Математические методы верификации схем и программ

mk.cs.msu.ru o Лекционные курсыo Математические методы верификации схем и программ

Блок 26

Символьный алгоритм model checking для CTL (начало)

Лектор: Подымов Владислав Васильевич

E-mail:

valdus@yandex.ru

Основная идея символьного алгоритма

Символьным алгоритмом решения задачи обычно называют решающий алгоритм, в котором для основных («трудоёмких») структур данных используются символьные представления в предположении о том, что работать с такими представлениями можно существенно более эффективно, чем с явными

Алгоритм model checking для CTL линеен относительно как размера формулы, так и размера модели

Но на практике возникает необходимость применять алгоритм к настолько большим моделям, что даже такая (казалось бы совсем невысокая) сложность оказывается неприемлемой

Основная идея символьного алгоритма

Например, если в системе независимо асинхронно выполняется n одинаковых процессов, в каждом из которых k состояний, то суммарное число состояний системы (k^n) экспоненциально относительно числа процессов

Такой эффект экспоненциального роста числа состояний относительно параметров системы называется комбинаторным взрывом числа состояний, и это основная проблема, возникающая в области model checking на практике

Символьный алгоритм model checking для CTL — это базовый алгоритм, адаптированный для работы с моделями Крипке в символьном представлении

Стандартное символьное представление (например, в виде ROBDD) множества или отношения X далее будем обозначать записью Φ_X Представление Φ множества над переменными \vec{x} будем обозначать записью $\Phi(\vec{x})$, и особо для двуместных отношений над комплектами переменных \vec{x} для первого аргумента и \vec{y} для второго — $\Phi(\vec{x}, \vec{y})$

Основная идея символьного алгоритма

Записью \vec{x} будем обозначать набор переменных x_1, \dots, x_m для некоторого m, заданного контекстом

$$\exists \vec{x}$$
 — так будем сокращать запись $\exists x_1 \exists x_2 \dots \exists x_m$

Основные операции над множествами и отношениями, используемые в базовом алгоритме, естественно переформулируются на языке символьных представлений:

- ▶ Объединение множеств: $A = B \cup C \mapsto \Phi_A = \Phi_B \vee \Phi_C$
- ▶ Пересечение множеств: $A = B \cap C \mapsto \Phi_A = \Phi_B \& \Phi_C$
- ▶ Разность множеств: $A = B \setminus C \mapsto \Phi_A = \Phi_B \& \neg \Phi_C$
- lack Образ отношения: $A = \{y \mid \exists x : (x,y) \in R\} \mapsto \Phi_A(\vec{y}) = \exists \vec{x} \Phi_R(\vec{x}, \vec{y})$
- ▶ Прообраз отношения: $A = \{x \mid \exists y : (x, y) \in R\} \mapsto \Phi_A(\vec{x}) = \exists \vec{y} \Phi_R(\vec{x}, \vec{y})$

Для «стыковки» переменных множеств понадобится также уметь переименовывать переменные в формулах: $\Phi[\vec{x}/\vec{y}] = \Phi[x_1/y_1, \dots, x_m/y_m]$

Дано:

► Стандартное символьное представление конечной модели Крипке $M = (S, S_0, \rightarrow, L)$ над $\{p_1, \dots, p_k\}$: $\mathfrak{M} = (\Phi_S(\vec{x}), \Phi_{S_0}(\vec{x}), \Phi_{\rightarrow}(\vec{x}, \vec{y}), \Phi_{p_1}(\vec{x}), \dots, \Phi_{p_k}(\vec{x}))$

Ctl-формула φ

Требуется: проверить справедливость соотношения $M \models \varphi$ Базовый алгоритм, основная процедура:

- 1. Вычислить множество $X = Sat(M, \varphi) = \mathfrak{P}_{sat}(M, \varphi)$
- 2. Проверить включение $S_0 \subseteq X$
 - ▶ То есть проверить соотношение $S_0 \setminus X = \emptyset$
- 3. Вернуть результат проверки предыдущего пункта

Символьный алгоритм, основная процедура:

- 1. Вычислить $\Phi_X(\vec{x}) = \mathfrak{F}_{sat}(\mathfrak{M}, \varphi)$ (\mathfrak{F}_{sat} описана далее)
- 2. Проверить соотношение Φ_{S_0} & $\neg \Phi_X \sim \Phi_\emptyset$
- 3. Вернуть результат проверки предыдущего пункта

Базовый алгоритм, процедура $\mathfrak{P}_{sat}(M,\varphi)$:

- 1. Используя известные равносильности, преобразовать φ в равносильную упрощённую формулу ψ в базисе **EX**, **EG**, **EU**: ψ ::= \mathbb{I} | p | ψ & ψ | $\neg \psi$ | $\mathbf{EX}\psi$ | $\mathbf{EG}\psi$ | $\mathbf{E}(\psi \mathbf{U}\psi)$
- 2. $\mathfrak{P}_{sat}(M, \varphi) = \mathfrak{P}'_{sat}(M, \psi)$

Символьный алгоритм, процедура $\mathfrak{F}_{sat}(\mathfrak{M},\varphi)$:

- 1. Дословно как выше
- 2. $\mathfrak{F}_{sat}(\mathfrak{M}, \varphi) = \mathfrak{F}'_{sat}(\mathfrak{M}, \psi)$

Базовый алгоритм, процедура $\mathfrak{P}'_{sat}(M,\varphi)$:

- lacktriangle Если $arphi={
 m t}$, то $\mathfrak{P}'_{sat}(M,arphi)=S$
- lackbox Если $arphi=p\in \mathsf{AP}$, то $\mathfrak{P}'_{sat}(M,arphi)=\{s\mid s\in S,\ p\in L(s)\}$
- lacktriangle Если $arphi=\psi_1 \ \& \ \psi_2$, то $\mathfrak{P}'_{sat}(M,arphi)=\mathfrak{P}'_{sat}(M,\psi_1)\cap \mathfrak{P}'_{sat}(M,\psi_2)$
- lackbox Если $arphi =
 eg\psi$, то $\mathfrak{P}'_{sat}(M,arphi) = S \setminus \mathfrak{P}'_{sat}(M,\psi)$
- lackbox Если $arphi=\mathbf{EX}\psi$, то $\mathfrak{P}'_{sat}(M,arphi)=\mathfrak{P}_{\mathsf{EX}}(M,\psi)$
- $m{arphi}$ Если $m{arphi} = \mathbf{EG} m{\psi}$, то $\mathfrak{P}'_{sat}(M, m{arphi}) = \mathfrak{P}_{\mathsf{EG}}(M, m{\psi})$
- lackbox Если $arphi=\mathbf{E}(\psi_1\mathbf{U}\psi_2)$, то $\mathfrak{P}'_{sat}(M,arphi)=\mathfrak{P}_{\mathsf{EU}}(M,\psi_1,\psi_2)$

Символьный алгоритм, процедура $\mathfrak{F}'_{sat}(\mathfrak{M},\varphi)$:

- lacktriangle Если $arphi=\mathfrak{t}$, то $\mathfrak{F}'_{sat}(\mathfrak{M},arphi)=\Phi_S$
- lackbox Если $arphi=p\in\mathsf{AP}$, то $\mathfrak{F}'_{sat}(\mathfrak{M},arphi)=\Phi_p$
- lack Если $arphi=\psi_1\ \&\ \psi_2$, то ${\mathfrak F}'_{sat}({\mathfrak M},arphi)={\mathfrak F}'_{sat}({\mathfrak M},\psi_1)\ \&\ {\mathfrak F}'_{sat}({\mathfrak M},\psi_2)$
- lacktriangle Если $arphi =
 eg \psi$, то $\mathfrak{F}'_{sat}(\mathfrak{M},arphi) = \Phi_S \&
 eg \mathfrak{F}'_{sat}(\mathfrak{M},\psi)$
- lacktriangle Если $arphi=\mathbf{EX}\psi$, то $\mathfrak{F}'_{sat}(\mathfrak{M},arphi)=\mathfrak{F}_{\mathsf{EX}}(\mathfrak{M},\psi)$
- lacktriangle Если $arphi = \mathbf{EG} \psi$, то $\mathfrak{F}'_{sat}(\mathfrak{M}, arphi) = \mathfrak{F}_{\mathsf{EG}}(\mathfrak{M}, \psi)$
- lackbox Если $arphi=\mathbf{E}(\psi_1\mathbf{U}\psi_2)$, то $\mathfrak{F}'_{sat}(\mathfrak{M},arphi)=\mathfrak{F}_{\mathsf{EU}}(\mathfrak{M},\psi_1,\psi_2)$

Базовый алгоритм, множество $Pre(M,X) = \{s \mid \exists s' : s \to s', \ s' \in X\}$

Символьный алгоритм: $\mathfrak{F}_{pre}(\mathfrak{M},\Phi_X)=\exists \vec{y}(\Phi_{\to}\&\Phi_X[\vec{x}/\vec{y}])$

Базовый алгоритм, процедура $\mathfrak{P}_{\mathsf{EX}}(M,\varphi)$:

- ightharpoonup Вычислить $X=\mathfrak{P}'_{sat}(M,arphi)$
- ightharpoonup Вернуть множество Pre(M, X)

Символьный алгоритм, процедура $\mathfrak{F}_{\mathsf{EX}}(\mathfrak{M},\varphi)$:

- lacktriangle Вычислить $\Phi_X = \mathfrak{F}'_{sat}(\mathfrak{M}, arphi)$
- ▶ Вернуть $\mathfrak{F}_{pre}(\mathfrak{M}, \Phi_X)$

Перед описанием процедур $\mathfrak{F}_{\mathsf{EU}}$ и $\mathfrak{F}_{\mathsf{EG}}$ символьного алгоритма сформулируем ещё несколько понятий и утверждений, позволяющих устроить эти процедуры «более умно»