
заявителя так:

Т2З. Если выбирается заявка (v , n), то заявка (w ,m) для m > n может
быть выдвинута заявителем только в том случае, если w = v

Утверждение. Если для каждого заявителя верно Т2З, то для
каждого избирателя верно Т2И
Блок 43 9/19



Т2В
Чтобы Т2З можно было соблюдать более «конструктивно», добавим
следующее требование:

Т2В. Заявка (v , n) может быть выдвинута только в том случае, если
существует множество избирателей S , содержащее более половины
избирателей и такое что
I либо ни один узел из S не одобряет заявки с номерами меньше n,
I либо для заявки (w ,m), одобряемой кем-либо из S и такой что

m < n, с наибольшим номером m среди таких заявок, верно w = v

Утверждение (Д.з. 1). Если для каждого заявителя верно Т2В, то
для каждого заявителя верно и Т2З

Но так как заявка с меньшим номером может быть выдвинута и
одобрена избирателями хронологически позже заявки с бо́льшим
номером, то для соблюдения Т2В может быть затруднительно (и
неэффективно) отслеживать значение и получение такой
«запаздывающей» заявки
Блок 43 10/19



Бронирование заявки
Вместо отслеживания статуса заявки можно добиться соблюдения Т2В
при помощи бронирования заявки:

I Заявитель отправляет произвольному большинству избирателей
номер n заявки, которую хочет выдвинуть

I Избиратель, получив такой номер,
I обещает больше не одобрять заявки с номерами, меньшими n, и
I отправляет в ответ одобренную им заявку (v ,m) с наибольшим

номером m, таким что m < n, или сообщение об отсутствии таких
заявок

I Если в ответ на бронирование заявитель получил хотя бы одну
заявку, то перед рассылкой заявки он изменяет значение заявки на
значение полученной заявки с наибольшим номером (чтобы заявка
следовала Т2В)

Утверждение. Для каждого заявителя, бронирующего заявку
перед выдвижением, верно Т2В
Блок 43 11/19



Т1О

Теперь возникло противоречие между Т1 и обещаниями избирателей
при бронировании — например:
I Бронируется заявка (a, 2)
I При бронировании избиратель p обещает не одобрять заявки с

меньшими номерами
I Бронируется и выдвигается заявка (b, 1)
I По Т1 избиратель p вынужден одобрить (b, 1) вопреки обещанию

Чтобы исключить такие противоречия, «ослабим» Т1:

Т1О. Избиратель одобряет первую полученную заявку с номером, не
меньшим всех забронированных (если ни один номер не забронирован,
то просто первую полученную, как в T1), и отклоняет все заявки с
меньшими номерами

Блок 43 12/19



Оптимизированное бронирование

Перед окончательной формулировкой действий отправителей и
избирателей добавим следующую оптимизацию бронирования:
I Если избиратель ответил на бронирование номера n, то он не

отвечает на бронирование номеров, меньших n

I Если избиратель получил заявку с номером n, то он не отвечает на
бронирование номера n

С учётом такой оптимизации, избирателю достаточно хранить только
один (самый большой) забронированный номер, игнорируя запросы на
бронирование всех меньших

Утверждение. Избиратель с оптимизацией бронирования и без неё
одинаково одобряет и отклоняет заявки согласно Т1О

Блок 43 13/19



Восстановление данных после отказа

Для соблюдения Т1О и Т2В с учётом отказов и потери сообщений
избиратель при выходе из строя с последующим восстановлением
должен сохранять (восстанавливать)
I полученную им заявку с наибольшим номером и
I наибольший забронированный номер

Заявитель при выходе из строя с последующим восстановлением
должен сохранять только номер последней заявки

Блок 43 14/19



Алгоритм Паксос: код заявителя
Переменные заявителя p:
I np : N0 = 0

Процедура выдвижения значения v заявителем p:

1. np := np + 1;
2. Отправить (reserve, [p, np]) всем избирателям

I Это запрос на бронирование номера (p, np)

3. Принять (ack, x) от более чем половины избирателей
I Это подтверждение бронирования, и x — это либо ⊥, либо заявка

4. Если приняты только сообщения (ack,⊥), то отправить
(accept, v , [p, np]) всем избирателям;
иначе отправить им (accept,w , [p, np]) для значения w полученной
заявки x = (w ,m) с наибольшим номером m

Кроме того, в любой момент заявитель может принудительно
завершить процедуру выдвижения значения («забросить» заявку) и
выдвинуть новое значение (выполнить процедуру для нового v)
Блок 43 15/19



Алгоритм Паксос: код избирателя

Переменные избирателя p:

1. zp — заявка или ⊥, начальное значение ⊥
2. np — пара (идентификатор узла, число из N0) или ⊥, начальное

значение ⊥

Действия после приёма (reserve, n) избирателем p:
1. Если np = ⊥ или np < n:

1.1 Отправить (ack, zp) в ответ
1.2 np := n;

Действия после приёма (accept, v , n) избирателем p:
1. Если np = ⊥ или np ≤ n:

1.1 zp := (v , n);
1.2 np := n;

Блок 43 16/19



Алгоритм Паксос: итог

Утверждение (Д.з. 2). Если в некоторой конфигурации
вычисления алгоритма избирателями выбрано значение v , то и во
всех последующих конфигурациях выбирается только значение v

Это утверждение означает, в числе прочего, что выбор значения v
избирателями — это монотонное свойство конфигураций

Значит, для достижения консенсуса достаточно время от времени
собирать снимок сети в каком-либо узле (или в нескольких узлах, или
во всех узлах), проверять по снимку, выбрано ли какое-либо значение, и
рассылать это значение во все узлы для принятия решения

Блок 43 17/19



Алгоритм Паксос с наблюдателями

Но для несколько более эффективного принятия решения в алгоритм
Паксос добавлена роль наблюдателя:

I Всякий раз, когда избирателем p впервые одобрено значение v ,
пара (v , p) отправляется заранее заданному (параметром
алгоритма) числу произвольно выбранных наблюдателей
I Например, всем наблюдателям

I Наблюдатель, получив пару (v , p), рассылает её всем остальным
наблюдателям

I Если из полученных сообщений следует, что большинство
избирателей получило значение v , то это значение рассылается
всем узлам для принятия решения

Блок 43 18/19



Алгоритм Паксос с наблюдателями

Д.з. 3. Положим, что сообщения не теряются, выходить из строя
может не более t узлов и заявитель изначально выдвигает значение
своей входной переменной. Какое наименьшее число (а) заявителей, (б)
избирателей, (в) наблюдателей и (г) узлов в целом требуется, чтобы
алгоритм Паксос обладал свойствами единогласия и невырожденности?
Ответ обосновать.

Д.з. 4. Положим, что сообщения не теряются, узлы не выходят из
строя и в сети есть два заявителя и пять избирателей. Предложить
способ нумерации заявок, и для него — бесконечное справедливое
вычисление алгоритма Паксос с наблюдателями или без них, в котором
решение не принимается (консенсус не достигается).

Блок 43 19/19


