
Математические методы
верификации схем и программ

mk.cs.msu.ru → Лекционные курсы
→ Математические методы верификации схем и программ

Блок О1

Обзор средства Spin

Лектор:
Подымов Владислав Васильевич

E-mail:
valdus@yandex.ru

ВМК МГУ, 2024/2025, осенний семестр
Математические методы верификации схем и программ, Блок О1 1/58

https://mk.cs.msu.ru

Рассматриваемая ЗАДАЧА
Дано: неформальное описание
I системы и
I требований к ней

Требуется проверить, удовлетворяет ли система требованиям

Система Требования

Этой ЗАДАЧЕ посвящены обязательные домашние задания,
в каждом из которых выбираются
I программное средство проверки моделей, и в соответствии с ним —
I вид моделей для формализации систем,
I язык формальных спецификаций моделей и
I конкретные представления моделей и спецификаций

на языке средства

Математические методы верификации схем и программ, Блок О1 2/58

Рассматриваемая ЗАДАЧА

Система Требования

Формализация

Модель Крипке M Ltl-формула ϕ

Средство Spin (для краткости — ù) будем обсуждать относительно

I моделей Крипке как моделей рассматриваемых систем и

I LTL как языка формальных спецификаций

Математические методы верификации схем и программ, Блок О1 3/58

Рассматриваемая ЗАДАЧА

Система Требования

Формализация

Модель Крипке M Ltl-формула ϕ

Основная трудность всех обязательных домашних заданий — это
этап формализации, приближенный к «боевым условиям»
(хотя и для «игрушечных» систем):

I Даются неформальные описания системы и требований

I Требуется придумать и реализовать
модель и формальную спецификацию
и убедить в их правильности сначала себя, и затем «заказчика»
I Здесь «заказчик» — это я, и

если всё решено разумно и верно, то убедить меня будет нетрудно

Математические методы верификации схем и программ, Блок О1 4/58

Рассматриваемая ЗАДАЧА
Модель Крипке M Ltl-формула ϕ

Алгоритм проверки моделей

ответ на вопрос «M |= ϕ ?»

Алгоритмы верификации, используемые на практике
в соответствующих программных средствах,
как правило, так или иначе основаны на автоматном алгоритме

В ù используются
I автоматный алгоритм
I с построением автомата Бюхи, исследуемого на пустоту,

«на лету» при помощи комбинации обходов в глубину,
I и эвристиками для оптимизации автомата и его обхода

Математические методы верификации схем и программ, Блок О1 5/58

Рассматриваемая ЗАДАЧА
Существует немало программных средств для проверки выполнимости
ltl-формул на моделях Крипке или родственных видах моделей:

BANDERA CADENCE SMV LTSA LTSmin

NuSMV PAT ProB SAL

SATMC Spin Spot . . .

Дисклеймер: это просто несколько средств, выбранных как целенаправленно,
так и наугад с соответствующей страницы в Википедии несколько лет назад

Подробно остановимся только на ù, так как:
I у этого средства открытый исходный код,

и его можно свободно использовать для академических целей
I это средство, хотя и старое, но достаточно популярно, особенно

как отправная точка для обучения методу проверки моделей на
практике

I его язык (Promela: Process meta language; для краткости — ß)
достаточно прост для понимания

Математические методы верификации схем и программ, Блок О1 6/58

ù: Hello, World!

Начнём с простого примера, чтобы на нём быстро и просто обсудить,
I как связаны ß и модели Крипке с ltl-формулами и
I как использовать ù для проверки моделей

Некоторые конструкции ß похожи на аналогичные конструкции в C/C++
или даже полностью совпадают с ними
(вплоть до возможности встраивания кода на C в модель на ß)

Математические методы верификации схем и программ, Блок О1 7/58

ß и модели Крипке: состояния

В строке 1 объявлена глобальная булева переменная b

В этой переменной могут храниться два значения:
0 (синоним false) и 1 (синоним true)

Эта переменная инициализируется значением 0

Математические методы верификации схем и программ, Блок О1 8/58

ß и модели Крипке: состояния

P в строке 3 — это тип процесса
(что-то вроде класса/функции в C/C++)

Объявление типа процесса устроено так:
proctype <тип_процесса>(<параметры>) {<тело>}

Математические методы верификации схем и программ, Блок О1 9/58

ß и модели Крипке: состояния

На каждом шаге выполнения
в системе содержится некоторое количество процессов

Процесс — это, по сути, императивная программа:
имеет своё состояние вычисления, складывающееся из
состояния управления (набор команд в остатке выполнения) и
состояния данных (значений локальных переменных процесса)

Математические методы верификации схем и программ, Блок О1 10/58

ß и модели Крипке: состояния

Глобальные переменные модели — это общие переменные,
к которым имеют доступ все процессы

Состояние модели ß — это совокупность
значений глобальных переменных и состояний вычисления процессов

Математические методы верификации схем и программ, Блок О1 11/58

ß и модели Крипке: состояния

Ключевое слово active перед словом proctype означает, что
в начале выполнения системы (в начальном состоянии модели Крипке)
запущен один процесс этого типа

Состояние управления процесса при запуске — это первая команда тела

Математические методы верификации схем и программ, Блок О1 12/58

ß и модели Крипке: состояния

Процесс типа P в примере содержит ровно одно состояние управления
(это объяснится позже)

С учётом этого в модели Крипке, соответствующей системе выше,
содержится ровно два состояния, и ровно одно из них начальное:

b/0 b/1

(состояния управления здесь и далее опущены для экономии места)

Математические методы верификации схем и программ, Блок О1 13/58

ß и модели Крипке: переходы

Если в системе содержится ровно один процесс, то
он выполняется естественно как императивная программа

Например, процесс в примере
I содержит бесконечный безусловный цикл (do-od)
I на каждом витке цикла переключает значение переменной b
I выполняет один виток цикла за один переход

(это объяснится позже)

Математические методы верификации схем и программ, Блок О1 14/58

ß и модели Крипке: переходы

Состояния и переходы модели Крипке, соответствующей системе выше:

b/0 b/1

Математические методы верификации схем и программ, Блок О1 15/58

ß и ltl-формулы

Формальная спецификация системы в ß
записывается в том же файле (тексте), что и сама система
Ltl-спецификации в ß пишутся так:
I Для именованных формул:

ltl <имя_формулы> { <ltl-формула> }
I Для безымянных формул:

ltl { <ltl-формула> }
I Безымянную формулу рекомендуется использовать

в том и только том случае, если это единственная формула в тексте
Математические методы верификации схем и программ, Блок О1 16/58

ß и ltl-формулы

БНФ ltl-формул (ϕ) в ß: ((ϕ↔ψ) = ((ϕ→ψ)&(ψ→ϕ)))
ϕ::=<булево_выражение> | (ϕ&&ϕ) | (ϕ||ϕ) | (!ϕ) |

(ϕ->ϕ) | (ϕ implies ϕ) | (ϕ<->ϕ) | (ϕ equivalent ϕ)
([]ϕ) | (always ϕ) | (<>ϕ) | (eventually ϕ) |
(ϕUϕ) | (ϕ until ϕ)

В лекциях В ß В лекциях В ß
→ ->, implies ↔ <->, equivalent
G [], always F <>, eventually
U U, until X отсутствует(!)

Математические методы верификации схем и программ, Блок О1 17/58

ù: использование
Общая «низкоуровневая» схема верификации при помощи ù:

Текст модели на языке ß

Компиляция утилитой spin

Текст модели на языке C

Компиляция утилитой gcc или аналогичной

Исполняемый файл верификатора модели

Запуск исполняемого файла

Вывод в консоль

Чтобы не тратить много времени на набор нужных команд с нужными
флагами в консоли, рекомендуется использовать оболочку, в которой
эти команды выполняются в нужном порядке по нажатию кнопки

Математические методы верификации схем и программ, Блок О1 18/58

ù: использование
Оболочка jspin (рекомендуется)

Это оболочка от сторонних разработчиков, написанная на java

Для запуска оболочки следует запустить основной архив java
jspin.jar согласно возможностям ОС

Например, в консоли Linux:

Математические методы верификации схем и программ, Блок О1 19/58

ù: использование
Оболочка jspin (рекомендуется)
После запуска в папке jar-архива появится файл настроек config.cfg
Для не-Windows следует его отредактировать
(как минимум подчёркнутые строки ниже) и перезапустить оболочку

Математические методы верификации схем и программ, Блок О1 20/58

ù: использование
Оболочка ispin (тоже можно)

Это оболочка от разработчиков ù, написанная на tcl/tk

Эта оболочка такая же старая, как и сам ù,
но в целом выполняет свою задачу

Для запуска оболочки требуется сделать так,
чтобы в консоли была команда «spin», и запустить главный tcl-файл:

Математические методы верификации схем и программ, Блок О1 21/58

ù: использование
Оболочка ispin (тоже можно)

Вкладка обзора кода (Edit/View):

Математические методы верификации схем и программ, Блок О1 22/58

ù: использование
Оболочка ispin (тоже можно)

Вкладка верификации (Verification):

Математические методы верификации схем и программ, Блок О1 23/58

ù: использование
Консоль (не рекомендуется, но и не запрещается)

Далее приводятся команды и результаты для консоли Linux

Компиляция утилитами spin и gcc:

Математические методы верификации схем и программ, Блок О1 24/58

ù: использование
Консоль (не рекомендуется, но и не запрещается)
Запук верификатора и вывод, отвечающий выполнению формулы:

Математические методы верификации схем и программ, Блок О1 25/58

ù: использование
Консоль (не рекомендуется, но и не запрещается)

Запуск верификатра и вывод, отвечающий невыполнению формулы:

Математические методы верификации схем и программ, Блок О1 26/58

ß: «простые» типы данных

Некоторые типы данных ß похожи на типы данных C:
I bool: 0 (false), 1 (true)
I bit: синоним типа bool
I byte: целые чи́сла от 0 до 255
I short: целые чи́сла от −215 − 1 до 215 − 1
I int: целые чи́сла от −231 − 1 до 231 − 1
I unsigned: неотрицательные целые числа

с заднным числом разрядов в двоичной записи:
I unsigned x : N; — объявление переменной x,

хранящей N-разрядное целое неотрицательное число

Значение по умолчанию для всех этих типов — 0

Инициализация значением не по умолчанию устроена так же, как и в C:
<тип> <переменная> = <значение>;

Математические методы верификации схем и программ, Блок О1 27/58

ß: «непростые» типы данных
Одномерные массивы устроены так же, как и в C,
если не считать особенностей инициализации:
I byte x[4]; — объявление массива x из 4-х элементов типа byte,

и все элементы инициализируется значением 0
I byte x[4] = 1; — то же самое,

но все элементы инициализируются значением 1
Структуры объявляются примерно как в C,
но с ключевым словом typedef вместо struct:
I typedef T {bool a; int b;}; — объявление структуры T

с булевым полем a и полем b типа int
I typedef onedim {bool a[4];}; — многомерный массив

можно объявить как массив структур,
содержащих массивы меньшей размерности

Доступ к элементам массивов и структур устроен так же, как и в C:
onedim z[3];
...
z[0].a[2] = true;

Математические методы верификации схем и программ, Блок О1 28/58

ß: «непростые» типы данных
mtype — тип, похожий на enum в C, но с непривычными особенностями:
I mtype — это имя типа (как bool и int)
I определение перечисляемых элементов этого типа выглядит так:

mtype = {name_1, ..., name_N};
I все такие определения «сливаются» в одно

содержащее совокупность всех определённых элементов
I значение переменной типа mtype по умолчанию — 0

и не совпадает ни с одним из перечисляемых значений
Пояснение: «mtype» = «message type»; по задумке, это конечный набор типов сообщений,
которыми могут обмениваться процессы (об этом будет говориться позже);
но можно его использовать и как обычное перечисление

Пример:
mtype = {A, B, C};
mtype = {D, E, F};
mtype x = B;
...
x = D;

Математические методы верификации схем и программ, Блок О1 29/58

ß: композиция процессов
В каждом состоянии системы каждая
команда находится в одном из двух режимов:
I активна: может быть выполнена
I неактивна (заблокирована): не может быть выполнена

Все процессы также делятся на активные и неактивные
(заблокированные) относительно заданного состояния системы:
процесс активен ⇔
активна команда, которая должна быть выполнена в нём следующей

Выполнение следующей команды активного процесса
(один шаг согласно операционной семантике)
отвечает одному переходу в модели Крипке

Некоторые команды могут выполниться несколькими способами,
и тогда каждому способу выполнения отвечает свой переход в модели,
и выполнению команды — выбор и выполнение одного из переходов

Математические методы верификации схем и программ, Блок О1 30/58

ß: композиция процессов
Композиция процессов в ß устроена согласно семантике чередования
Один шаг выполнения системы устроен так:
I Недетерминированно выбирается активный процесс
I В выбранном процессе недетерминированно выбирается

способ выполнения следующей команды
I Выполняется переход, отвечающий

выбранному способу выполнения команды

Таким образом, переходы системы из заданного состояния отвечают
всем возможностям выбора активного процесса
и выполнения его команды
Если в состоянии нет ни одного активного процесса,
то считается, что существует переход из этого состояния в него же1

Иногда, когда об этом говорится явно, могут
одновременно (синхронно) выполняться команды нескольких процессов,
то есть в ß содержатся некоторые средства синхронизации процессов
1 Дела обстоят чуть более нетривиально, но это лучше обсудить на семинаре

Математические методы верификации схем и программ, Блок О1 31/58

ß: композиция процессов

Модель Крипке, отвечающая этой системе:

b1/0, b2/0

b1/0, b2/1

b1/1, b2/0

b1/1, b2/1

Математические методы верификации схем и программ, Блок О1 32/58

ß: активация нескольких процессов одного типа

Чтобы добавить N процессов одного типа в начальное состояние,
достаточно дописать «[N]» после ключевого слова «active»

Модель Крипке, отвечающая системе выше:

b1/0

b1/1

b1/1

b1/0

Математические методы верификации схем и программ, Блок О1 33/58

ß: тело процесса

Тело процесса — это последовательность команд
с разделителем «;» (или синонимом «->»)

Как и в C, перед каждой командой может быть дописана метка:
<метка> : <команда>

Основной набор команд:
I присваивания
I условные команды (их аналогов в C нет)
I ветвления
I циклы
I goto

Математические методы верификации схем и программ, Блок О1 34/58

ß: тело процесса, присваивания

Присваивание выглядит так же, как и в C с ограниченным синтаксисом:

<переменная>++
<переменная>--
<переменная> = <выражение>

Присваивание всегда активно

Шаг выполнения присваивания S определяется естественно
и детерминированно:
I Значение <переменной> изменяется как написано в S

(увеличивается или уменьшается на 1;
перезаписывается значением <выражения>)

I Управление передаётся команде, следующей за S

Математические методы верификации схем и программ, Блок О1 35/58

ß: выражения

Выражение составляется из переменных, констант
(целые числа, true, false, перечисляемые имена)
и операций, аналогичных операциям в C:

I арифметические: +, -, *, /

I побитовые: <<, >>, ~, &, ^, |

I сравнения: <, >, <=, >=, ==, !=

I логические: !, &&, ||

I тернарный оператор: ->: («->» вместо «?»)

I индексирование: []

I доступ к полю: .

Математические методы верификации схем и программ, Блок О1 36/58

ß: тело процесса, условные команды

Условная команда — это команда,
представляющая собой булево выражение

Условная команда активна ⇔ значение этого выражения есть true

Шаг выполнения активной условной команды S
детерминирован и устроен так:
I Значения всех переменных не изменяются
I Управление передаётся команде, следующей за S

Математические методы верификации схем и программ, Блок О1 37/58

ß: тело процесса, ветвление
if
:: <альтернатива>
...
:: <альтернатива>
fi

Альтернатива ветвления — это непустая последовательность команд,
записанная после «::»

Голова альтернативы — это первая команда последовательности,
а хвост — всё остальное

Альтернатива активна ⇔ активна её голова

Ветвление активно ⇔ активна хотя бы одна из его альтернатив

Шаг выполнения активного ветвления:
I недетерминированно выбирается одна из его активных альтернатив
I ветвление заменяется на выбранную альтернативу
I выполняется один шаг головы альтернативы

Математические методы верификации схем и программ, Блок О1 38/58

ß: тело процесса, ветвление
if
:: <альтернатива>
...
:: <альтернатива>
fi

else — это особая условная команда:
I её можно использовать только в голове альтернативы,

и не более чем одной для ветвления
I эта команда активна ⇔

остальные альтернативы ветвления заблокированы

Чтобы повысить читаемость кода, иногда может быть удобно
разделять голову и хвост альтернативы записью «->»вместо «;»

Математические методы верификации схем и программ, Блок О1 39/58

ß: тело процесса, ветвление

Модель Крипке, отвечающая этой системе:

i/0 i/1

i/2

i/0 i/1

i/0

i/2

i/1

i/2

i/2

i/0

Математические методы верификации схем и программ, Блок О1 40/58

ß: тело процесса, цикл
do
:: <альтернатива>
...
:: <альтернатива>
od

Цикл в ß во многом похож на ветвление

Единственное отличие:
когда выполнены все команды выбранной альтернативы,
управление передаётся не следующей команде, а обратно циклу

Ключевое слово break — это всегда активная команда,
шаг выполнения которой не изменяет значения переменных
и передаёт управление команде,
следующей за ближайшим объемлющим циклом

Математические методы верификации схем и программ, Блок О1 41/58

ß: тело процесса, цикл

Модель Крипке, отвечающая этой системе:

i/0 i/1

i/2

i/0

i/0 i/1

i/2

Математические методы верификации схем и программ, Блок О1 42/58

ß: тело процесса, команда запуска процесса
Команда запуска предназначена для
добавления процессов в систему по ходу выполнения:

run <тип_процесса>(<аргументы>)

Эта команда всегда активна

Шаг выполнения команды запуска S :
I Запускается и добавляется в систему процесс указанного типа
I Управление передаётся команде, следующей за S

В общем случае в объявлении типа процесса
могут содержаться <параметры> :
I <Параметры> — это список <объявлений> с разделителем «;»
I <объявление> ::= <тип> <список_имён_через_,>

<Параметры> и <аргументы> связаны
так же, как и в C/C++ при передаче по значению
Математические методы верификации схем и программ, Блок О1 43/58

ß: тело процесса, команда запуска процесса

Модель Крипке, отвечающая этой системе:

i/5 i/5 i/5 i/1 i/2

i/1

i/2 i/1

Математические методы верификации схем и программ, Блок О1 44/58

ß: тело процесса, атомарные наборы команд

Иногда фрагмент тела процесса, выполняющийся за несколько шагов,
требуется сделать атомарным: таким, чтобы его выполнение
не могло быть прервано выполнением команд других процессов

Например:

I Если процесс типа P в последнем примере задумывался
для инициализации системы с процессами Q(1) и Q(2),
то выполнение P должно быть атомарным
(не прерываться выполнением процессов Q)

I В протоколах доступа в критическую секцию,
основанных на семафорах, проверка условия и блокировка
должны быть атомарной парой действий

Математические методы верификации схем и программ, Блок О1 45/58

ß: тело процесса, атомарные наборы команд
Объявить <непустую_последовательность_команд> атомарной
можно так:

atomic {<непустая_последовательность_команд>}
Особенности выполнения атомарной последовательности:
I Если

1. последняя выполненная команда
входит в атомарную последовательность s процесса p и

2. следующая команда процесса p активна и тоже входит в s,

то все процессы, кроме p,
блокируются при выборе следующего перехода

I Иначе система выполняется как обычно
Будьте осторожны при использовании atomic: в ù содержится ряд
документированных и недокументированных особенностей трактовки
атомарных последовательностей, в связи с которыми, в числе прочего,
лучше (а) никогда не писать атомарные циклы и (б) иметь в виду, что
последовательность переходов атомарной последовательности может
быть «схлопнута» в один переход с потерей промежуточных состояний
Математические методы верификации схем и программ, Блок О1 46/58

ß: тело процесса, атомарные наборы команд

Модель Крипке, отвечающая этой системе:

i/5 i/5 i/5 i/1 i/2

i/2 i/1

Математические методы верификации схем и программ, Блок О1 47/58

ß: тело процесса, локальные переменные

Локальная переменная процесса объявляется в начале тела,
как и в C (но не в современном C++)

Локальные переменные существуют тогда же, когда существует
содержащий их процесс, и инициализируются при запуске процесса

Объявление локальной переменной — это не команда

Если в системе создаётся и выполняется ровно один процесс типа P, то
обратиться к его локальной переменной x и метке L можно так: P:x, P@L

Эти выражения могут быть использованы, в частности, и в ltl-формуле
соответственно как значение переменной x
и условие «управление процесса находится у метки L»)

(Если в системе создаётся несколько процессов заданного типа,
то внимательно прочитайте документацию,
если хотите обратиться к его локальной переменной или метке)

Математические методы верификации схем и программ, Блок О1 48/58

ß: каналы связи

Каналы связи объявляются там же, где и глобальные переменные,
и делается это так:

chan <канал> = [<ёмкость>] of {<тип>};

Сообщение — это значение заданного <типа> ,
передающееся через канал

Каналы в ß работают по принципу очереди заданной <ёмкости> :
I Можно отправлять (добавлять) сообщения в канал

и принимать (удалять) их из канала
I Если сообщение m1 отправлено раньше m2,

то и принято m1 будет раньше, чем m2
I Если в канале уже содержится столько сообщений, какова его

<ёмкость> , то в канал нельзя отправить ещё одно сообщение

Математические методы верификации схем и программ, Блок О1 49/58

ß: каналы связи

Каналы ёмкости 0 будем называть синхронными,
а остальные — асинхронными

Канал пуст, если не содержит ни одного сообщения, и непуст иначе

Канал полон, если содержит столько сообщений, какова его ёмкость ,
и неполон иначе

Головой канала будем называть хранящееся в нём сообщение,
отправленное раньше всех остальных хранящихся в нём сообщений

Математические методы верификации схем и программ, Блок О1 50/58

ß: каналы связи, асинхронные
chan <канал> = [<ёмкость>] of {<тип>};

(<ёмкость> > 0)

Команда отправки сообщения:
<канал>!<выражение>

Команда активна ⇔ <канал> неполон

Шаг выполнения команды отправки S :
I Вычисляется значение <выражения>
I Вычисленное значение отправляется в канал
I Управление передаётся команде, следующей за S

Математические методы верификации схем и программ, Блок О1 51/58

ß: каналы связи, асинхронные
chan <канал> = [<ёмкость>] of {<тип>};

(<ёмкость> > 0)

Команда чтения сообщения:
<канал>?<переменная>

Команда активна ⇔ <канал> непуст

Шаг выполнения команды чтения S :
I Голова <канала> присваивается в <переменную>

и удаляется из <канала>
I Управление передаётся команде, следующей за S

Математические методы верификации схем и программ, Блок О1 52/58

ß: каналы связи, асинхронные
chan <канал> = [<ёмкость>] of {<тип>};

(<ёмкость> > 0)

Команда приёма сообщения: (выражение отлично от переменной)
<канал>?<выражение>

Команда активна ⇔
<канал> непуст и значение <выражения> равно голове канала

Шаг выполнения команды приёма S :
I Значения переменных не изменяются
I Голова удаляется из канала
I Управление передаётся команде, следующей за S

Математические методы верификации схем и программ, Блок О1 53/58

ß: каналы связи, асинхронные

Модель Крипке, отвечающая это системе:

x/0, c/() x/0, c/(1)

x/0, c/(1, 2)

x/0, c/()

x/0, c/(2)

x/0, c/(2, 3)

x/2, c/()

x/2, c/(3)

Математические методы верификации схем и программ, Блок О1 54/58

ß: каналы связи, синхронные
chan <канал> = [0] of {<тип>};

Команда отправки сообщения:
<канал>!<выражение>

Команда активна ⇔ хотя бы в одном процессе следующей должна
выполниться команда хотя бы одного из следующих видов:
I Команда чтения: <канал>?<переменная>
I Команда приёма: <канал>?<другое_выражение> ,

где <другое_выражение> отлично от переменной
и его значение равно значению <выражения>

Упомянутые комнады чтения и приёма также считаются активными

Математические методы верификации схем и программ, Блок О1 55/58

ß: каналы связи, синхронные
chan <канал> = [0] of {<тип>};

Команда отправки сообщения:
<канал>!<выражение>

Шаг выполнения команды отправки:
I Недетерминированно выбирается одна из

соответствующих активных команд чтения или приёма
I Если выбрана команда чтения, то в указанную в ней переменную

присваивается значение <выражения>
I Если выбрана команда приёма,

то значения переменных не изменяются
I Управление передаётся командам,

следующим за выбранными командами отправки и приёма/чтения

Математические методы верификации схем и программ, Блок О1 56/58

ß: каналы связи, синхронные

Модель Крипке, отвечающая этой системе:

x/0 x/0 x/2

Математические методы верификации схем и программ, Блок О1 57/58

ù: заключительный пример
bool near, dead, hunted;
mtype = {ping};
chan c = [0] of {mtype};

active proctype mosquito() {
do
:: !near && !dead -> near = true; c!ping;
:: near && !hunted && !dead -> near = false;
od

}
active proctype bird() {
do
:: c?ping -> hunted = true;
:: atomic{hunted && near -> dead = true; hunted = false;}
:: hunted && !near -> hunted = false;
od

}

ltl f1 {<>(near && <> dead)}
ltl f2 {[](near -> <> dead)}
ltl f3 {[](hunted -> <> dead)}

Как устроена соответствующая модель Крипке,
и какие из записанных формул выполняются на ней?
Математические методы верификации схем и программ, Блок О1 58/58

