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Преобразователи предикатов
В базовом алгоритме вычисление множеств Sat(M,EXϕ), Sat(M,EGϕ)
и Sat(M,E(ϕ1Uϕ2)) при помощи процедур PEX, PEU, PEG
основывалось на преобразовании множеств состояний — или,
по-другому, одноместных предикатов на множестве S

Способ преобразования предиката на S можно представить как
преобразователь предикатов на S : функцию вида f : 2S → 2S

В частности, темпоральную комбинацию EX в контексте заданной
модели M можно расценивать как преобразователь предикатов:

Sat(M,EXϕ) = Pre(M,Sat(M, ϕ))

SatM(EXϕ) = Pre(M,SatM(ϕ))

EXM(SatM(ϕ)) = Pre(M,SatM(ϕ))

EXM(A) = Pre(M,A)
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Преобразователи предикатов
Совокупность (2S ,⊆) — это решётка, в которой:
I Точная верхняя грань sup(A,B) множеств A и B — это их

объединение
I Точная нижняя грань inf (A,B) множеств A и B — это их

пересечение
I Наибольший элемент — это можество S
I Наименьший элемент — это ∅

Таким образом, преобразователь предикатов может расцениваться как
функция преобразования элементов решётки, и из этого далее будут
вытекать терминология и свойства преобразователей
⊆ в такой решётке — это отношение нестрогого частичного порядка, и
для него будем применять соответствующую терминологию:
I A ⊆ B ⇔ A не больше B и B не меньше A
I A ⊂ B ⇔ A меньше B и B больше A
I ...
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Преобразователи предикатов
Преобразователь предикатов f : 2S → 2S называется

I монотонным, если для любых предикатов A, B справедлива
импликация

A ⊆ B ⇒ f(A) ⊆ f(B)

I ∪-непрерывным, если для любой бесконечной монотонно
неубывающей последовательности предикатов

A1 ⊆ A2 ⊆ . . .
верно f(

∞⋃
i=1

Ai) =
∞⋃
i=1

f(Ai)

I ∩-непрерывным, если для любой бесконечной монотонно
невозрастающей последовательности предикатов

A1 ⊇ A2 ⊇ . . .
верно f(

∞⋂
i=1

Ai) =
∞⋂
i=1

f(Ai)
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Преобразователи предикатов
Лемма. Любой монотонный преобразователь предикатов f на
конечном множестве S ∪-непрерывен и ∩-непрерывен
Доказательство.
Рассмотрим бесконечную последовательность предикатов A1 ⊆ A2 ⊆ . . .
Так как множество S конечно, для некоторого k верно
Ak = Ak+1 = Ak+2 = . . .

Так как A1 ⊆ · · · ⊆ Ak , то верно и
k⋃

i=1
Ai = Ak

Значит,
∞⋃
i=1

Ai = Ak

Так как f монотонен, верно f(A1) ⊆ · · · ⊆ f(Ak) = f(Ak+1) = . . . , и

аналогично верно
∞⋃
i=1

f(Ai) = f(Ak)

Следовательно, f(
∞⋃
i=1

Ai) = f(Ak) =
∞⋃
i=1

f(Ai), то есть f ∪-непрерывен

∩-непрерывность обосновывается аналогично H
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Неподвижные точки

Неподвижной точкой преобразователя f : 2S → 2S называется предикат
A, такой что f(A) = A

Неподвижная точка A преобразователя f называется наименьшей
(A = µZ .f(Z )), если она наименьшая по включению среди всех
неподвижных точек f, и наибольшей (A = νZ .f(Z )), если она
наибольшая по включению среди всех неподвижных точек

f
i(A) — так обозначим i-кратное применение преобразователя f к
предикату A:
I f

0(A) = A
I f

i(A) = f(f i−1(A)), если i > 0
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Неподвижные точки
Лемма. Для любого монотонного ∪-непрерывного

преобразователя f верно µZ .f(Z ) =
∞⋃
i=0

f
i(∅)

Доказательство. Пусть A =
∞⋃
i=0

f
i(∅)

По определению наименьшей неподвижной точки, достаточно
обосновать два факта:

1. f(A) = A

2. Если f(B) = B, то A ⊆ B

1. По ∪-непрерывности f: f(A) =
⋃∞

i=1 f
i(∅) = f

0(∅) ∪
⋃∞

i=1 f
i(∅) = A

2. Верно f
0(∅) = ∅ ⊆ B

По монотонности f, для любого i ∈ {0, 1, 2, . . . } верно следующее: если
f
i(∅) ⊆ B, то верно и f

i+1(∅) = f(f i(∅)) ⊆ f(B) = B
Значит, для любого i ∈ {0, 1, 2, . . . } верно f

i(∅) ⊆ B, и следовательно,
∞⋃
i=0

f
i(∅) ⊆ B H
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Неподвижные точки
Лемма. Для любого монотонного ∩-непрерывного

преобразователя f на S верно νZ .f(Z ) =
∞⋂
i=0

f
i(S)

Доказательство. Аналогично доказательству предыдущей леммы

Лемма. Для любого монотонного преобразователя и любого i ,
i ∈ N0, верно f

i(∅) ⊆ f
i+1(∅)

Доказательство.

f
0(∅) = ∅ ⊆ f

1(∅)
Если f

i−1(∅) ⊆ f
i(∅) (i ≥ 1), то f

i(∅) = f(f i−1(∅)) ⊆ f(f i(∅)) = f
i+1(∅)

Значит, согласно принципу математической индукции, для любого
i ∈ {0, 1, 2, . . . } верно f

i(∅) ⊆ f
i+1(∅) H

Лемма. Для любого монотонного преобразователя на S и любого
i , i ∈ N0, верно f

i(S) ⊇ f
i+1(S)

Доказательство. Аналогично доказательству предыдущей леммы
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Неподвижные точки
Лемма. Для любого монотонного преобразователя f на конечном
множестве S существует k, k ∈ N0, такое что f

k(∅) = f
k+1(∅)

Доказательство. Предположим от противного, что это не так

По доказанной ранее лемме, для любого i ∈ {0, 1, . . . } верно
f
i(∅) ⊆ f

i+1(∅)

По предположению, f i(∅) 6= f
i+1(∅), а значит, f i(∅) ⊂ f

i+1(∅)

Следовательно, |f0(∅)| < |f1(∅)| < |f2(∅)| < . . .

Но тогда существует m, такое что |fm(∅)| > |S |, что противоречит
включению f

m(∅) ⊆ S H

Лемма. Для любого монотонного преобразователя f на конечном
множестве S существует k, k ∈ N0, такое что f

k(S) = f
k+1(S)

Доказательство. Аналогично доказательству предыдущей леммы
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Неподвижные точки

Лемма. Для любого преобразователя f, любого k, k ∈ N0, и
любого предиката A верно следующее: если f

k(A) = f
k+1(A), то для

любого m, m ∈ N, верно f
k(A) = f

k+m(A)

Доказательство (индукцией по m).

База (m = 1): верно по условию леммы

Индуктивный переход: если f
k(A) = f

k+(m−1)(A), то
f
k+m(A) = f

k+1(fm−1(A)) = f
k(fm−1(A)) = f

k+m−1(A) = f
k(A) H
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Неподвижные точки
Объединив результаты всех предложенных лемм, можно легко получить
следующие теорему и процедуру вычисления наименьшей неподвижной
точки (Plfp) для преобразователя предикатов на конечном множестве S

Теорема (о поиске наименьшей неподвижной точки). Для любого
монотонного преобразователя f на конечном множестве S
существует k, k ∈ N0, такое что

f
0(∅) ⊂ f

1(∅) ⊂ · · · ⊂ f
k(∅) = f

k+1(∅),
и верно µZ .f(Z ) = f

k(∅)
Процедура Plfp(M, f):
I Положить X0 = ∅
I Последовательно для i ∈ {1, 2, . . . }:

I Вычислить Xi = f(Xi−1)
I Если Xi = Xi−1, то завершить процедуру и вернуть Xi

Для использования преобразователей в качестве аргументов процедур
требуется подходящее представление — оно будет введено чуть позже
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Неподвижные точки

Символьным представлением преобразователя f назовём отображение
fs множества символьных представлений предикатов в него же, такое
что fs(ΦA) = Φf(A)

Процедура вычисления наименьшей неподвижной точки очевидным
образом переформулируется в терминах символьных представлений

Процедура Flfp(M, fs):
I Положить Φ0 = Φ∅
I Последовательно для i ∈ {1, 2, . . . }:

I Вычислить Φi = fs(Φi−1)
I Если Φi ∼ Φi−1, то завершить процедуру и вернуть Φi
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Неподвижные точки
Аналогичные теорема и алгоритмы получаются и для наибольшей
неподвижной точки
Теорема (о поиске наибольшей неподвижной точки). Для любого
монотонного преобразователя f на конечном множестве S
существует k, k ∈ N0, такое что

f
0(S) ⊃ f

1(S) ⊃ · · · ⊃ f
k(S) = f

k+1(S),
и верно νZ .f(Z ) = f

k(S)
Процедура Pgfp(M, f):
I Положить X0 = S
I Последовательно для i ∈ {1, 2, . . . }:

I Вычислить Xi = f(Xi−1)
I Если Xi = Xi−1, то завершить процедуру и вернуть Xi

Процедура Fgfp(M, fs):
I Положить Φ0 = ΦS
I Последовательно для i ∈ {1, 2, . . . }:

I Вычислить Φi = fs(Φi−1)
I Если Φi ∼ Φi−1, то завершить процедуру и вернуть Φi
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