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Преобразователь EXM
Каждой ctl-формуле ϕ для предзаданной модели Крипке M можно
сопоставить предикат, задающий множество всех состояний M, в
которых выполнена ϕ: SatM(ϕ) = Sat(M, ϕ)

Этот предикат можно представить символьно: ΦM
ϕ = ΦSatM(ϕ)

Для заданной модели Крипке комбинация EX может расцениваться как
преобразователь таких предикатов:

EXM(SatM(ϕ)) = SatM(EXϕ)

Согласно устройству процедуры PEX, преобразователь EXM можно
задать так:

EXM(Z ) = Pre(M,Z )

Преобразователь f, задающийся равенством f(Z ) = E для
произвольного предиката Z и выражения E (вообще говоря зависящего
от Z), можно представить записью λZ .E : это запись функции,
принимающей на вход значение Z и возвращающей значение выражения
E для этого значения
Тогда, в частности, EXM = λZ .Pre(M,Z ), и символьное представление
этого преобразователя можно устроить так: EXM = λZ .Fpre(M,Z )
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Преобразователь EXM

Лемма. Для любых модели Крипке M и предиката C
преобразователь f = λZ .C ∩ EXM(Z ) является монотонным

Доказательство.

Рассмотрим предикаты A и B, такие что A ⊆ B, и покажем, что
f(A) ⊆ f(B), то есть что для любого состояния s ∈ f(A) верно s ∈ f(B)

Так как s ∈ f(A), верно s ∈ C и s ∈ EXM(A)

s ∈ EXM(A) означает, что существует состояние s ′, такое что s ′ ∈ A и
s → s ′

Так как A ⊆ B, верно и s ′ ∈ B

Значит, s ∈ EXM(B), и следовательно, s ∈ C ∩ EXM(B) = f(B) H
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Преобразователь EGM

Лемма. Для любых модели Крипке M и ctl-формулы ϕ предикат
SatM(EGϕ) является неподвижной точкой преобразователя
λZ .SatM(ϕ) ∩ EXM(Z )

Доказательство.

По определению неподвижной точки, достаточно показать равенство
SatM(EGϕ) = SatM(ϕ) ∩ EXM(SatM(EGϕ))

По определениям SatM и EXM , достаточно показать равносильность
M, s |= EGϕ ⇔ M, s |= ϕ и M, s |= EXEGϕ

По семантике ctl-формул,
I «M, s |= EGϕ» ⇔ в M из s исходит хотя бы один бесконечный путь

s1, s2, . . . , такой что M, s1 |= ϕ, M, s2 |= ϕ, ...
I «M, s |= ϕ и M, s |= EXEGϕ» ⇔ M, s |= ϕ и в M из s исходит хотя

бы один бесконечный путь s1, s2, . . . , такой что M, s2 |= ϕ,
M, s3 |= ϕ, ...

Легко видеть, что последние два пункта равносильны H
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Преобразователь EGM

Лемма. Для любых конечной модели Крипке M и ctl-формулы ϕ

предикат SatM(EGϕ) является наибольшей неподвижной точкой
преобразователя λZ .SatM(ϕ) ∩ EXM(Z )

Доказательство. Можете попробовать самостоятельно

Из последней леммы естественно вытекает альтернативный (по
сравнению с базовым алгоритмом) вариант процедуры PEG(M, ϕ):
I Вычислить X = Sat(M, ϕ) = P′sat(M, ϕ)

I Вернуть предикат Pgfp(M, λZ .X ∩ EXM(Z ))

Эту процедуру несложно представить символьно (FEG(M, ϕ)):
I Вычислить ΦX = F′sat(M, ϕ)

I Вернуть представление Fgfp(M, λZ .ΦX & EXM(Z ))

Математические методы верификации схем и программ, Блок 28 5/12



Преобразователь EUM

Лемма. Для любых модели Крипке M и ctl-формул ϕ и ψ
предикат SatM(E(ϕUψ)) является неподвижной точкой
преобразователя λZ .SatM(ψ) ∪ (SatM(ϕ) ∩ EXM(Z ))

Доказательство.

По определению неподвижной точки, достаточно показать равенство
SatM(E(ϕUψ)) = SatM(ψ) ∪ (SatM(ϕ) ∩ EXM(SatM(E(ϕUψ))))

По определениям SatM и EXM , достаточно показать равносильность
M, s |= E(ϕUψ) ⇔ M, s |= ψ или (M, s |= ϕ и M, s |= EXE(ϕUψ))

Аналогично доказательству такой же леммы для EGϕ, легко видеть,
что эта равносильность действительно справедлива H

Лемма. Для любых конечной модели Крипке M и ctl-формул ϕ и
ψ предикат SatM(E(ϕUψ)) является наименьшей неподвижной
точкой преобразователя λZ .SatM(ψ) ∪ (SatM(ϕ) ∩ EXM(Z ))

Доказательство. Можете попробовать самостоятельно
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Преобразователь EUM

Из последней леммы естественно вытекает альтернативный (по
сравнению с базовым алгоритмом) вариант процедуры PEU(M, ϕ, ψ):
I Вычислить X = Sat(M, ϕ) = P′sat(M, ϕ) и

Y = Sat ′(m, ψ) = P′sat(M, ψ)

I Вернуть предикат Plfp(M, λZ .Y ∪ (X ∩ EXM(Z )))

Эту процедуру несложно представить символьно (FEU(M, ϕ, ψ)):
I Вычислить ΦX = F′sat(M, ϕ) и ΦY = F′sat(M, ψ)

I Вернуть представление Flfp(M, λZ .ΦY ∨ (ΦX & EXM(Z )))
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Символьный алгоритм: пример

M:
ps4

p
s1

q
s0

p
s3

p, q
s2

ϕ = EXp &¬E(qUEGp)

Для начала проиллюстрируем модифицированный базовый алгоритм

Начало — такое же, как в исходном базовом алгоритме:

SatM(p) = {s1, s2, s3, s4}

SatM(EXp) = Pre(Sat(M, p)) = {s0, s2, s3, s4}

SatM(q) = {s0, s2}
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Символьный алгоритм: пример
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ϕ = EXp &¬E(qUEGp)

Преобразователь для EGp:

f1 = λZ .SatM(p) ∩ EXM(Z ) = λZ .{s1, s2, s3, s4} ∩ Pre(M,Z )

Вычисление наибольшей неподвижной точки f1:
I X0 = S = {s0, s1, s2, s3, s4}
I X1 = f1(X0) = {s1, s2, s3, s4} ∩ Pre(M,S) = {s1, s2, s3, s4} ∩ S =
{s1, s2, s3, s4}

I X2 = f1(X1) = {s1, s2, s3, s4} ∩ {s0, s2, s3, s4} = {s2, s3, s4}
I X3 = f1(X2) = {s1, s2, s3, s4} ∩ {s0, s2, s3, s4} = {s2, s3, s4} = X2

I SatM(EGp) = νZ .f1(Z ) = X3 = {s2, s3, s4}
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Символьный алгоритм: пример

M:
ps4
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ϕ = EXp &¬E(qUEGp)

Преобразователь для E(qUEGp):

f2 = λZ .SatM(EGp) ∪ (SatM(q) ∩ EXM(Z )) =
λZ .{s2, s3, s4} ∪ ({s0, s2} ∩ EXM(Z ))

Вычисление наименьшей неподвижной точки f2:
I X0 = ∅
I X1 = f2(X0) = {s2, s3, s4} ∪ ({s0, s2} ∩ ∅) = {s2, s3, s4}
I X2 = f2(X1) = {s2, s3, s4} ∪ ({s0, s2} ∩ {s0, s2, s3, s4}) = {s0, s2, s3, s4}
I X3 = f2(X2) = {s2, s3, s4} ∪ ({s0, s2} ∩ {s0, s1, s2, s3, s4}) =
{s0, s2, s3, s4} = X2

I SatM(E(qUEGp)) = µZ .f2(Z ) = {s0, s2, s3, s4}
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Символьный алгоритм: пример

M:
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ϕ = EXp &¬E(qUEGp)

Конец — такой же, как в исходном базовом алгоритме

SatM(¬E(qUEGp)) = S \ SatM(E(qUEGp)) = {s1}

SatM(ϕ) = SatM(EXp) ∩ SatM(¬E(qUEGp)) = ∅

Так как {s4} 6⊆ ∅, можно заключить, что M 6|= ϕ
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Символьный алгоритм: пример

M:
ps4
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ϕ = EXp &¬E(qUEGp)

Символьное представление модели M, основанное на формулах, для
трёх разрядов, отвечающих переменным x0, x1, x2, с естественным
кодированием состояний согласно номерам выше:
I ΦS = x2→¬x1 &¬x0

I ΦS0 = x2 &¬x1 &¬x0

I Φ→ =
ΦS &¬x ′2 &((x1↔ x ′1) &(x0 ⊕ x ′0) ∨ ¬x2 &¬x1 &¬x0 &¬x ′1 & x ′1 &¬x ′0)

I Φp = ΦS &(x2 ∨ x1 ∨ x0)

I Φq = ¬x2 &¬x0

А переписать результаты работы модифицированного базового алго-
ритма в символьном виде можете попробовать сами
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