Московский государственный университет имени М. В. Ломоносова

Факультет вычислительной математики и кибернетики

С. А. Ложкин

ЛЕКЦИИ ПО ОСНОВАМ КИБЕРНЕТИКИ

(вариант 2014 г., глава 4)

Москва 2014

Оглавление

Введение			3
4	Надежность и контроль управляющих систем		6
	$\S 1$	Задача эквивалентных преобразований схем на	
		примере формул. Полнота системы основных	
		тождеств для эквивалентных преобразований	
		формул базиса $\{\&,\lor,\lnot\}$	6
	$\S 2$	§2 Эквивалентные преобразования схем из функциональных	
		элементов и моделирование с их помощью формул	тьных
		преобразований. Моделирование эквивалентных	
		преобразований формул и схем в различных	
		базисах, теорема перехода	13
	$\S 3$	Эквивалентные преобразования контактных	
		схем. Основные тождества, вывод	
		вспомогательных и обобщенных тождеств	22
	$\S 4$	Полнота системы основных тождеств	
		и отсутствие конечной полной системы	
		тождеств в классе контактных схем	31
Литература			38

Введение

Курс «Основы кибернетики» (ранее «Элементы кибернетики»), создателем и основным лектором которого был чл.-корр. РАН С. В. Яблонский, читается на факультете ВМиК МГУ с первых лет его существования. В настоящее время он читается в 6–8 семестрах и является обязательным для всех бакалавров (интегрированных магистров) направления 01400 — «Прикладная математика и информатика». При этом объем и, в некоторой степени, программа курса «Основы кибернетики» варьируются в зависимости от профиля.

Курс «Основы кибернетики» посвящен изложению теории дискретных управляющих систем, которая представляет собой часть дискретной математики и математической кибернетики. В ней разрабатываются и изучаются дискретные математические модели, описывающие функционирование и структуру сложных систем преобразования информации (интегральных схем, программ и т. п.). В основе этих моделей лежат различные способы задания функционирования управляющих систем с помощью дискретных функций и их структурная реализация в тех или иных классах графов (классах схем). При исследовании управляющих систем ставятся и решаются две основные задачи: задача анализа и задача синтеза.

Задача анализа состоит в нахождении функционирования данной схемы, а задача синтеза — в построении схемы, имеющей (реализующей) заданное функционирование. Каждая из этих задач может рассматриваться либо как индивидуальная задача, и тогда ее решением является конкрет-

4 Введение

ное функционирование (схема), либо как массовая задача, и тогда ее решением должен быть алгоритм нахождения функционирования (схемы). Задача синтеза имеет, как правило, множество решений, из которых выбирают решение, оптимальное по какому-либо критерию. Чаще всего в качестве такого критерия выступает сложность схемы, понимаемая как сумма сложностей составляющих ее элементов или задержка схемы, понимаемая как максимальная сумма задержек для последовательно соединенных элементов схемы.

С содержательной точки зрения различные критерии оптимальности отражают различные параметры моделируемых электронных схем или программ. Так, например, сложность может характеризовать стоимость, размеры или потребляемую мощность СБИС, а также время выполнения программы на одном процессоре. При этом задержка схемы характеризует время срабатывания СБИС или время выполнения программы на параллельных процессорах и т. п.

Если задача синтеза решена в одной модели, можно пытаться перенести это решение в другие модели с помощью структурного моделирования. Кроме того, полученное решение можно «улучшить» с помощью эквивалентных преобразований. С другой стороны, если задача синтеза решена для одних функций, можно пытаться «разбить» (декомпозировать) новую функцию на уже рассмотренные и построить из синтезированных для них схем схему для новой функции с помощью операции суперпозиции.

Указанные выше задачи рассматриваются в лекциях для всех основных классов схем (дизъюнктивные нормальные формы, формулы и схемы из функциональных элементов, контактные схемы), а также для некоторых модификаций этих классов.

Первая глава посвящена различным вопросам представления функций алгебры логики с помощью таблиц и дизъюн-

Введение 5

ктивных нормальных форм (минимизация дизъюнктивных нормальных форм).

Вторая глава содержит описание структуры и функционирования схем из основных классов управляющих систем, а также из некоторых классов, представляющих собой их обобщения или модификации. В ней устанавливаются верхние оценки числа схем различных типов, рассматриваются особенности применения операции суперпозиции в различных классах схем и некоторые вопросы их структурного моделирования.

В третьей главе подробно рассматривается задача синтеза управляющих систем. В ней приводится целый спектр методов синтеза схем (от простейших до асимптотически оптимальных), устанавливаются нижние мощностные оценки функций Шеннона и оценки сложности ряда конкретных функций, доказывается минимальность некоторых схем.

В четвертой главе изучаются эквивалентные преобразования схем на основе тождеств во всех основных классах управляющих систем. Для каждого из них приводится система «основных» тождеств, доказывается полнота этой системы и изучаются вопросы ее избыточности.

В пятой главе представлены некоторые вопросы надежности и контроля схем (построение тестов для таблиц, синтез самокорректирующихся контактных схем).

Глава 4

Эквивалентные преобразования управляющих систем

§1 Задача эквивалентных преобразований схем на примере формул. Полнота системы основных тождеств для эквивалентных преобразований формул базиса $\{\&, \lor, \neg\}$

Эквивалентные преобразования (ЭП), то есть преобразования, не изменяющие функционирования схем, играют важную роль при решении различных задач теории управляющих систем и, в частности, задачи синтеза схем (см. §1 главы 3). Следуя [?], изложим ряд вопросов ЭП схем из основных классов и рассмотрим сначала понятия, связанные с эквивалентными преобразованиями схем на основе тождеств на примере формул над базисом Б. Напомним, что некоторые ЭП формул базиса $Б_0$ уже использовались для раскрытия скобок и приведения подобных при построении сокращенной ДНФ (см. §3 главы 1), а также при оптимизации формул по глубине (см. §2).

Однократное ЭП формулы \mathcal{F} в формулу $\check{\mathcal{F}}$ с помощью тождества t (см. §2) будем записывать в виде однократной выводимости вида $\mathcal{F}\mapsto \check{\mathcal{F}}$. Аналогичное ЭП \mathcal{F} в $\check{\mathcal{F}}$ в результате применения одного из тождеств системы τ (нескольких последовательных применений тождеств из τ) будем записывать в виде однократной (соответственно кратной) выво-

димости вида $\mathcal{F} \underset{\tau}{\mapsto} \widetilde{\mathcal{F}}$ (соответственно $\mathcal{F} \underset{\tau}{\models} \widetilde{\mathcal{F}}$). При этом считается, что тождество

$$\widetilde{t} \cdot \mathfrak{F} = \widetilde{\mathfrak{F}}$$

выводимся из системы тождеств τ , и этот факт записывается в виде выводимости $\tau \mapsto \tilde{t}$ или $\tau \not \models \tilde{t}$ в зависимости от числа использованных переходов. Заметим, что в силу обратимости ЭП из выводимости $\mathcal{F} \not \models \tilde{\mathcal{F}}$ следует обратная выводимость $\tilde{\mathcal{F}} \not \models \mathcal{F}$. Система тождеств τ называется полной для ЭП формул над Б, если для любых двух эквивалентных формул \mathcal{F}' и \mathcal{F}'' над Б имеет место выводимость $\mathcal{F}' \not \models \mathcal{F}''$.

Рассмотрим, в частности, систему au, которая состоит из тождеств де Моргана и тождества

$$t_{1,\&}^{\Pi K}: x_1(x_2 \vee \overline{x}_2) = x_1,$$

— тождества подстановки константы $1 = x_2 \vee \overline{x}_2$ в конъюнкцию (см. тождества (2.2) из главы 1). Пример ЭП формул из \mathcal{U}^{Φ} с помощью системы тождеств τ дает следующая цепочка выводимостей:

$$x_1 \left(x_2 x_3 \vee \overline{x}_2 \vee \overline{x}_3 \right) \underset{t_{\ell_*}^{\mathrm{IIK}}}{\mapsto} x_1 \left(x_2 x_3 \vee \overline{x_2 \cdot x_3} \right) \underset{t_{1-\ell_*}^{\mathrm{IIK}}}{\mapsto} x_1. \tag{1.1}$$

Далее будем рассматривать только формулы над базисом $Б_0$, называя их просто формулами. Заметим, что имеют место (см., в частности, §2 главы 1, а также $\ref{eq:condition}$) следующие тождества ассоциативности

$$t_0^{A}: x_1 \circ (x_2 \circ x_3) = (x_1 \circ x_2) \circ x_3,$$

тождества коммутативности

$$t_{\circ}^{\mathbf{K}}: \ x_1 \circ x_2 = x_2 \circ x_2$$

и тождества отождествления БП

$$t_{\circ}^{\text{OII}}: x \circ x = x,$$

где $\circ \in \{\&, \lor\}$, тождества дистрибутивности « \circ » относительно « \diamond »

$$t_{\circ,\diamond}^{\mathrm{D}}: x_1 \circ (x_2 \diamond x_3) = (x_1 \circ x_2) \diamond (x_1 \circ x_3)$$

и тождества («правила») де Моргана

$$t^{\mathrm{M}}_{\neg}: \overline{(\overline{x}_1)} = x_1, \quad t^{\mathrm{M}}_{\circ}: \overline{(x_1 \circ x_2)} = (\overline{x}_1) \diamond (\overline{x}_2),$$

где $(\diamond, \diamond) \in \{(\&, \lor), (\lor, \&)\}$, тождества подстановки констант¹

$$\begin{split} t_{0,\&}^{\Pi \mathrm{K}} : x_1 \left(x_2 \cdot \overline{x}_2 \right) &= x_2 \cdot \overline{x}_2, \quad t_{1,\&}^{\Pi \mathrm{K}} : x_1 \left(x_2 \vee \overline{x}_2 \right) = x_1, \\ t_{0,\vee}^{\Pi \mathrm{K}} : x_1 \vee x_2 \cdot \overline{x}_2 &= x_1, \qquad t_{1,\vee}^{\Pi \mathrm{K}} : x_1 \vee \left(x_2 \vee \overline{x}_2 \right) = x_2 \vee \overline{x}_2, \end{split}$$

а также тождество поглощения

$$t^{\Pi}: x_1 \vee x_1 x_2 = x_1,$$

тождество обобщенного склеивания

$$t^{\text{OC}}: x_1x_2 \vee \overline{x}_1x_3 = x_1x_2 \vee \overline{x}_1x_3 \vee x_2x_3$$

и другие.

Докажем, что

$$\left\{t_{\&}^{\mathrm{M}},\,t_{\neg}^{\mathrm{M}}\right\} \boxminus \left\{t_{\lor}^{\mathrm{M}}\right\} \quad \mathsf{M} \quad \left\{t_{\&}^{\mathrm{K}},\,\tau^{\mathrm{M}}\right\} \boxminus \left\{t_{\lor}^{\mathrm{K}}\right\},$$

где $au^{\mathrm{M}} = \{t_{\&}^{\mathrm{M}},\,t_{\lnot}^{\mathrm{M}},\,t_{\lor}^{\mathrm{M}}\}.$ Действительно,

$$\overline{x_1 \vee x_2} \underset{t_{\rightarrow}^{\mathbf{M}}}{\longmapsto} \overline{\left(\overline{\overline{x}}_1\right) \vee \left(\overline{\overline{x}}_2\right)} \underset{t_{\&}^{\mathbf{M}}}{\mapsto} \overline{\left(\overline{x}_1\right) \cdot \left(\overline{x}_2\right)} \underset{t_{\rightarrow}^{\mathbf{M}}}{\mapsto} \overline{x}_1 \cdot \overline{x}_2$$

¹В отличие от тождеств (2.1)–(2.2) главы 1 данные тождества подстановки констант ориентированы на базис B_0 , где роль константы 0 (константы 1) играет формула вида $x_i \cdot \overline{x}_i$ (соответственно $x_i \vee \overline{x}_i$).

тл

$$x_1 \vee x_2 \underset{t_{\circ}^{\mathrm{M}}}{\longmapsto} \overline{\overline{x_1 \vee x_2}} \underset{t_{\circ}^{\mathrm{M}}}{\mapsto} \overline{\overline{x_1 \cdot \overline{x_2}}} \underset{t_{\varepsilon}^{\mathrm{K}}}{\mapsto} \overline{\overline{x_2 \cdot \overline{x_1}}} \underset{t_{\varepsilon}^{\mathrm{M}}, t_{-}^{\mathrm{M}}}{\mapsto} x_2 \vee x_1.$$

Аналогичным образом доказывается, что

где $\sigma \in \{0,1\}$. Завершая примеры выводимостей, докажем, что

$$\{t_{1,\&}^{\Pi K}, t_{\&,\vee}^{D}, t_{\vee}^{A}, t_{\vee}^{K}, t_{\vee}^{O\Pi}\} \rightleftharpoons t^{\Pi}$$

Действительно,

$$x_{1} \vee x_{1}x_{2} \underset{t_{1,\&}^{\Pi K}}{\longmapsto} x_{1} \left(x_{2} \vee \overline{x}_{2} \right) \vee x_{1}x_{2} \underset{t_{\&,\vee}}{\mapsto} x_{1} \left(\left(x_{2} \vee \overline{x}_{2} \right) \vee x_{2} \right)$$
$$\underset{t_{\vee},t_{\vee}}{\longmapsto} x_{1} \left(\left(x_{2} \vee x_{2} \right) \vee \overline{x}_{2} \right) \underset{t_{\vee}}{\mapsto} x_{1} \left(x_{2} \vee \overline{x}_{2} \right) \underset{t_{1,\&}}{\mapsto} x_{1}.$$

Положим

$$\begin{split} \tau^{\text{och}} &= \left\{t_{\&}^{\text{M}},\, t_{\neg}^{\text{M}},\, t_{\&}^{\text{A}},\, t_{\&}^{\text{K}},\, t_{\&,\vee}^{\text{OII}},\, t_{1,\&}^{\text{DK}},\, t_{0,\&}^{\text{IIK}}\right\},\\ \tau^{\text{A}} &= \left\{t_{\&}^{\text{A}},\, t_{\vee}^{\text{A}}\right\},\\ \tau^{\text{K}} &= \left\{t_{\&}^{\text{K}},\, t_{\vee}^{\text{K}}\right\},\\ \tau^{\text{OII}} &= \left\{t_{\&}^{\text{OII}},\, t_{\vee}^{\text{OII}}\right\},\\ \tau^{\text{D}} &= \left\{t_{\&,\vee}^{\text{D}},\, t_{\vee,\&}^{\text{D}}\right\},\\ \tau^{\text{IIK}} &= \left\{t_{0,\&}^{\text{IIK}},\, t_{1,\&}^{\text{IIK}},\, t_{1,\vee}^{\text{IIK}}\right\},\\ \widetilde{\tau}^{\text{och}} &= \left\{\tau^{\text{M}},\, \tau^{\text{A}},\, \tau^{\text{K}},\, \tau^{\text{OII}},\, \tau^{\text{D}},\, \tau^{\text{IIK}},\, t^{\text{II}}\right\}. \end{split}$$

Систему $au^{\text{осн}}$ будем называть cucmemoй основных тождеств, а систему $au^{\text{осн}}$ — pacширенной системой основных тождеств. Рассмотренные выше примеры выводимостей доказывают следующее утверждение.

Лемма 1.1. Система $\widetilde{\tau}^{\text{осн}}$ выводима из системы $\tau^{\text{осн}}$.

Покажем теперь, что с помощью ЭП на основе системы тождеств $\tau^{\text{осн}}$ из любой формулы можно получить совершенную ДНФ или формулу $x_1\overline{x}_1$. Введем для этого некоторые понятия, характеризующие формулы, появляющиеся на промежуточных этапах указанного ЭП. Произвольную конъюнкцию букв, содержащую, в общем случае, повторяющиеся или противоположные буквы, будем называть обобщенной ЭК (ОЭК), а дизъюнкцию таких конъюнкций, содержащую, в общем случае, повторяющиеся «слагаемые», обобщенной ДНФ (ОДНФ). Обычную ЭК (ДНФ) и формулу $x_1 \cdot \overline{x}_1$ будем считать канонической ОЭК (соответственно канонической ОДНФ), а совершенную ДНФ и формулу $x_1 \cdot \overline{x}_1$ — совершенными ОДНФ. Напомним (см. ??), что формула, в которой все ΦC ¬ применяются только к $B\Pi$ и нет двух последовательно применяемых ФС ¬, называется формулой с поднятыми отрицаниями.

Пусть формула $\mathcal{F}(x_1,\ldots,x_n)$ реализует ФАЛ $f(x_1,\ldots,x_n)$. Докажем существование ЭП вида

$$\mathcal{F} \underset{\tau^{\mathrm{M}}}{\longmapsto} \mathcal{F}' \underset{\left\{t_{k,\cdot,\cdot}^{\mathrm{D}},t_{k}^{\mathrm{K}}\right\}}{\longmapsto} \mathcal{F}'' \underset{\tau^{\mathrm{\Pi\Pi}}}{\longmapsto} \widehat{\mathcal{F}} \underset{\left\{t_{k,\cdot,\cdot}^{\mathrm{D}},\tau^{\mathrm{\Pi\Pi}}\right\}}{\longmapsto} \widetilde{\mathcal{F}}, \tag{1.2}$$

где $\tau^{\Pi\Pi} = \left\{ \tau^{\text{A}}, \, \tau^{\text{K}}, \, \tau^{\Pi\text{K}}, \, \tau^{\text{O}\Pi}, \, t^{\Pi} \right\}, \, \mathfrak{F}' - \text{формула с поднятыми отрицаниями, } \mathfrak{F}'' - \text{обобщенная ДНФ, а} \, \widehat{\mathfrak{F}} \, \text{и} \, \widetilde{\mathfrak{F}} - \text{каноническая и совершенная ОДНФ ФАЛ } f$ соответственно. Действительно, nodnsmue ompuцаний, то есть переход от \mathfrak{F} к \mathfrak{F}' в (1.2) (см. $\ref{eq:substantial}$) можно осуществить применением тождеств $t^{\text{M}}_{\neg}, \, t^{\text{M}}_{\&} \, \text{и} \, t^{\text{M}}_{\&} \, \text{к}$ подформулам вида $\overline{(\mathfrak{F}_1)}, \, \overline{(\mathfrak{F}_1 \cdot \mathfrak{F}_2)} \, \text{и} \, \overline{(\mathfrak{F}_1 \vee \mathfrak{F}_2)}$ соответственно до тех пор, пока все такие подформулы не будут «устранены». Переход от \mathfrak{F}' к \mathfrak{F}'' в (1.2), который называется packpumuem ckofok, осуществляется применением тождеств $\left\{ t^{\text{D}}_{\&,\vee}, \, t^{\text{K}}_{\&} \right\}$ к подформулам вида $\mathfrak{F}_1 \cdot (\mathfrak{F}_2 \vee \mathfrak{F}_3)$ или

 $(\mathcal{F}_1 \vee \mathcal{F}_2) \cdot \mathcal{F}_3$ до тех пор, пока они встречаются в преобразуемой формуле.

Переход от \mathcal{F}'' к $\widehat{\mathcal{F}}$ в (1.2), который называется *приве- дением подобных*, выполняется в три этапа. На первом этапе каждая ОЭК K'' из ОДНФ \mathcal{F}'' преобразуется в каноническую ОЭК K с помощью тождеств $\left\{t_{\&}^{\text{O\Pi}}, t_{0,\&}^{\text{HK}}, t_{\&}^{\text{A}}, t_{\&}^{\text{K}}\right\}$, а также тождества

$$x_i \cdot \overline{x}_i = x_1 \cdot \overline{x}_1, \tag{1.3}$$

которое выводится из них следующим образом:

$$x_i \cdot \overline{x}_i \underset{t_0^{\text{IIK}}}{\mapsto} (x_1 \cdot \overline{x}_1) \cdot (x_i \cdot \overline{x}_i) \underset{t_k^{\text{K}}}{\mapsto} (x_i \cdot \overline{x}_i) \cdot (x_1 \cdot \overline{x}_1) \underset{t_0^{\text{IIK}}}{\mapsto} x_1 \cdot \overline{x}_1.$$

На втором этапе полученная формула $\check{\mathcal{F}}$ преобразуется в $\widehat{\mathcal{F}}$ путем «устранения» повторных вхождений равных элементарных конъюнкций или подформул $x_1 \cdot \overline{x}_1$ с помощью тождеств $\{\tau^A, \tau^K, t^{\text{OII}}_{\vee}\}$ и, в случае $f \not\equiv 0$, последующего «устранения» ОЭК $x_1 \cdot \overline{x}_1$ с помощью тождеств $\{t^A_{\vee}, t^K_{\vee}, t^{\text{IIK}}_{0\vee}\}$.

Заметим, что первые два этапа приведения подобных, на которых происходит приведение повторений БП в ОЭК и ЭК, уже дают нам искомую формулу $\widehat{\mathcal{F}}$. Однако, для уменьшения числа шагов в последующих ЭП можно выполнить третий этап приведения подобных — этап приведения поглощений ЭК. На каждом шаге этого этапа в полученной ДНФ с помощью тождеств $\{\tau^A, \tau^K\}$ выделяется подформула вида $K'' \vee K'' \cdot K$, где K'' и K — некоторые ЭК, а затем ЭК $K'' \cdot K$ «устраняется» с помощью ЭП

$$K'' \vee K'' \cdot K \underset{t\Pi}{\mapsto} K''.$$

Заметим также, что раскрытие скобок и различные этапы приведения подобных можно чередовать друг с другом при $\ni \Pi$ подформул формулы f' или формул f'', \widehat{f} .

Переход от $\widehat{\mathcal{F}}$ к $\widehat{\mathcal{F}}$ в (1.2) выполняется в два этапа. Сначала каждая ЭК \widehat{K} из $\widehat{\mathcal{F}}$, которая имеет ранг r, где r=n-q<

n, и не содержит букв БП x_{i_1},\dots,x_{i_q} , приводится к ее совершенной ДНФ \widetilde{K} от БП $X\left(n\right)$ в результате следующего ЭП:

$$\widehat{K} \underset{t_{1 \cdot k}^{\Pi K}}{\longmapsto} \widehat{K} \left(x_{i_{1}} \vee \overline{x}_{i_{1}} \right) \cdots \left(x_{i_{q}} \vee \overline{x}_{i_{q}} \right) \underset{t_{k} \cdot \vee}{\longmapsto} \widetilde{K}.$$

Затем в полученной ОДНФ устраняются повторные вхождения слагаемых так, как это делалось ранее при переходе от $\check{\mathcal{F}}$ к $\widehat{\mathcal{F}}$, и в результате мы приходим к совершенной ОДНФ $\widehat{\mathcal{F}}$. Таким образом, доказано следующее утверждение.

Лемма 1.2. Любую формулу $\mathfrak{F}(x_1, ..., x_n)$, реализующую $\Phi A \mathcal{J} f$, с помощью $\Im \Pi$ на основе системы тождеств $\tau^{\text{осн}}$ можно преобразовать в совершенную $O \mathcal{J} H \Phi \Phi A \mathcal{J} f$ от $B \Pi X(n)$.

Рассмотрим описанные выше ЭП на примере формулы

$$\mathfrak{F} = (x_1 \vee x_2) \cdot \overline{(x_1 \cdot x_3)} \cdot (x_2 \vee x_3),$$

для которой

$$\begin{array}{ll} \mathcal{F} \underset{t_{\&}^{\mathrm{M}}}{\longmapsto} \left(x_{1} \vee x_{2} \right) \cdot \left(\overline{x}_{1} \vee \overline{x}_{3} \right) \cdot \left(x_{2} \vee x_{3} \right) & = \mathcal{F}', \\ \mathcal{F}' & \underset{\left\{ t_{\&,\vee}^{\mathrm{D}}, \tau^{\Pi\Pi} \setminus t^{\Pi} \right\}}{\longmapsto} x_{1} x_{2} \overline{x}_{3} \vee \overline{x}_{1} x_{2} \vee \overline{x}_{1} x_{2} x_{3} \vee x_{2} \overline{x}_{3} & = \check{\mathcal{F}} = \widehat{\mathcal{F}}, \\ \widehat{\mathcal{F}} & \underset{\left\{ \tau^{\mathrm{A}}, \tau^{\mathrm{K}}, t^{\Pi} \right\}}{\longmapsto} \overline{x}_{1} x_{2} \vee x_{2} \overline{x}_{3} & = \widehat{\mathcal{F}}', \\ \widehat{\mathcal{F}}' & \underset{\left\{ t_{\&,\vee}^{\mathrm{D}}, \tau^{\Pi\Pi} \right\}}{\longmapsto} x_{1} x_{2} \overline{x}_{3} \vee \overline{x}_{1} x_{2} \overline{x}_{3} \vee \overline{x}_{1} x_{2} x_{3} \vee \overline{x}_{1} x_{2} \overline{x}_{3} & = \widetilde{\mathcal{F}}. \\ \end{array}$$

Теорема 1.1. Система $\tau^{\text{осн}}$ — полная система тождеств.

Доказательство. Пусть \mathcal{F}' и \mathcal{F}'' — эквивалентные формулы, реализующие равные ФАЛ f' и f'' соответственно, а набор x(n) = x содержит все различные БП, встречающиеся в \mathcal{F}'

и \mathcal{F}'' . Пусть, далее, Φ АЛ f(x) равна f' и f'', а $\widetilde{\mathcal{F}}$ — совершенная ОДНФ Φ АЛ f от БП X(n). В силу леммы 1.2, имеет место ЭП

$$\mathfrak{F}' \underset{\tau^{\mathrm{och}}}{\longmapsto} \widetilde{\mathfrak{F}} \underset{\tau^{\mathrm{och}}}{\longmapsto} \mathfrak{F}'',$$

которое доказывает теорему.

§2 Эквивалентные преобразования схем из функциональных элементов и моделирование с их помощью эквивалентных преобразований формул. Моделирование эквивалентных преобразований формул и схем в различных базисах, теорема перехода

Распространим введенные в §1 понятия и обозначения на произвольный класс схем $\mathcal U$. В соответствии с определениями из §1 эквивалентность схем Σ' и Σ'' из $\mathcal U$ имеет место тогда и только тогда, когда Σ' и Σ'' реализуют равные системы (матрицы) ФАЛ. При этом, обычно, предполагается, что соответствующие друг другу полюса (выходы, входы) в Σ' и Σ'' имеют одинаковые пометки, а эквивалентность Σ' и Σ'' записывается в виде тождества

$$t: \Sigma' \sim \Sigma''$$

Для схем из \mathcal{U} , как и для формул, определяется ряд «простейших» преобразований, сохраняющих эквивалентность схем, которые называются $nodcmanoe\kappa amu$. Тождество

$$\hat{t}: \hat{\Sigma}' \sim \hat{\Sigma}''.$$

которое получается в результате применения одной и той же подстановки к обеим частям тождества $t:\Sigma'\sim\Sigma''$, называется подстановкой тождества t. Схема Σ' называется подсхемой схемы Σ , если

$$V(\Sigma') \subseteq V(\Sigma), \qquad E(\Sigma') \subseteq E(\Sigma)$$

и любая вершина $v, v \in V(\Sigma')$, которая либо относится к множеству входов (выходов) Σ , либо служит конечной (соответственно начальной) вершиной некоторого ребра из $E(\Sigma) \setminus E(\Sigma')$, является входом (соответственно выходом) Σ' .

Будем считать, что для схем из \mathcal{U} , как и для формул, имеет место принцип эквивалентной замены, то есть заменяя подсхему $\widehat{\Sigma}'$ схемы Σ эквивалентной ей схемой $\widehat{\Sigma}''$ мы получаем схему $\widetilde{\Sigma}$, которая эквивалентна схеме Σ . При этом все введенные в §1 для случая эквивалентных преобразований формул понятия (однократная и кратная выводимость, полнота системы тождеств и др.), а также связанные с ними обозначения переносятся на случай ЭП схем из \mathcal{U} без изменений. Заметим, что вопрос о существовании конечной полной системы тождеств (КПСТ) является одним из основных вопросов, связанных с изучением ЭП схем из заданного класса \mathcal{U} .

Рассмотрим эти вопросы на примере ЭП СФЭ. Мы будем использовать все введенные выше общие понятия и определения, касающиеся ЭП схем, считая подстановкой СФЭ переименование (с возможным отождествлением) ее входных БП и переименование (с возможным дублированием и снятием 1) ее выходных БП.

Напомним, что формулы представляют собой частный случай СФЭ, и для определенности будем считать, что любая формула \mathcal{F} из $\mathcal{U}_{\mathsf{B}}^{\Phi}$ является формулой-словом (см. §2), а соответствующую ей формулу-граф, т. е. квазидерево (см. ??), будем обозначать через $\underline{\mathcal{F}}$. При этом тождеству $t: \mathcal{F}' = \mathcal{F}''$, где \mathcal{F}' и \mathcal{F}'' —формулы из $\mathcal{U}_{\mathsf{B}}^{\Phi}$, будет соответствовать тождество $\underline{t}: \underline{\mathcal{F}}' \sim \underline{\mathcal{F}}''$, где $\underline{\mathcal{F}}'$ и $\underline{\mathcal{F}}''$ — соответствующие \mathcal{F}' и \mathcal{F}'' схемы из $\mathcal{U}_{\mathsf{B}}^{\mathsf{C}}$, являющееся «схемным» аналогом тождества t. Множество СФЭ вида $\underline{\mathcal{F}}$, где $\mathcal{F} \in \mathfrak{F} \subseteq \mathcal{U}_{\mathsf{B}}^{\Phi}$, будем обозначать

 $^{^1\}Pi$ од дублированием (снятием) выхода z_i СФЭ понимается нанесение на вершину с пометкой z_i еще одной выходной БП (соответственно удаление с неё пометки z_i)

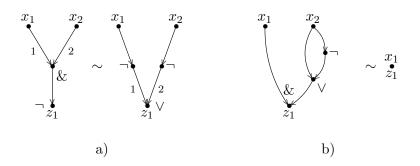


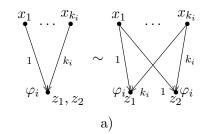
Рис. 2.1: тождества $\underline{t_{\&}^{\mathrm{M}}}$ и $\underline{t_{1,\&}^{\mathrm{\Pi K}}}$

через $\underline{\mathfrak{F}}$, а систему тождеств вида \underline{t} , где $t \in \tau$, а τ — система тождеств для $\mathcal{U}_{\mathrm{B}}^{\Phi}$, — через $\underline{\tau}$. Так, на рис. 2.1а и 2.1b приведены тождества $\underline{t}_{\underline{\&}}^{\mathrm{M}}$ и $\underline{t}_{1,\underline{\&}}^{\mathrm{\Pi K}}$, являющиеся схемными аналогами введенных выше формульных тождеств $t_{\underline{\&}}^{\mathrm{M}}$ и $t_{1,\underline{\&}}^{\mathrm{\Pi K}}$.

На рис. 2.2а и 2.2b показаны тождество ветвления $t_{\mathcal{E}_i}^{\mathrm{B}}$ и тождество снятия $t_{\mathcal{E}_i}^{\mathrm{C}}$ для функционального элемента \mathcal{E}_i , $i \in [1,b]$, соответственно, а на рис. 2.2с — тождество снятия входа $t_{\mathrm{Bx}}^{\mathrm{C}}$. Заметим, что применение тождества снятия равносильно выполнению операции удаления висячей вершины соответствующего типа (см. §3). Заметим также, что тождества $t_{\mathcal{E}_i}^{\mathrm{B}}$, $t_{\mathcal{E}_i}^{\mathrm{C}}$, $t_{\mathrm{Bx}}^{\mathrm{C}}$ не являются аналогами формульных тождеств и положим

$$\tau_{\mathrm{B}}^{\mathrm{B}} = \left\{ t_{\mathcal{E}_{i}}^{\mathrm{B}} \right\}_{i=1}^{b}, \qquad \tau_{\mathrm{B}}^{\mathrm{C}} = \left\{ t_{\mathcal{E}_{i}}^{\mathrm{C}} \right\}_{i=1}^{b} \cup \left\{ t_{\mathrm{Bx}}^{\mathrm{C}} \right\}.$$

Очевидно, что с помощью этих тождеств можно избавиться от всех висячих вершин и всех внутренних ветвлений, имеющихся в СФЭ. Следовательно, для любой СФЭ Σ , $\Sigma \in \mathcal{U}_{\mathrm{B}}^{\mathrm{C}}$, существует ЭП вида $\Sigma \Longrightarrow \underline{\mathcal{F}}$, где \mathcal{F} — формула (система формул) из $\mathcal{U}_{\mathrm{B}}^{\Phi}$.



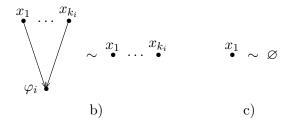


Рис. 2.2: тождества ветвления, снятия ФЭ и снятия входа

Пусть, далее, $\mathcal{F}\mapsto\limits_t\widehat{\mathcal{F}}$ — однократное ЭП для формул из $\mathcal{U}^\Phi_{\mathsf{F}}$, где тождество t имеет вид

$$t: \mathcal{F}'(x_1, \dots, x_n) = \mathcal{F}''(x_1, \dots, x_n),$$

а формула $\widehat{\mathcal{F}}$ получается из формулы \mathcal{F} заменой подформулы $\mathcal{F}'(\mathcal{F}_1,\ldots,\mathcal{F}_n)$ формулой $\mathcal{F}''(\mathcal{F}_1,\ldots,\mathcal{F}_n)$. Сопоставим этому $\Im \Pi$ «моделирующее» его однократное $\Im \Pi$ СФЭ вида $\underline{\mathcal{F}} \mapsto \widehat{\Sigma}$ (см. рис. 2.3). Заметим, что в том случае, когда формулы \mathcal{F}' и \mathcal{F}'' являются бесповторными формулами, а БП x_1,\ldots,x_n — их существенными БП, СФЭ $\widehat{\Sigma}$ совпадает с СФЭ $\underline{\mathcal{F}}''$. В остальных случаях из подформулы вида $\mathcal{F}'(\mathcal{F}_1,\ldots,\mathcal{F}_n)$ формулы \mathcal{F} необходимо с помощью тождеств $\tau_{\mathrm{B}}^{\mathrm{B}}$ сформировать сначала подсхему $\underline{\mathcal{F}}'(\underline{\mathcal{F}}_1,\ldots,\underline{\mathcal{F}}_n)$, а затем применить тождество \underline{t} . При этом в СФЭ $\widehat{\Sigma}$ могут появиться

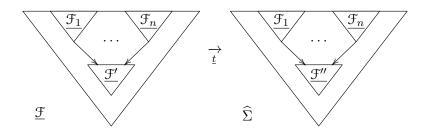


Рис. 2.3: моделирование ЭП формул с помощью ЭП СФЭ

висячие вершины или внутренние «ветвления», и тогда для перехода от $\widehat{\Sigma}$ к $\widehat{\mathcal{F}}$ необходимо провести ЭП вида $\widehat{\Sigma} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \widehat{\mathcal{F}}.$

Следовательно, для любого ЭП вида $\mathcal{F} \stackrel{\tau}{\Longrightarrow} \widehat{\mathcal{F}}$, где $\mathcal{F}, \widehat{\mathcal{F}} \in \mathcal{U}_{\mathcal{B}}^{\Phi}$, существует моделирующее его ЭП вида

$$\underline{\mathcal{F}} \underset{\left\{\underline{\tau},\tau_{\mathrm{B}}^{\mathrm{B}},\tau_{\mathrm{B}}^{\mathrm{C}}\right\}}{\boxminus} \widehat{\underline{\mathcal{F}}}.$$

На рис. 2.4 показано ЭП СФЭ из \mathcal{U}^{C} , которое моделирует ЭП (1.1) для формул из \mathcal{U}^{Φ} :

$$x_1 \left(x_2 x_3 \vee \overline{x}_2 \vee \overline{x}_3 \right) \underset{t_{\&}^{\mathrm{IK}}}{\mapsto} x_1 \left(x_2 x_3 \vee \overline{x_2 \cdot x_3} \right) \underset{t_{1,\&}^{\mathrm{IK}}}{\mapsto} x_1.$$

Из описанного выше способа «моделирования» ЭП формул с помощью ЭП СФЭ, а также способа перехода от формул к СФЭ и обратно на основе ЭП с помощью тождеств $\tau_{\rm E}^{\rm B},\,\tau_{\rm E}^{\rm C}$ вытекает справедливость следующего утверждения.

Теорема 2.1. Если τ — конечная полная система тождеств для ЭП формул из \mathcal{U}_{B}^{Φ} , то $\{\underline{\tau}, \tau^{C}, \tau^{B}\}$ — конечная полная система тождеств для ЭП СФЭ из \mathcal{U}_{B}^{C} .

Следствие. Система тождеств $\{\underline{\tau}^{\rm och},\ \tau^{\rm B},\ \tau^{\rm C}\}$ — КПСТ для ЭП СФЭ из $\mathfrak{U}^{\rm C}.$

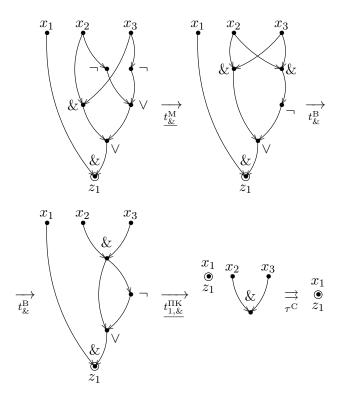


Рис. 2.4: пример моделирования ЭП формул с помощью ЭП СФЭ

Рассмотрим далее вопросы структурного моделирования формул в различных базисах. Пусть помимо базиса $\mathbf{E} = \{\varphi_i\}_{i=1}^b$ у нас имеется другой конечный полный базис $\mathbf{E}' = \{\varphi_i'\}_{i=1}^{b'}$, и пусть формула $\Phi_i'\left(x_1,\ldots,x_{k_i'}\right)$ из $\mathcal{U}_{\mathbf{E}'}^{\Phi}$, где $k_i' \geqslant k_i$, реализует Φ АЛ φ_i , $i=1,\ldots,b$. Заметим, что в случае $k_i' > k_i$ ВП $x_{k_i+1},\ldots,x_{k_i'}$ являются фиктивными ВП формулы Φ_i' . Положим

$$\Phi' = (\Phi'_1, \dots, \Phi'_b), \qquad \Pi' = (\Pi'_1, \dots, \Pi'_b),$$

где Π'_i — тождество вида $\varphi_i = \Phi'_i$, $i = 1, \ldots, b$, и формулы из Φ' (тождества из Π') будем называть формулами (соответственно тождествами) перехода от базиса E κ базису E'.

Для формулы \mathcal{F} , $\mathcal{F} \in \mathcal{U}_{\mathbf{B}}^{\Phi}$, обозначим через $\Pi'(\mathcal{F})$ формулу над базисом \mathbf{B}' , которая получается из \mathcal{F} заменой каждой ее подформулы вида $\varphi_i\left(\mathcal{F}_1,\ldots,\mathcal{F}_{k_i}\right)$ формулой $\Phi'_i\left(\mathcal{F}_1,\ldots,\mathcal{F}_{k_i},x_{k_i+1},\ldots,x_{k_i'}\right)$, то есть является результатом подстановки формулы \mathcal{F}_j вместо $\mathbf{B}\Pi$ x_j в формулу Φ'_i для всех $j,\ j=1,\ldots,k_i$. Переход от формулы \mathcal{F} к формуле $\Pi'(\mathcal{F})$ будем называть структурным моделированием формулы \mathcal{F} в базисе \mathbf{B}' на основе формул перехода Φ' или, иначе, на основе тожсдеств перехода Π' . Заметим, что этот переход является специальным \mathbf{H} вида

$$\mathcal{F} \underset{\Pi'}{\longmapsto} \Pi'(\mathcal{F})$$

для формул над базисом $\mathsf{B} \cup \mathsf{B}'$. Отсюда следует, в частности, что в результате указанного структурного моделирования обеих частей тождества t, являющихся формулами из $\mathcal{U}_\mathsf{B}^\Phi$, получается тождество t' для формул из $\mathcal{U}_\mathsf{B}^\Phi$, которое мы будем обозначать через $\Pi'(t)$. Множество формул вида $\Pi'(\mathfrak{F})$, где $\mathfrak{F} \in \mathfrak{F} \subseteq \mathcal{U}_\mathsf{B}^\Phi$, будем обозначать через $\Pi'(\mathfrak{F})$, а множество тождеств вида $\Pi'(t)$, где $t \in \tau$ — тождество над $\mathcal{U}_\mathsf{B}^\Phi$, — через $\Pi'(\tau)$.

Рассмотрим теперь вопросы моделирования ЭП формул в базисе Б с помощью ЭП формул базиса Б'. Пусть $\Phi' = (\Phi'_1, \dots, \Phi'_b)$ — система формул перехода от базиса Б к базису Б', а $\Pi' = (\Pi'_1, \dots, \Pi'_b)$ — система тождеств перехода, связанная с Φ' . Заметим, что любое ЭП для формул из $\mathcal{U}_{\mathsf{B}}^{\Phi}$, имеющее вид

$$\mathfrak{F} \underset{\overline{}}{\longmapsto} \widehat{\mathfrak{F}}, \tag{2.1}$$

может быть «промоделировано» с помощью ЭП для формул из $\mathcal{U}^{\Phi}_{\mathsf{F}'}$ вида

$$\mathcal{F}' \underset{\tau'}{\models} \widehat{\mathcal{F}}',$$
 (2.2)

где $\mathcal{F}' = \Pi'(\mathcal{F}), \ \widehat{\mathcal{F}}' = \Pi'(\widehat{\mathcal{F}})$ и $\tau' = \Pi'(\tau)$. Действительно, пусть $\Im\Pi$ (2.1) является однократным $\Im\Pi$ на основе тождества $t, \ t \in \tau$, которое имеет вид

$$t: \mathfrak{A}(x_1,\ldots,x_q) = \mathfrak{B}(x_1,\ldots,x_q),$$

и пусть формула $\widehat{\mathcal{F}}$ получается в результате замены подформулы $\mathfrak{A}\left(\mathcal{F}_{1},\ldots,\mathcal{F}_{q}\right)$ формулы \mathfrak{F} формулой $\mathfrak{B}\left(\mathcal{F}_{1},\ldots,\mathcal{F}_{q}\right)$. Тогда тождество $t'=\Pi'\left(t\right)$ имеет вид

$$t': \mathfrak{A}'(x_1,\ldots,x_1) = \mathfrak{B}(x_1,\ldots,x_q),$$

где $\mathfrak{A}' = \Pi'(\mathfrak{A})$ и $\mathfrak{B}' = \Pi'(\mathfrak{B})$, а формула $\widehat{\mathcal{F}}'$ может быть получена из формулы \mathcal{F}' в результате замены ее подформулы $\mathfrak{A}'\left(\mathcal{F}'_1,\ldots,\mathcal{F}'_q\right)$, где $\mathcal{F}'_j = \Pi'\left(\mathcal{F}_j\right)$ для всех $j,\ j\in[1,q]$, формулой $\mathfrak{B}'\left(\mathcal{F}'_1,\ldots,\mathcal{F}'_q\right)$. Моделирование кратного $\Im\Pi$ вида (2.1) с помощью кратного $\Im\Pi$ вида (2.2) осуществляется путем последовательного моделирования однократных $\Im\Pi$, составляющих $\Im\Pi$ (2.1).

Описанное выше моделирование позволяет выполнять ЭП для тех эквивалентных формул из $\mathcal{U}_{B'}^{\Phi}$, которые принадлежат множеству $\Pi'(\mathcal{U}_{B}^{\Phi})$, то есть являются «моделями»

формул из $\mathcal{U}_{\mathsf{B}}^{\Phi}$, на основе системы тождеств $\Pi'(\tau)$, являющихся «моделями» тождеств из τ . Для того чтобы проводить ЭП для произвольных формул из $\mathcal{U}_{\mathsf{B}'}^{\Phi}$ с использованием системы тождеств $\Pi'(\tau)$, выберем какую-либо систему формул перехода $\Phi = (\Phi_1, \ldots, \Phi_{b'})$ от базиса B' к базису B и рассмотрим связанную с ней систему тождеств перехода $\Pi = (\Pi_1, \ldots, \Pi_{b'})$. Пусть $\check{\Pi}$ — система тождеств вида $\check{\Pi} = \Pi'(\Pi)$ для ЭП формул из $\mathcal{U}_{\mathsf{B}'}^{\Phi}$, которая получается в результате структурного моделирования правых частей тождеств из Π на основе системы тождеств Π' . Для произвольной формулы \mathcal{F}' , $\mathcal{F}' \in \mathcal{U}_{\mathsf{B}'}^{\Phi}$, положим

$$\check{\Pi}\left(\mathfrak{F}'\right) = \Pi'\left(\Pi\left(\mathfrak{F}\right)\right)$$

и заметим, что

$$\mathfrak{F}' \underset{\check{\Pi}}{\longmapsto} \check{\mathfrak{F}}' = \check{\Pi} \left(\mathfrak{F}' \right), \quad \check{\mathfrak{F}}' \in \Pi' \left(\mathfrak{U}_B^{\Phi} \right).$$

В силу сказанного выше, отсюда вытекает справедливость следующего утверждения.

Теорема 2.2 (теорема перехода). Пусть $\tau - K\Pi CT$ для $\ni\Pi$ формул из $\mathfrak{U}_{\mathsf{B}}^{\Phi}$, а Π' и Π — системы тождеств для перехода от базиса B κ базису B' и от базиса B' κ базису B соответственно. Тогда система тождеств $\{\Pi'(\tau),\Pi'(\Pi)\}$ является $K\Pi CT$ для $\ni\Pi$ формул из $\mathfrak{U}_{\mathsf{B}}^{\Phi}$.

Следствие. Из системы тождеств $\tau^{\text{осн}}$ для ЭП формул из \mathcal{U}^{Φ} (см. §3) указанным в теореме способом можно получить КПСТ для ЭП формул в любом базисе Б.

Аналогичным образом на основе теоремы 2.1 решаются вопросы построения КПСТ для ЭП СФЭ в произвольном базисе.

§3 Эквивалентные преобразования контактных схем. Основные тождества, вывод вспомогательных и обобщенных тождеств

Рассмотрим вопросы ЭП для КС из \mathcal{U}^{K} с неразделенными (бесповторными) полюсами. В соответствии с ?? эквивалентность КС $\Sigma' = \Sigma'(x_1, \ldots, x_n; a_1, \ldots, a_m)$ и $\Sigma'' = \Sigma''(x_1, \ldots, x_n; a_1, \ldots, a_m)$, то есть справедливость тождества $t: \Sigma' \sim \Sigma''$ означает, что для любых i и j из отрезка [1, m] ФАЛ проводимости от a_i к a_j в КС Σ' равна ФАЛ проводимости от a_i к a_j в КС Σ'' . На рис. 3.1а—3.1е и 3.1f приведены пары эквивалентных КС, образующие тождества t_1 — t_5 и $t_6^{(m)}$, $m=1,2,\ldots$, соответственно, которые мы будем называть основными тождествами для ЭП КС.

Определим подстановку для КС как переименование (с возможным отождествлением и инвертированием) БП, а также переименование (с возможным отождествлением и снятием) полюсов. Заметим, что применяя одну и ту же подстановку к двум эквивалентным КС, мы получим эквивалентные КС. Действительно, для переименования БП и переименования без отождествления полюсов это очевидно, а в случае отождествления полюсов эквивалентность получаемых КС вытекает из того, что матрица достижимости КС, являющейся результатом отждествления, однозначно определяется матрицей достижимости исходной КС. На рис. 3.2а (3.2b) показана подстановка \hat{t}_4 тождества t_4 (соответственно \hat{t}_5 тождества t_5), связанная с переименованием БП x_2 в x_1 (соответственно полюсов 1=3 в 1).

Понятие подсхемы для КС из рассматриваемого класса определяется аналогично §5 с учетом неразделенности полюсов. Это означает, что для подсхемы Σ' КС Σ имеет место включение $V(\Sigma') \subset V(\Sigma)$ и $E(\Sigma') \in E(\Sigma)$, а полюсами Σ' являются все принадлежащие ей полюса КС Σ и все те ее вершины, которые инцидентны в Σ ребрам из $E(\Sigma) \setminus E(\Sigma')$,

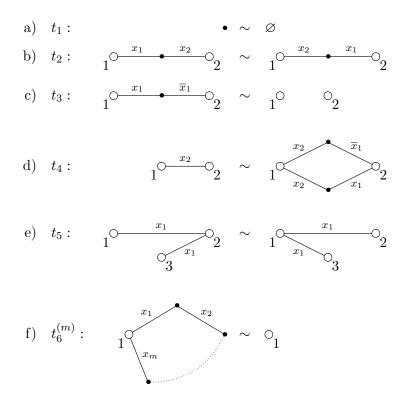
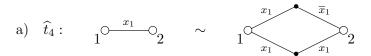


Рис. 3.1: основные тождества для КС



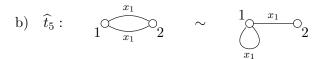


Рис. 3.2: подстановки для основных тождеств

и, возможно, некоторые другие вершины. При таком определении подсхемы для рассматриваемого класса КС будет выполняться принцип эквивалентной замены.

Рассмотрим примеры ЭП контактных схем с помощью системы основных тождеств. На рис. 3.3а–3.3е приведены тождества t_7 – t_{11} , которые мы будем называть вспомогательными. Тождество t_{10} называют иногда тождеством замыкания по транзитивности, а тождество t_{11} — «леммой» о звезде.

Лемма 3.1. Имеет место выводимость $\{t_1 - t_5, t_6^{(1)}, t_6^{(2)}\} \models \{t_7 - -t_{11}\}.$

Доказательство. Заметим, что выводимость $\{t_5, t_6^{(1)}\} \Rightarrow t_7$ доказывается применением тождества $t_6^{(1)}$ к правой части тождества \hat{t}_5 (см. рис. 3.2a) для удаления из нее «висячего» цикла длины 1. Выводимость тождеств t_8 – t_{11} из основных тождеств $\{t_1 - t_5, t_6^{(1)}, t_6^{(2)}\}$ показана на рис. 3.4–3.7 соответственно, где Σ_i и Σ_i — левая и правая части тождества t_i , $i \in [8, 11]$.

Обобщим тождества t_1 – t_{11} на случай КС от БП $X\left(n\right)$, где $n\geqslant 2$. Для каждого $i,\ i\in\left[1,2^n\right]$, сопоставим ЭК ви-

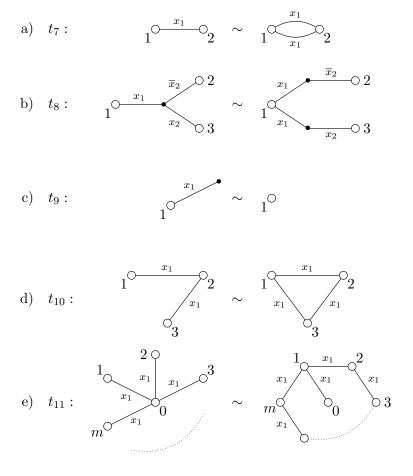


Рис. 3.3: вспомогательные тождества для КС

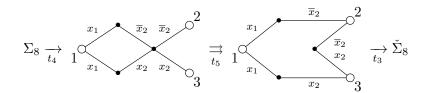


Рис. 3.4: вывод t_8

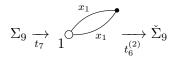


Рис. 3.5: вывод t_9

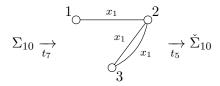


Рис. 3.6: вывод t_{10}

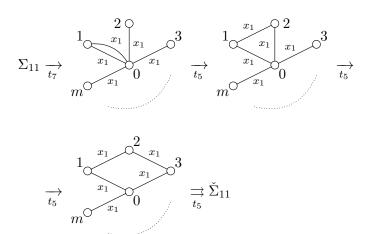


Рис. 3.7: вывод t_{11}

да $x_1^{\sigma_1}\cdots x_n^{\sigma_n}$, где $\nu\left(\sigma_1,\ldots,\sigma_n\right)=i-1$, моделирующую ее цепочку $I_i^{(n)}$ (см. $\ref{cm.1}$), и пусть

$$I_i^{(n)} = I_i, \quad i \in [1, 2^n],$$
 $I = I_{2^n};$
 $I_i^{(n-1)} = I_i', \quad i \in [1, 2^{n-1}],$ $I' = I_{2^{n-1}}';$
 $I_i^{(n-2)} = I_i'', \quad i \in [1, 2^{n-2}],$ $I'' = I_{2^{n-2}}''.$

Систему тождеств $\tau^{(n)} = \left\{t_1^{(n)}, \dots, t_{11}^{(n)}\right\}$, где $t_1^{(n)} = t_1, t_6^{(n)} -$ соответствующее основное тождество (см. рис. 3.1f), $t_2^{(n)} -$ система, состоящая из тождеств, показанных на рис. 3.8a, где \widetilde{I} — произвольная перестановка цепочки I, а остальные тождества приведены на рис. 3.8b—3.8i, будем называть системой обобщенных тождестве порядка n. При этом система $\tau_n = \left\{t_1, \dots, t_5, t_6^{(1)}, \dots, t_6^{(n)}\right\}$ считается системой основных тождеств порядка n, а система всех основных тождеств обозначается через τ_∞ .

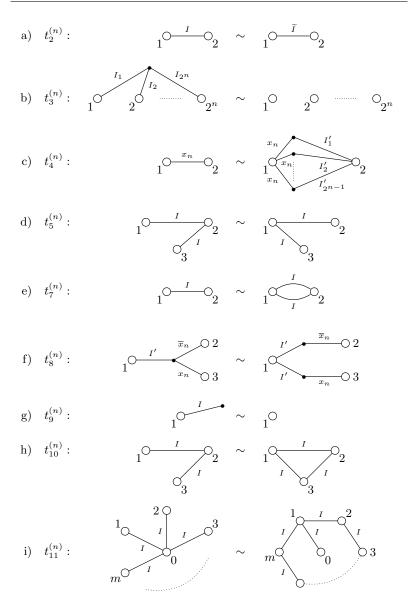


Рис. 3.8: обобщенные тождества порядка n для KC

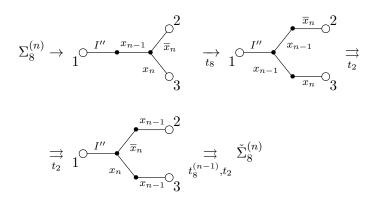


Рис. 3.9: вывод $t_8^{(n)}$

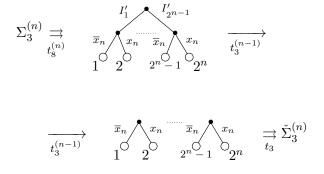


Рис. 3.10: вывод $t_3^{(n)}$

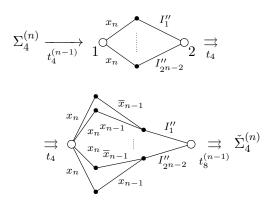


Рис. 3.11: вывод $t_4^{(n)}$

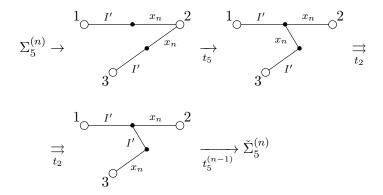


Рис. 3.12: вывод $t_5^{(n)}$

Лемма 3.2. При $n \geqslant 2$ имеет место выводимость $\tau_n \rightrightarrows \tau^{(n)}$.

Доказательство. Отметим сначала следующие очевидные выводимости:

$$\{t_2\} \rightrightarrows t_2^{(n)}, \qquad \{t_9\} \rightrightarrows t_9^{(n)}.$$

Выводимость $\tau_n \rightrightarrows t_i^{(n)}, \ i=8,3,4,5,$ докажем индукцией по $n,\ n\geqslant n_i,$ где $n_3=n_5=1$ и $n_8=n_4=2.$ Базис этой индукции составляет тождество $t_i=t_i^{(n_i)},\ i=8,3,4,5,$ а обоснование индуктивного перехода дает выводимость правой части $\check{\Sigma}_i^{(n)}$ тождества $t_i^{(n)},\ n>n_i,$ из его левой части $\Sigma_i^{(n)},$ показанная на рис. 3.9–3.12.

Легко видеть, что выводимости

$$\left\{t_2^{(n)}, t_5^{(n)}\right\} \rightrightarrows t_7^{(n)}, \qquad \left\{t_7^{(n)}, t_5^{(n)}\right\} \rightrightarrows \left\{t_{10}^{(n)}, t_{11}^{(n)}\right\}$$

при $n\geqslant 2$ доказываются аналогично тому, как это делалось для случая n=1 (см. рис. 3.6, 3.7).

§4 Полнота системы основных тождеств и отсутствие конечной полной системы тождеств в классе контактных схем

Докажем сначала полноту системы основных тождеств τ_{∞} для ЭП КС. Для этого, как обычно, достаточно доказать, что с помощью ЭП на основе системы τ_{∞} произвольную КС из \mathcal{U}^{K} можно привести к каноническому виду. Напомним (см. ??), что каноническая КС $\widehat{\Sigma}(x_1,\ldots,x_n;a_1,\ldots,a_m)$, или, иначе, каноническая КС порядка n, представляет собой объединение канонических (1,1)-КС вида $\widehat{\Sigma}_{ij}(x_1,\ldots,x_n;a_i,a_j)$, построенных на основе совершенных ДНФ ФАЛ проводимости от a_i к a_j для всех i и j таких, что $1 \leq i < j \leq m$.

Любую цепь $I_i^{(n)}$ (см. §3), где $i \in [1,2^n]$, а также любую цепь, которая получается из $I_i^{(n)}$ перестановкой контактов, будем называть *канонической цепью порядка п*. Заметим, что КС $\widehat{\Sigma}(x_1,\ldots,x_n;a_1,\ldots,a_m)$ является канонической КС порядка n тогда и только тогда, когда она обладает следующими свойствами:

- 1. любой контакт $\widehat{\Sigma}$ принадлежит некоторой канонической цепи порядка n, являющейся подсхемой схемы $\widehat{\Sigma}$, причем полюсами этой подсхемы служат только концевые вершины данной цепи;
- 2. любая внутренняя вершина $\widehat{\Sigma}$ является внутренней вершиной некоторой цепи из пункта 1;
- 3. в КС $\widehat{\Sigma}$ отсутствуют «висячие циклы» (см. тождество $t_6^{(n)}$) и «параллельные» цепи, то есть канонические цепи порядка n из пункта 1, которые соединяют одни и те же полюса и реализуют равные ЭК;
- 4. в КС $\widehat{\Sigma}$ нет существенных транзитных проводимостей, то есть наличие цепей вида $I_i^{(n)}$, соединяющих полюс a_j с полюсом a_k и полюс a_k с полюсом a_t (см. рис. 4.1a), влечет наличие цепи такого же вида, соединяющей полюс a_j с полюсом a_t (см. рис. 4.1b).

Лемма 4.1. Для любой KC Σ , $\mathit{где}$ $\Sigma \in \mathfrak{U}^{\mathrm{K}}$ u $\Sigma = \sum (x_1, \ldots, x_n; a_1, \ldots, a_m)$, u любой эквивалентной Σ KC $\widehat{\Sigma}(x_1, \ldots, x_n; a_1, \ldots, a_m)$ канонического вида существует $\mathit{Э}\Pi$ $\Sigma \rightrightarrows \widehat{\Sigma}$.

Доказательство. Построим ЭП вида

$$\Sigma \underset{\tau_n}{\Longrightarrow} \Sigma_1 \underset{\tau_n}{\Longrightarrow} \Sigma_2 \underset{\tau_n}{\Longrightarrow} \Sigma_3 \underset{\tau_n}{\Longrightarrow} \Sigma_4 = \widehat{\Sigma},$$

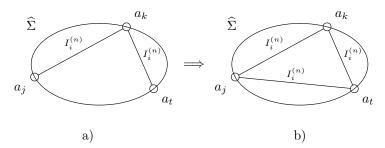


Рис. 4.1: к свойству 4 КС канонического вида

где КС Σ_i , i=1,2,3,4, обладает отмеченными выше свойствами $1,\ldots,i$, отличающими канонические КС. Первое из этих ЭП имеет вид

$$\Sigma \underset{t_4^{(n)}}{\Longrightarrow} \Sigma_1$$

и связано с применением к каждому контакту тождества $t_4^{(n)}$.

Существование ЭП

$$\Sigma_{1} \underset{\left\{t_{6}^{(n)}, t_{11}^{(n)}, t_{9}^{(n)}, t_{3}^{(n)}, t_{1}^{(n)}\right\}}{\Rightarrow} \Sigma_{2} \tag{4.1}$$

докажем индукцией по числу тех внутренних вершин КС Σ_1 , которые не являются внутренними вершинами ее канонических цепей. Базис индукции составляют схемы Σ_1 , которые не имеют указанных вершин и для которых, следовательно, $\Sigma_2 = \Sigma_1$. Пусть теперь КС Σ_1 имеет хотя бы одну вершину указанного вида и пусть v — одна из таких вершин. Удалим с помощью тождества $t_6^{(n)}$ все присоединенные к v «висячие» циклы и рассмотрим все остальные цепи C_1, \ldots, C_q , концевой вершиной которых она является (см. рис. 4.2а). Не ограничивая общности рассуждений, будем считать, что для некоторых натуральных чисел

$$a_1 = 1 < a_2 < \dots < a_p < a_{p+1} = q+1$$

и любого $j, j \in [1, p]$, цепи $C_{a_j}, \ldots, C_{a_{j+1}-1}$ являются цепями типа $I_{i_j}^{(n)} = I_{i_j}$, где i_1, \ldots, i_p — различные числа отрезка $[1, 2^n]$. Применяя к каждой из этих p групп цепей одного типа тождество $t_{11}^{(n)}$, получим КС Σ_1' , в которой из вершины v выходит по одной цепи каждого типа $I_{i_j}, j \in [1, p]$ (см. рис. 4.2b). Пусть, далее, КС Σ_1'' получается из КС Σ_1'' присоединением к вершине v с помощью тождества $t_9^{(n)}$ «висячих» цепей C_{p+1}, \ldots, C_{2^n} всех отсутствующих среди I_{i_1}, \ldots, I_{i_p} типов (см. рис. 4.2c), а КС Σ_1''' получается из КС Σ_1''' в результате удаления с помощью тождества $t_3^{(n)}$ вершины v вместе со всеми «инцидентными» ей цепями и устранения с помощью тождества t_1 образовавшихся при этом изолированных вершин — концевых вершин цепей C_{p+1}, \ldots, C_{2^n} (см. рис. 4.2d). По индуктивному предположению для КС Σ_1'''' существует ЭП вида

$$\Sigma''' \underset{\left\{t_6^{(n)}, t_{11}^{(n)}, t_9^{(n)}, t_3^{(n)}, t_1^{(n)}\right\}}{\Rightarrow} \Sigma_2$$

и, следовательно, для КС Σ_1 существует ЭП (4.1).

Переход от КС Σ_2 к КС Σ_3 осуществляется с помощью тождеств $t_6^{(n)}$ и $t_7^{(n)}$, а от КС Σ_2 к КС Σ_3 — с помощью тождеств $t_{10}^{(n)}$.

Лемма доказана.

Теорема 4.1. Для любых двух эквивалентных $KC \Sigma'$ и Σ'' от $B\Pi x_1, \ldots, x_n$ существует $\Im\Pi$ вида $\Sigma' \rightrightarrows \Sigma''$.

 \mathcal{A} оказательство. Пусть $\widehat{\Sigma}'$ и $\widehat{\Sigma}''$ — канонические КС от БП x_1,\dots,x_n , эквивалентные КС Σ' и Σ'' соответственно. Из определений следует, что $\widehat{\Sigma}' \rightrightarrows \widehat{\Sigma}''$, и поэтому, в силу лем- $t_2^{(n)}$

мы 4.1, существует ЭП вида

$$\Sigma' \underset{\tau_n}{\Longrightarrow} \widehat{\Sigma}' \underset{t_n^{(n)}}{\Longrightarrow} \widehat{\Sigma}'' \underset{\tau_n}{\Longrightarrow} \Sigma''.$$

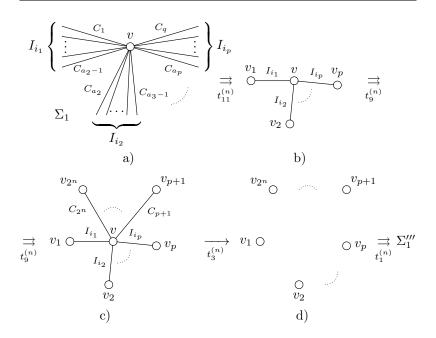


Рис. 4.2: к доказательству леммы 4.1

Теорема доказана.

Следствие 1. $Cucmema\ au_n$ является $K\Pi CT\ d$ ля $\Im\Pi\ KC\ u$ з $\mathfrak U^K\ om\ B\Pi\ x_1,\dots,x_n.$

Следствие 2. $\mathit{Cucmema}\ \tau_{\infty}$ является $\mathit{\PiCT}\ \partial\mathit{л}\mathit{s}\ \mathit{Э}\mathit{\Pi}\ \mathit{KC}\ \mathit{us}\ \mathit{U}^{K}.$

Докажем теперь отсутствие КПСТ в классе $\mathfrak{U}^{\mathrm{K}}$. Для КС Σ от БП x_1,\ldots,x_n и набора $\alpha,\ \alpha\in B^n,$ определим величину

$$\Theta(\Sigma, \alpha) = |E(\Sigma|_{\alpha})| - |V(\Sigma|_{\alpha})| + |c(\Sigma|_{\alpha})|,$$

которая (см. ??) задает цикломатическое число графа $\Sigma|_{\alpha}$.

Положим, далее,

$$\Theta\left(\Sigma\right) = \sum_{\alpha \in B^n} \Theta\left(\Sigma, \alpha\right).$$

Лемма 4.2. Если $\Sigma'(x_1,\ldots,x_n) \underset{\{t_1-t_5\}}{\Longrightarrow} \Sigma''(x_1,\ldots,x_n)$, то $\Theta(\Sigma') = \Theta(\Sigma'')$, а если $\Sigma' \underset{\tau_k}{\Longrightarrow} \Sigma''$, где k < n, то $\Theta(\Sigma') - \Theta(\Sigma'')$ делится на 2^{n-k} .

Доказательство. Докажем, что $\Theta(\Sigma') = \Theta(\Sigma'')$, если $\Sigma' \xrightarrow{} \Sigma''$ для любого i из отрезка [1,5]. Действительно, пусть КС Σ'' получается из КС Σ' заменой ее подсхемы $\widehat{\Sigma}'_i$, которая имеет вид левой части тождества t_i , на соответствующую ей правую часть $\widehat{\Sigma}''_i$ этого тождества. Нетрудно проверить, что для любого $i, i \in [1,5]$, число линейно независимых циклов графов $\Sigma|_{\alpha'}$ и $\Sigma|_{\alpha''}$ одинаково при всех $\alpha, \alpha \in B^n$, и, следовательно, $\Theta(\Sigma') = \Theta(\Sigma'')$.

следовательно, $\Theta\left(\Sigma'\right) = \Theta\left(\Sigma''\right)$. Пусть теперь $\Sigma' \rightrightarrows \Sigma''$, причем k < n. Если КС Σ' содержит в качестве подсхемы цикл из k контактов с одним полюсом, то КС Σ'' содержит вместо него один лишь полюс. Рассмотрим цикломатическое число сети $\Sigma'|_{\alpha}$ для различных $\alpha, \alpha \in B^n$. Если цикл указанного вида в КС Σ' содержит контакты, помеченные различными буквами одной и той же БП, то, очевидно, для любого $\alpha, \alpha \in B^n$, $\Theta\left(\Sigma'\right) - \Theta\left(\Sigma''\right) = 0$. В противном случае, пусть x_{j_1}, \ldots, x_{j_m} все различные БП, встречающиеся среди пометок указанного цикла, причем $m \leqslant k$. Заметим, что если цикл проводит на наборе $\alpha, \alpha \in B^n$, то он проводит и на всех 2^{n-m} наборах, в которых значения переменных с индексами j_1, \ldots, j_m совпадают со значениями соответствующих переменных набора α . Таким образом, разность

$$\Theta\left(\Sigma'\right) - \Theta\left(\Sigma''\right) = \sum_{\alpha = (\alpha_1, \dots, \alpha_n)} \left(\Theta\left(\Sigma'|_{\alpha}\right) - \Theta\left(\Sigma''|_{\alpha}\right)\right)$$

делится на 2^{n-m} и, следовательно, делится на 2^{n-k} Лемма доказана.

Теорема 4.2. В классе \mathcal{U}^K не существует конечной полной системы тождеств.

Доказательство. Проведем доказательство от противного: пусть τ — КПСТ для ЭП КС $\mathfrak{U}^{\mathrm{K}}$, и пусть n — максимальное число БП, встречающихся в тождествах системы τ . Тогда $\tau_n \Rightarrow \tau$ и τ_n — КПСТ для $\mathfrak{U}^{\mathrm{K}}$. Докажем, что $\tau_n \not \Rightarrow t_6^{(n+1)}$. Для этого рассмотрим КС Σ' , состоящую из простого цикла длины (n+1), содержащего контакты с пометками $x_i, i \in [1,n+1]$, и имеющую единственный полюс с пометкой 1, которая является левой частью тождества $t_6^{(n+1)}$. Очевидно, что ей эквивалентна КС Σ'' , содержащая изолированный полюс 1, которая является правой частью тождества $t_6^{(n+1)}$. Если $\tau_n \Rightarrow t_6^{(n+1)}$, то $\Sigma' \Rightarrow \Sigma''$. Согласно данным выше определениям, $\Theta(\Sigma') = 1$, $\Theta(\Sigma'') = 0$ и разность $\Theta(\Sigma') - \Theta(\Sigma'') = 1$ не делится на 2, что противоречит утверждению леммы 4.2. Таким образом, тождество $t_6^{(n+1)}$ не выводится из системы τ_n , а значит, и из системы τ . Отсюда следует, что τ не может являться КПСТ для ЭП КС из класса $\mathfrak{U}^{\mathrm{K}}$.

Теорема доказана.

- [1] Алексеев В. Б. Введение в теорию сложности алгоритмов. М.: Издательский отдел ф-та ВМиК МГУ, 2002.
- [2] Алексеев В. Б., Вороненко А. А., Ложкин С. А., Романов Д. С., Сапоженко А. А., Селезнева С. Н. Задачи по курсу «Основы кибернетики». Издательский отдел ф-та ВМиК МГУ, 2002.
- [3] *Алексеев В. Б., Лоэккин С. А.* Элементы теории графов, схем и автоматов. М.: Издательский отдел ф-та ВМиК МГУ, 2000.
- [4] Боровков A. A. Курс теории вероятностей. М.: Наука, 1976.
- [5] *Гаврилов Г. П., Сапоэсенко А. А.* Задачи и упражнения по дискретной математике. 3-е изд., перераб. М.: ФИЗМАТЛИТ, 2004.
- [6] Дискретная математика и математические вопросы кибернетики, под редакцией *С. В. Яблонского* и *О. Б. Лупанова*. Т. 1. М.: Наука, 1974.
- [7] Евдокимов А. А. О максимальной длине цепи в единичном <math>n-мерном кубе // Матем. заметки. 1969. 6. №3. С. 309–319.
- [8] Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов. М.: Наука, 1977.

[9] *Журавлев Ю. И.* Локальные алгоритмы вычисления информации // Кибернетика. №1. 1965. С. 12–19.

- [10] Журавлев Ю. И. Теоретико-множественные методы в алгебре логики // Проблемы кибернетики. Вып. 8. М.: Физматгиз, 1962. С. 5-44.
- [11] *Кузъмин В. А.* Оценки сложности реализации функций алгебры логики простейшими видами бинарных программ // Сб. «Методы дискретного анализа в теории кодов и схем». Новосибирск, 1976. Вып. 29. С. 11–39
- [12] *Лоэскин С. А.* Оценки высокой степени точности для сложности управляющих систем из некоторых классов // Математические вопросы кибернетики. Вып. 6. М.: Наука, 1996. С. 189–214.
- [13] *Ложкин С. А.* Структурное моделирование и декомпозиция для некоторых классов схем. М.: Издательский отдел ф-та ВМиК МГУ, 2001.
- [14] Лупанов О. Б. Асимптотические оценки сложности управляющих систем. М.: Изд-во МГУ, 1984.
- [15] Лупанов О. Б. О сложности реализации функций алгебры логики релейно-контактными схемами // Проблемы кибернетики. Вып. 11. М.: Наука, 1964. С. 25–48.
- [16] *Лупанов О. Б.* О сложности реализации функций алгебры логики формулами // Проблемы кибернетики. Вып. 3. М.: Физматгиз, 1960. С. 61–80.
- [17] Лупанов О. Б. Об одном подходе к синтезу управляющих систем принципе локального кодирования.

// Проблемы кибернетики. Вып. 14. М.: Наука, 1965. C. 31–110.

- [18] *Мурога С.* Системы проектирования сверхбольших интегральных схем. М.: Мир, 1985.
- [19] Нечипорук Э. И. О топологических принципах самокорректирования // Проблемы кибернетики. Вып. 21. М.: Наука, 1969. С. 5–102.
- [20] *Нигматуллин Р. Г.* Сложность булевых функций. М.: Наука, 1991.
- [21] *Поваров Г. Н.* Метод синтеза вычислительных и управляющих контактных схем // Автоматика и телемеханика. 1957. Т. 18. №2. С. 145–162.
- [22] *Сапоженко А. А.* Дизъюнктивные нормальные формы. М.: Изд-во МГУ, 1975.
- [23] Сапоженко А. А. Некоторые вопросы сложности алгоритмов. Издательский отдел ф-та ВМиК МГУ, 2001.
- [24] Сапоженко А. А., Ложкин С. А. Методы логического проектирования и оценки сложности схем на дополняющих МОП-транзисторах // Микроэлектроника. 1983. Т. 12. №1. С. 42–47.
- [25] Φ ихтенгольц Γ . M. Основы математического анализа, том 1. М.: Наука, 1968.
- [26] Φ ихтенгольц Г. М. Основы математического анализа, том 2. М.: Наука, 1964.
- [27] Чегис И. А., Яблонский С. В. Логические способы контроля работы электрических схем // Труды МИ АН СССР. Т. 51. М.: Изд-во АН СССР, 1958. С. 270—360.

[28] Яблонский С. В. Введение в дискретную математику. 2-е изд., перераб. и доп. М.: Наука, 1986.

- [29] *Яблонский С. В.* Надежность управляющих систем. М.: Изд-во МГУ, 1991.
- [30] Яблонский С. В. Некоторые вопросы надежности и контроля управляющих систем // Математические вопросы кибернетики. Вып. 1. М.: Наука, 1988. С. 5–25.
- [31] Яблонский С. В. Элементы математической кибернетики. М.: Высшая школа, 2007.
- [32] Cardot C. Quelques resultats sur l'application de l'algèbre de Boole à la synthèse des circuits a relais // Ann. Telecommunications. 1952. V.7. №2. P. 75–84.
- [33] Shannon C. E. The syntesis of two-terminal switching circuits // Bell Syst. Techn. J. 1949. V. 28. №1. P. 59–98 (Русский перевод: Шеннон К. Работы по теории информации и кибернетике. М.: ИЛ, 1963. С. 59–101).
- [34] Wegener I. Branching programs and binary decision diagrams. SIAM Publishers, 2000.