
Распределённые алгоритмы
mk.cs.msu.ru → Лекционные курсы → Распределённые алгоритмы

Блок 43

Паксос

Лектор:
Подымов Владислав Васильевич

E-mail:
valdus@yandex.ru

ВМК МГУ, 2023/2024, весенний семестр
Блок 43 1/19

https://mk.cs.msu.ru


Вступление и общие особенности
Паксос — это семейство алгоритмов консенсуса, широко
применяющихся на практике, например, для
I согласования транзакций в распределённых базах данных,
I согласования истории блоков в блокчейне,
I согласованного доступа к файлам в распределённых файловых

системах (например, в менеджере блокировок Google Chubby для
Google File System) и

I в целом в тех случаях, когда требуется разумный и достаточно
эффективный консенсус в сети, допускающей много «сильных»
неисправностей

В алгоритме допускаются любые решения, не только 0 и 1

Ввиду известных результатов о невозможности консенсуса, придётся
«пожертвовать» свойством завершаемости: алгоритм будет
завершаться только если в сети достаточно много исправных узлов,
достаточно быстро обменивающихся сообщениями
Блок 43 2/19



Вступление и общие особенности
Название «Паксос» (Paxos) можно считать бессмысленным: его
предложил в 1998 году Л. Лэмпорт в первом описании этого алгоритма
в рамках иллюстрации его как схемы голосования в вымышленном
парламенте на (реально существующем) греческом острове Паксос

Далее обсудим вариант алгоритма Паксос, предложенный Л. Лэмпортом
в 1998 году («Part-time parliament»), переизложенный в 2001 году
(«Paxos made simple»)

В этом алгоритме используется особая модель отказов:
1. Узлы могут выходить из строя и восстанавливаться с частичным

восстановлением состояния на момент сбоя
I О том, какие именно части состояния восстанавливаются, будет

рассказано позже

2. Сообщения могут доставляться сколь угодно долго, теряться и
дублироваться, но не могут искажаться
I То есть, в частности, нет полноценных византийских отказов

Блок 43 3/19



Роли

Узлам сети раздаются роли в голосовании:

I Заявитель: выдвигает на голосование заявку — некоторое значение

I Избиратель: одобряет или отвергает заявку

I Слушатель: старается узнать, какое значение выбрали избиратели

Одному узлу может быть присвоено и несколько ролей

Все узлы знают свои роли и роли всех других узлов

Блок 43 4/19



Т1 и выбор большинством голосов

Самый простой способ организовать выборы — это предоставить выбор
одному избирателю:
I Заявители доносят свои заявки до единственного избирателя
I Единственный избиратель решает, какую заявку одобрить

Так как требуется одобрить заявку даже в том случае, если она всего
одна, то возникает следующее требование:
Т1: избиратель должен одобрить первую принятую заявку

Но в такой схеме выборов выход из строя всего одного узла-избирателя
приводит к тому, что никакое значение не будет выбрано

Чтобы преодолеть эту проблему, можно увеличить число избирателей:

1. Каждый избиратель может одобрить или отклонить заявку

2. Заявка выбирается только в том случае, если она одобрена
большинством голосов избирателей

Блок 43 5/19



Т1 и выбор большинством голосов

Если каждый избиратель будет одобрять только первую принятую
заявку, то можно легко придумать вычисление, в котором ничего не
будет выбрано — например:
I К пяти избирателям поступили заявки a, b и c
I Два избирателя первой приняли (и одобрили) заявку a, два —

заявку b и один — заявку c
I Ни для одной заявки не набрано большинство голосов

Чтобы преодолеть эту проблему, следует разрешить избирателю
одобрять не только первую заявку, но и другие

Но тогда следует ограничить свободу действий каждого избирателя так,
чтобы только только одно значение могло быть одобрено большинством

Блок 43 6/19



Нумерация заявок

Чтобы можно было отслеживать статус конкретных заявок (как с
одинаковыми, так и с разными значениями), пронумеруем их: при
выдвижении заявитель присваивает заявке номер так, чтобы
I различные заявки имели различные номера и
I номера заявок были линейно упорядочены

Например, если узлам сети присвоены уникальные идентификаторы из
линейно упорядоченного множества, то
I номером заявки может служить пара [p, n], где p — идентификатор

заявителя и n — то, какую по счёту заявку он выдвигает, и
I линейно сравнивать такие номера заявок можно, например,

лексикографически

В качестве заявки будем использовать пару (v , n), состоящую из
значения v и номера n

Блок 43 7/19



Т2, Т2и

Ограничить свободу действий избирателя можно при помощи такого
требования:
Т2: если выбирается заявка (v , n), то заявка (w ,m) для m > n может
быть выбрана только в том случае, если w = v

Т2 гарантирует, что может быть выбрано (и стать решением) только
одно значение, хотя, быть может, и из разных заявок

Чтобы соблюсти Т2, ограничим свободу действий избирателя так:
Т2и: если выбирается заявка (v , n), то заявка (w ,m) для m > n может
быть одобрена избирателем только в том случае, если w = v

Утверждение. Если Т2и верно для каждого избирателя, то верно
и Т2

Блок 43 8/19



Т2з

Так как обмен сообщениями асинхронный и возможны потери
сообщений, то Т1 и Т2и могут друг другу противоречить, если не
ограничивать свободу выдвижения заявок — например:

1. Выдвигаются заявки (a, 1) и (b, 2) для трёх избирателей p, q, r

2. Заявка (a, 1) одобряется p и q и выбирается большинством голосов

3. После этого r принимает заявку (b, 2) и по Т1 обязан её одобрить,
а по Т2и — отклонить

Чтобы таких противоречий не возникало, ограничим свободу действий
заявителя так:
Т2з: если выбирается заявка (v , n), то заявка (w ,m) для m > n может
быть выдвинута заявителем только в том случае, если w = v

Утверждение. Если Т2з верно для каждого заявителя, то Т2и
верно для каждого избирателя

Блок 43 9/19



Т2з
Чтобы Т2з можно было соблюдать более «конструктивно», добавим
следующее требование:
Т2в: заявка (v , n) может быть выдвинута только в том случае, если
существует множество избирателей S , содержащее более половины
избирателей и такое что
I либо ни один узел из S не одобряет заявки с номерами, меньшими

n,
I либо для заявки (w ,m), одобренной кем-либо из S , с наибольшим

номером m, меньшим n, верно w = v

Утверждение (Д.з. 1). Если для каждого заявителя верно Т2в, то
для каждого заявителя верно и Т2з
Но так как заявка с меньшим номером может быть выдвинута
хронологически позже заявки с бо́льшим номером, и тем более может
быть позже одобрена избирателями, то для соблюдения Т2в может
быть затруднительно (и неэффективно) отслеживать значение и
принятие такой «запаздывающей» заявки
Блок 43 10/19



Бронирование заявки
Вместо отслеживания статуса заявки можно добиться соблюдения Т2в
при помощи бронирования заявки:

I Заявитель отправляет произвольному большинству избирателей
номер n заявки, которую хочет выдвинуть

I Избиратель, получив такой номер,
I обещает больше не одобрять заявки с номерами, меньшими n, и
I отправляет в ответ одобренную им заявку (v ,m) с наибольшим

номером m, таким что m < n, или сообщение об отсутствии таких
заявок

I Если в ответ на бронирование заявитель получил хотя бы одну
заявку, то перед рассылкой заявки он изменяет значение заявки на
значение полученной заявки с наибольшим номером (чтобы заявка
следовала Т2в)

Утверждение. Для каждого заявителя, бронирующего заявку
перед выдвижением, верно Т2в
Блок 43 11/19



Т1о

Теперь возникло противоречие между Т1 и обещаниями избирателей
при бронировании — например:
I Бронируется заявка (a, 2)
I При бронировании избиратель p обещает не одобрять заявки с

меньшими номерами
I Бронируется и выдвигается заявка (b, 1)
I По Т1 избиратель p вынужден одобрить (b, 1) вопреки обещанию

Чтобы исключить такие противоречия, «ослабим» Т1:
Т1о: избиратель одобряет первую принятую заявку с номером, не
меньшим всех забронированных (если ни один номер не забронирован,
то просто первую принятую, как в T1), и отклоняет все заявки с
меньшими номерами

Блок 43 12/19



Оптимизированное бронирование

Перед окончательной формулировкой действий отправителей и
избирателей добавим следующую оптимизацию бронирования:
I Если избиратель ответил на бронирование номера n, то он не

отвечает на бронирование номеров, меньших n
I Если избиратель принял заявку с номером n, то он не отвечает на

бронирование номера n

С учётом такой оптимизации, избирателю достаточно хранить только
один (самый большой) забронированный номер, игнорируя запросы на
бронирование всех меньших

Утверждение. Избиратель с оптимизацией бронирования и без неё
одинаково принимает и отклоняет заявки согласно Т1о

Блок 43 13/19



Восстановление данных после отказа

Для соблюдения Т1о и Т2в с учётом отказов и потери сообщений
избиратель при выходе из строя с последующим восстановлением
должен сохранять (восстанавливать)
I принятую им заявку с наибольшим номером и
I наибольший забронированный номер

Заявитель при выходе из строя с последующим восстановлением
должен сохранять только номер последней заявки

Блок 43 14/19



Алгоритм Паксос: код заявителя
Переменные заявителя p:
I np : N0 = 0

Процедура выдвижения значения v заявителем p:

1. np := np + 1;
2. Произвольно выбранному большинству избирателей отправить

запрос на бронирование номера (p, np): (reserve, [p, np])

3. Принять подтверждение бронирования ((ack, x), где x = (w ,m) или
x = ⊥) от большинства избирателей

4. Если хотя бы одно подтверждение содержит заявку, то среди
принятых заявок выбрать (w ,m) с наибольшим номером, и
отправить (accept,w , [p, np]) избирателям, от которых приняты
подтверждения

5. Иначе отправить этим избирателям (accept, v , [p, np])

Кроме того, в любой момент заявитель может принудительно
завершить процедуру выдвижения значения («забросить» заявку) и
выдвинуть новое
Блок 43 15/19



Алгоритм Паксос: код избирателя

Переменные избирателя p:

1. zp — заявка или ⊥, начальное значение ⊥
2. np : N0 ∪ {⊥} = ⊥

Действия после приёма (reserve, n) избирателем p:
1. Если np = ⊥ или np < n:

1.1 Отправить (ack, zp) в ответ
1.2 np := n;

Действия после приёма (accept, v , n) избирателем p:
1. Если np = ⊥ или np ≤ n:

1.1 zp := (v , n);
1.2 np := n;

Блок 43 16/19



Алгоритм Паксос: итог

Утверждение (Д.з. 2). Если в некоторой конфигурации
вычисления алгоритма избирателями выбрано значение v , то и во
всех последующих конфигурациях выбирается только значение v

Это утверждение означает, в числе прочего, что выбор значения v
избирателями — это монотонное свойство конфигураций

Значит, для достижения консенсуса достаточно время от времени
собирать снимок сети в каком-либо узле, проверять по снимку, выбрано
ли какое-либо значение, и рассылать это значение во все узлы для
принятия решения

Блок 43 17/19



Алгоритм Паксос со слушателями

Но для несколько более эффективного принятия решения в алгоритм
Паксос добавлена роль слушателя:

I Всякий раз, когда избирателем p впервые принимается значение v ,
пара (v , p) отправляется заранее заданному (параметром
алгоритма) числу произвольно выбранных слушателей

I Слушатель, получив пару (v , p), рассылает её всем остальным
слушателям

I Если из полученных сообщений следует, что большинство
избирателей приняло значение v , то это значение рассылается всем
узлам для принятия решения

Блок 43 18/19



Алгоритм Паксос со слушателями

Д.з. 3. Положим, что сообщения не теряются, выходить из строя
может не более t узлов и заявитель изначально выдвигает значение
своей входной переменной. Какое наименьшее число (а) заявителей, (б)
избирателей, (в) слушателей и (г) узлов в целом требуется, чтобы
алгоритм Паксос обладал свойствами единогласия и невырожденности?
Ответ обосновать.

Д.з. 4. Положим, что сообщения не теряются, узлы не выходят из
строя и в сети есть два заявителя и пять избирателей. Предложить
способ нумерации заявок, и для него — бесконечное справедливое
вычисление алгоритма Паксос со слушателями или без них, в котором
решение не принимается (консенсус не достигается).

Блок 43 19/19


