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Abstract

We examine model checking of finite control π-calculus processes against specifications in epistemic predicate
CTL∗. In contrast to branching time settings such as CTL or the modal μ-calculus, the general problem,
even for LTL, is undecidable, essentially because a process can use the environment as unbounded storage.
To circumvent this problem attention is restricted to closed processes for which internal communication
along a given set of known channels is observable. This allows to model processes operating in a suitably
memory-bounded environment. We propose an epistemic predicate full CTL∗ with perfect recall which is
interpreted on the computation trees defined by such finite control π-calculus processes. We demonstrate the
decidability of model-checking by a reduction to the decidability of validity in quantified full propositional
CTL∗.
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Introduction

The π-calculus [12,16] has attracted a lot of interest as a computational model for

distributed systems. Along with most other process algebras the calculus is Turing-

complete in general. Therefore most interesting decision problems about the π-

calculus are undecidable. Algorithmic support mainly applies to its finite-control

subset, where the use of parallel composition is syntactically restricted.

Epistemic extensions of temporal logic have proved highly valuable to express

properties of agents’ evolving knowledge in distributed systems [6]. The π-calculus
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extends the established computational models of epistemic TLs by the possibility to

dynamically create new communication channels. It is of interest to examine how

this feature can be accomodated within the epistemic logic framework.

In this paper we introduce a system of predicate epistemic CTL∗ on the compu-

tation trees of finite control π-calculus processes. Our epistemic operator conforms

with the established view that a fact is known if it is true about all the computations

which the knower finds identical to the actual one. Epistemic TLs refer to agent

identity and ”knowers”. The π-calculus does not have these notions, but epistemic

modalities can be interpreted on π-processes in other ways. Cohen and Dam [4]

interpret the epistemic modality in terms of static equivalence [1], but their work

addresses only static knowledge. Chadha et al [3] suggest a single knower epistemic

TL for π-processes based on a form of trace equivalence. However, it is unclear how

this extends to multiple agents, and why � and � are the only temporal operators

considered. In the experiment reported here we take a different approach: We iden-

tify knowers with their observational power, which is determined by a set of initially

”known”, or tapped, channels. This set grows by adding the channel names which

become communicated along the channels already tapped. We write Kx1,...,xnϕ for

a knower who initially taps x1, . . . , xn knows that ϕ.

Directly extending the known decidability results for the pure branching time

case [5] to just linear time temporal logic LTL, let alone an epistemic extension of

CTL∗ is, however, not possible. Even with the restriction to finite control, exchange

with an external environment renders model-checking of LTL properties unsolvable,

because of the possibility to restrict the environment to behave as storage for a given

Turing machine’s tape, and to state that the machine never terminates. A proof

is sketched at the end of the paper. The undecidability carries over to (epistemic

extensions of) CTL∗. To side-step this complication, we constrain the environment

by shifting attention to closed systems, and assume instead that knowers observe

only internal communication along the set of tapped names, communication along

which is observable. The upshot is that processes can be predicated only when

placed in a fixed finite closing environment.

We prove the decidability of model-checking for our system. We encode the

execution tree of the given π-process as a finite Kripke frame and reduce the model-

checking of any given predicate epistemic CTL∗ formula ϕ on this tree to the satis-

fiability of a translation of ϕ into quantified propositional CTL∗ (QCTL∗) on trees,

which is known to be decidable from [8,9].

1 Background on π-Calculus

Finite control π-terms syntax can be given by the BNF

P ::= 0 | α.P | (νy)P | P + P | if x = y then P else P | p(y, . . . , y)
Q ::= 0 | P | Q|Q | (νx)Q
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Here P,Q are process terms that use (channel) names x, y for communication. A

communication action α is either the input of a name y along a channel named x,

written as x(y), or the output of y along x, written xy, or the neutral, unobserv-

able action τ . Names can be locally scoped by the operator (νy) which prevents

communication along y (but allows y to be passed as a parameter, resulting in so-

called scope extrusion of y, as detailed below). Other operators are action prefixing,

choice (+), conditionals, and parallel composition. A process is a term of the form

Q together with a finite set of definitions of the form p(x1, . . . , xn) = P , for the

recursive invocations in Q and in the definitions’ own righthand sides. Below we

elide the distinction between single process terms P and parallel compositions Q,

and use P to range over both. The set of all names in a π-term P is denoted by

n(P ). The sets of free and bound names are written fn(P ) and bn(P ), respectively,

the binders being (νx) and the input prefix x(y), which binds x, resp. y. Binders in-

duce a relation of structural congruence ≡ on terms, including α-conversion, briefly

detailed below.

We consider only executions

P 0 τ−→C1 P 1 τ−→C2 · · · τ−→Ck P k τ−→Ck+1 · · · (1)

which consist entirely of silent steps, in order to prevent environment interactions, as

explained in the introduction. Transitions are annotated by the sets Ck of internal

communication acts which are possibly observed by knowers. Each P k has the form

(νx1) . . . (νxm)P (2)

where P has no occurrences of ν. This form can be achieved using structural

congruence. Annotations Ck consist of communication acts written in the form

c(x). Annotated transitions are derived by the following axioms and rules, a variant

of the so-called early semantics of the π-calculus, cf. [14]:

τ.P
τ−→∅ P x(y).P

x(z)−→∅ [z/y]P xy.P
xy−→∅ P

P
α−→C P ′ y �∈ n(α) y �∈ n(C)

(νy)P
α−→C (νy)P ′

P
α−→C P ′ y ∈ n(C)

(νy)P
α−→C P ′

P
α−→C P ′

P +Q
α−→C P ′

P1
α−→C P ′

1

if x = x then P1 else P2
α−→C P ′

1

P2
α−→C P ′

2 x �= y

if x = y then P1 else P2
α−→C P ′

2

Q1
α−→C Q′

1 bn(α) ∩ fn(Q1) = ∅
Q1|Q2

α−→C Q′
1|Q2

Q1
xy−→∅ Q

′
1 Q2

x(y)−→∅ Q
′
2

Q1|Q2
τ−→{x(y)} Q′

1|Q′
2

(Congruence)
P

α−→C Q P ≡ P ′ Q ≡ Q′

P ′ α−→C Q′

Symmetric rules for + and parallel composition | are derivable using structural

congruence. Annotations can be either ∅, or singletons. Together with the identities

A|(νx)B ≡ (νx)(A|B), x �∈ fv(A), and p(x1, . . . , xn) ≡ P , given p(x1, . . . , xn) = P ,

the congruence rule allows to avoid the use of bound output action x(y), and a
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dedicated rule about recursive invocations. It is possible to show that P
τ−→{x(y)}

Q according to the above semantics iff P
τ−→ (νx)(νy)Q according to the early

semantics of [14], where one or both of (νx) or (νy) may be absent.

2 Epistemic Predicate Full CTL∗ on Finite Control π-
Processes

Using α-conversion it is easy to write executions such as (1) in such a manner that

names are never reused in the following sense.

Definition 2.1 The extent (lifetime) of name x in an execution E written as in

(1) is the set LE(x)
def
= {k < ω : x ∈ n(P k) ∪ n(Ck)}. E is standard if, for every x,

LE(x) is either ∅, or a finite or infinite interval.

A model for EPCTL∗ is the Kripke frame T (P 0) whose paths correspond to the

standard executions starting from some given π-term P 0. Fix a countably infinite

set D including all names in T (P 0).

Definition 2.2 T (P 0) = 〈W,R〉 where W consists of all the pairs of the form

〈P,C〉 where P is a process term of the form (2) that occurs in some execution

starting from P 0, and C ∈ {∅} ∪ {c(c′) : c, c′ ∈ D}. 〈P ′, C ′〉R〈P ′′, C ′′〉 iff either

P ′ τ−→C′′ P ′′, or P ′ = P ′′, C ′′ = ∅ and P ′ is either deadlocked or terminated.

The condition 〈P,C〉R〈P, ∅〉 for terminated and deadlocked P rules out finite

maximal paths in T .

Given P 0, there exists a finite set P of ν-free process terms such that the

following condition holds: Let {y1, . . . , yN} =
⋃

P∈P
n(P ) and let A be the set

{∅} ∪ {{yi(yj)} : i, j = 1, . . . , N} of annotations written using y1, . . . , yN . Then

all the annotated silent transitions P k τ−→Ck+1 P k+1 in executions (1) starting with

P 0 can be written in the form

σ(νu1) . . . (νur)Q
′ τ−→σB σ(νv1) . . . (νvs)Q

′′ (3)

where Q′, Q′′ ∈ P, u1, . . . , ur, v1, . . . , vs ∈ {y1, . . . , yN}, B ∈ A,

σ
def
= [[n1/y1, . . . , nN/yN ]] is the substitution of y1, . . . , yN , by the pairwise distinct

names n1, . . . , nN , and σB
def
= {nj1(nj2) : yj1(yj2) ∈ B, j1, j2 = 1, . . . , N}. We write σ

using [[.]] and not [.] to indicate that it affects the bound occurrences of y1, . . . , yN too.

Since n1, . . . , nN are required to be distinct, our use of [[.]] is semantically correct. In

particular, (3) is a derivable transition iff (νu1) . . . (νur)Q
′ τ−→B (νv1) . . . (νvs)Q

′′

is.

We use P as a vocabulary of predicate symbols for T = T (P 0). Each P ∈ P is

used as a |fn(P )|-ary predicate symbol. (Note that here P ranges over the ν-free

parts of terms in the form (2). The only bound names of P can be the ys in the scope

of an x(y).) Given {z1, . . . , z|fn(P )|}
def
= fn(P ) ⊆ {y1, . . . , yN}, we fix the ordering

z1, . . . , z|fn(P )|, and, for any n1, . . . , n|fn(P )| ∈ D, we define P T (n1, . . . , n|fn(P )|) to
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hold 〈Q,A〉 ∈ W iff Q = [n1/z1, . . . , n|fn(P )|/z|fn(P )|]P . Similarly, we introduce a

binary predicate symbol C for latest communication act, and a temporal proposition

T for silent transitions.

This vocabulary may be inconvenient for immediate use, but with existential

quantification and disjunction one can easily define predicates like, e.g., Z(n1, n2)

for there exist a name y such that the current process term is of the form . . . |
n1(x).p(n2, x, y) | . . ..

For an annotated execution E written as (1), the set CE(a, k) of the channels

that are tapped by knower a at step k is defined as follows. CE(a, 0) is presumed

to be predefined and the same for all E. Given CE(a, k), we put

CE(a, k + 1)
def
=CE(a, k) ∪ {c′ : c(c′) ∈ Ck+1, c ∈ CE(a, k)}. (4)

In words, once a observes the communication of channel name c′, communication

over c′ becomes observable to a too. Given CE(a, k), k < ω, and two more executions

Fi = Q0
i

τ−→A1
i
· · · τ−→Ak

i
Qk

i
τ−→Ak+1

i
· · · , i = 1, 2, we define F1 ∼a,k,E F2 as the

equivalence relation

(∀j ≤ k)(∀c ∈ CE(a, j))(∀c′ ∈ D)(c(c′) ∈ Aj
1 ↔ c(c′) ∈ Aj

2).

In words, F1 ∼a,k,E F2 iff F1 and F2 have the same communication over channels

that are observed by a in E at all steps j ≤ k. Since F1 ∼a,k,F1 F2 entails CF2(a, j) =

CF1(a, j) for j ≤ k, and therefore F1 ∼a,k,F1 F2 and F1 ∼a,k,F2 F2 are equivalent, and

∼a,k
def
= λF1F2.F1 ∼a,k,F1 F2 is an equivalence relation. F1 and F2 are indiscernible

to a until step k iff F1 ∼a,k F2. We define our epistemic modality by means of ∼a,k.

The syntax of EPCTL∗ is

ϕ ::= ⊥ | P (x, . . . , x) | ϕ ⇒ ϕ | ∃xϕ | �ϕ | ©ϕ | (ϕSϕ) | (ϕUϕ) | ∃ϕ | Kx,...,xϕ

where the occurrences of x represent individual variables. The counterparts of

standard executions in T are standard R-paths.

Definition 2.3 An infinite sequence

ρ = 〈P 0, C0〉, . . . , 〈P k, Ck〉, . . . ∈ Wω (5)

is a standard R-path if P 0 is the process term used to define T = T (P 0),

C0 = ∅, 〈P k, Ck〉R〈P k+1, Ck+1〉 for all k < ω and the corresponding execution

(1) is standard. Given R-paths ρ1 and ρ2 and channels c1, . . . , cm ∈ D, we write

ρ1 ∼c1,...,cm,k ρ2 if E1 ∼a,k E2 for the corresponding executions E1 and E2, and a

such that {c1, . . . , cm} = CE1(a, 0) = CE2(a, 0).

Definition 2.4 Given a standard R-path (5), a valuation v of the individual vari-
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ables into D, k < ω and a formula ϕ, T , v, ρ, k |= ϕ is defined by the clauses

T , v, ρ, k �|= ⊥
T , v, ρ, k |= P (x1, . . . , x|fn(P )|) iff P k is [v(x1)/z1, . . . , v(x|fn(P )|)/z|fn(P )|]P

T , v, ρ, k |= C(x1, x2) iff Ck = {v(x1)(v(x2))}
T , v, ρ, k |= T iff Ck = ∅
T , v, ρ, k |= ϕ ⇒ ψ iff either T , v, ρ, k �|= ϕ, or T , v, ρ, k |= ψ

T , v, ρ, k |= ∃xϕ iff T , v[x �→ d], ρ, k |= ϕ for some d ∈ D

T , v, ρ, k |= �ϕ iff k > 0 and T , v, ρ, k − 1 |= ϕ

T , v, ρ, k |= ©ϕ iff T , v, ρ, k + 1 |= ϕ

T , v, ρ, k |= (ϕSψ) iff there exists an n ≤ k s.t. T , v, ρ, k − n |= ψ

and T , v, ρ, k − j |= ϕ for j = 0, . . . , n− 1

T , v, ρ, k |= (ϕUψ) iff there exists an n < ω s.t. T , v, ρ, k + n |= ψ

and T , v, ρ, k + j |= ϕ for j = 0, . . . , n− 1

T , v, ρ, k |= ∃ϕ iff there exists a standard R-path ρ′

s.t. ρ′[0..k] = ρ[0..k] and T , v, ρ′, k |= ϕ

T , v, ρ, k |= Kx1,...,xmϕ iff T , v, ρ′, k |= ϕ for all standard

R-paths ρ′ s.t. ρ ∼v(x1),...,v(xm),k ρ′

Here ρ[0..k] stands for the finite prefix of ρ of length k + 1. As expected,

FV (Kx1,...,xmϕ) = FV (ϕ) ∪ {x1, . . . , xm}.

We use �, ¬, ∧, ∨ and ⇔ as abbreviations in the usual way; I, �−ϕ, �ϕ, �ϕ, �ϕ,

(ϕWψ) and (ϕVψ) abbreviate the formulas ¬��, (�Sϕ), ¬�−¬ϕ, (�Uϕ), ¬�¬ϕ,
(ϕUψ) ∨�ϕ and (ϕSψ) ∨�ϕ, respectively.

Example 2.5 Let P 0 = p(c)|q(c) where

p(x) = xx.p(x) + (νy)xy.p(y), q(x) = x(y).if x = y then 0 else q(y).

A knower who can initially tap c is in a position to detect the termination of the right

operand of | in the process as soon as a tapped channel’s name becomes transmitted

along that same channel:

T (P 0), P 0, v, 0 |= ∀x∀w(C(x,w) ⇒ ∀�(∃zp(z)|0 ⇒ Kx(∃zp(z)|0)),

where the atomic formula p(z)|0 is underlined for better readability. To achieve this,

the knower must follow the communication along the new channels y introduced
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at each step. (Each of these channels is used once to announce the name of its

successor, and then ”forgotten” by the process.)

3 From EPCTL∗ on finite control π-processes to QCTL∗

on trees

Consider standard annotated executions (1) with process terms of the form (2) and

the representation (3) of transitions in such executions again. The representation

(3) applies if we allow some of n1, . . . , nN to be the auxiliary symbol ∗ �∈ D too,

provided that nj = ∗ only if yj �∈ n(Q′)∪n(Q′′). To facilitate the presentation, in the

sequel we use (3) with n1, . . . , nN ranging over D ∪ {∗} and put σ = [. . . , ∗/yj , . . .]
instead of yj �∈ domσ.

We fix P 0, P, D, {y1, . . . , yN} =
⋃

Q∈P
n(Q) and A for the rest of the section.

Given these, an annotated execution E of the form (1) can be written as

σ0Q
0 τ−→σ1B1 · · · τ−→σkBk σkQ

k τ−→σk+1Bk+1 · · · (6)

where Qk ∈ P, Bk+1 ∈ A and σk are substitutions as above which satisfy σk+1Q
k =

σkQ
k, and the additional condition ranσk \ {∗} = n(σkQ

k) ∪ n(σkB
k) = n(P k) ∪

n(Ck) for all k. Then obviously LE(n) = {k < ω : n ∈ ranσk}. In the sequel

we additionally require that if σk1(yi1) = σk2(yi2) �= ∗ in the form (6) of E, then

i1 = i2, for all k1, k2 ∈ LE(σk1(yi1)), that is, a name n should occupy the same slot

y throughout its lifetime in E.

Up to a permutation of D, (6) is determined by the sequences Qk, k < ω, and

Bk, 1 ≤ k < ω, and, for each j = 1, . . . , N , the steps k at which

σk−1(yj) �= σk(yj). (7)

To realise that, observe that in standard executions (7) is equivalent to k =

minLE(σk(yj)) and to k − 1 = maxLE(σk−1(yj)), provided that σk(yj) �= ∗
and σk−1(yj) �= ∗, respectively. Consequently, up to permutations of names,

the standard executions starting from a given P 0 can be described by means

of the finite Kripke frame F = 〈W,R,w0〉 with state space W
def
=P × A ×

P({y1, . . . , yN}), initial state w0
def
= 〈P 0, ∅, n(P 0)〉 and transition relation R such

that 〈P ′, B′, Y ′〉R〈P ′′, B′′, Y ′′〉 iff Y ′′ = (n(P ′′) ∪ n(B′′))�(n(P ′) ∪ n(B′)) and

either P ′ τ−→B′′ P ′′ is a derivable transition, or P ′ = P ′′, B′′ = ∅ and P ′

is either deadlocked or terminated. Here n(∅)def= ∅, n({yj1(yj2)})
def
= {yj1 , yj2} and

A�B
def
=A \ B ∪ B \ A, as expected. The component Y of 〈P,B, Y 〉 ∈ W is meant

to denote the names from among y1, . . . , yN , which disappear or (re)appear upon

incoming transitions, respectively.

We use F to model-check the tree of all standard executions starting from P 0 for

EPCTL∗ properties. Instead of immediately interpreting EPCTL∗ formulas on F ,

we use a propositional LTL formula E which describes the set of paths of F . To this
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end introduce a finite vocabulary L = {q1, . . . , qK} and a valuation V : W → P(L).

No connection between the values of the variables from L and the structure of the

states of F is assumed. We only require V to satisfy V (w′) �= V (w′′) whenever

w′ �= w′′, which can be achieved iff K ≥ log2 |W |. Given a state w ∈ W , let

ŵ
def
=

∧
q∈V (w) qi ∧

∧
q∈L\V (w) ¬q. We put

E � ŵ0 ∧
∧

w∈W
�(ŵ ⇒ ©

∨
w′∈R(w)

ŵ′). (8)

Now the validity of an arbitrary QCTL∗ formula ϕ in M is equivalent to |=QCTL∗

∀E ⇒ ϕ. By chj , busyj , commj,k, j, k = 1, . . . , N , and tau, we denote boolean

combinations of q1, . . . , qK which, up to equivalence, are determined by the following

conditions, where M = 〈W,R,w0, V 〉 and w = 〈Q,B, Y 〉:

M,w |= chj iff yj ∈ Y M,w |= busyj iff yj ∈ n(Q) ∪ n(B)

M,w |= tau iff B = ∅ M,w |= commj1,j2 iff B = {yj1(yj2)}

The intended meaning of chj is to indicate that the occupation of yj was changed

upon the incoming transition, i.e., either k = 0, or σk−1(yj) �= σk(yj) in the rep-

resentation (6) of executions; busyj means that yj currently holds a name and not

∗; tau means that the incoming transition was τ , and commj1,j2 means that the

incoming transition was σk(yj1)(σk(yj2)).

Given P ∈ P and a sequence of indices j1, . . . , j|fn(P )| ∈ {1, . . . , N}, Pj1,...,j|fn(P )|
denotes some boolean combination of q1, . . . , qK such that M, 〈Q,B, Y 〉 |=
Pj1,...,j|fn(P )| iff Q is [yj1/z1, . . . , yj|fn(P )|/z|fn(P )|]P where z1, . . . , z|fn(P )| is the fixed

ordering of fn(P ) previously associated with P .

Next we describe a translation t(.) of EPCTL∗ into QCTL∗ on tree Kripke

models. Tree models allow the values of bound propositional variables to vary

unrestrictedly along paths, whereas repeated occurrences of states along paths in

non-tree models constrain the values of quantified variables at the respective posi-

tions to be the same too. By abuse of notation, we write M = 〈W,R,w0, V 〉 for

the result of the unravelling of the finite Kripke model M described above into a

tree one too. QCTL∗ extends propositional CTL∗ by formulas of the form ∃qϕ.
M,ρ, k |= ∃qϕ holds iff there exists a V ′ : W → P(L) such that V ′(p) = V (p) for

p �= q and 〈W,R,w0, V
′〉, ρ, k |= ϕ.

The QCTL∗ translation t(ϕ) of an EPCTL∗ sentence ϕ satisfies |=QCTL∗ ∀E ⇒
t(ϕ) where E is as in (8) iff ϕ is true about all the executions starting with a fixed

P 0. As mentioned above, E allows the appearance of names in E to be determined

up to a permutation on D. Since we assume ϕ to be a sentence, this is sufficient.

To handle quantification over names in EPCTL∗ we augment the description

of the possible executions E which can be derived from E with a description of

the identities between the names which appear in E and the values of the (bound)

variables of ϕ. Without loss of generality we assume that no individual variable in

ϕ is bound by more than one occurrence of ∃. Let x1, . . . , xM be all the individual
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variables of ϕ. To describe the occurrences of v(xl) in an execution E for the

relevant v, we take the form (6) of E and introduce the propositional variables pj,l,

j = 1, . . . , N . The intended meaning of pj,l at step k is v(xl) = σk(yj). As it

becomes clear below, this enables translating P (xl1 , . . . , xlm) into
∨

j1,...,jm

Pj1,...,jm ∧
pj1,l1 ∧ . . . pjm,lm .

The translation of a formula of the form ∃xlψ includes a formula of the form

∃p1,l . . . ∃pN,l(Vl ∧ t(ψ)), in which Vl constrains pj,l to mark some possible extent

LE(v(xl)) = LE(σk(yj)) of v(xl) in the executions E which correspond to the paths

in T and in the corresponding QCTL∗ model M . The case of pj,l being satisfied

nowhere along the given path corresponds to the name v(xl) appearing nowhere in

E. Let

Fj,l � pj,l ∧ busyj ∧
∧
j′ �=j

¬pj′,l ∧
∧
l′ �=l

¬pj,l′ .

Fj,l means that xl evaluates to σk(yj) at time k, and j is the only one with this

property, and no other individual variable evaluates to σk(yj) at time k. The latter

condition is included to simplify the handling of atomic formulas built using =. To

express that xl evaluates to none of the names σk(yj), we use the formula Gl �
N∧
j=1

¬pj,l. Using Fj,l and Gl, we write

Hj,l � (GlWchj ∧ Fj,l ∧©(Fj,l ∧ ¬chjWchj ∧�Gl)).

The satisfaction of Hj,l at step 0 means that either LE(v(xl)) = ∅, or there exists

a k such that σk(yj) �= ∗ for some k and v(xl) = σk′(yj) for k′ ∈ LE(v(xl)) =

LE(σk(yj)). Now we can put Vl � �−(I∧∀
N∨
j=1

Hj,l). The clauses for the translation,

except that for epistemic formulas, are as follows:

t(⊥) � ⊥
t(xl1 = xl2) � ⊥ if l1 �= l2

t(xl = xl) � �

t(P (xl1 , . . . , xlm)) �
∨

j1,...,jm

(
Pj1,...,jm ∧

m∧
i=1

pji,li

)
t(C(xl1 , xl2)) �

∨
j1,j2

(commj1,j2 ∧ pj1,l1 ∧ pj2,l2)

t(T ) � tau

t(Xϕ) � Xt(ϕ) for X ∈ {©,�, ∃}
t((ϕXψ)) � (t(ϕ)Xt(ψ)) for X ∈ {U, S,⇒}
t(∃xlϕ) �

∨
z∈FV (∃xlϕ)

t([z/xl]ϕ) ∨ ∃p1,l . . . ∃pN,l(Vl ∧ t(ϕ))

To facilitate translating formulas of the form xl1 = xl2 , the clause for t(∃xlϕ)
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provides that the values of the free variables of ∃xlϕ are excluded from the range

of xl by treating the cases of v(xl) being one of these values separately.

The translation of formulas of the form Kx1,...,xmϕ requires us to write a descrip-

tion of CE(a, k), k < ω, for an arbitrary execution E and a knower a such that

CE(a, 0) = {v(x1), . . . , v(xm)} in our propositional temporal language. We do this

by introducing the propositional variables oj , j = 1, . . . , N . Just like the variables

pj,l, oj have only bound occurrences in the translations of EPCTL∗ sentences. As-

suming that the considered execution E is written in the form (6), the intended

meaning of oj in the translation of Ka . . . at step k is σk(yj) ∈ CE(a, k). Next

we construct an LTL formula to express that oj , j = 1, . . . , N , behave according

to the defining properties of CE(a, k), k < ω, with respect to the adopted way of

propositional description of executions E.

Consider an individual variable xl such that v(xl) ∈ CE(a, 0) and let k < ω.

Then the satisfaction of

Ij,l � Fj,l ⇒ (ojSchj ∧ oj) ∧ oj ∧©(ojWchj)

at step k means that if k ∈ LE(v(xl)) and v(xl) = σk(yj), then a taps communication

over channel σk(yj) throughout its extent LE(σk(yj)) = LE(v(xl)). We put

IL �
N∧
j=1

∧
l∈L

�Ij,l for L ⊆ {1, . . . ,M}.

The satisfaction of IL at step 0 means that a taps communication over the channels

denoted by xl, l ∈ L, throughout their extents.

To express the definition (4) of CE(a, k + 1) in terms of CE(a, k), we use the

formula

C � �
∧
h

(©oh ⇔ (¬© chh ∧ oh) ∨
∨
j

oj ∧ commj,h). (9)

The satisfaction of C at step 0, means that communicating a channel name σk(yh)

over an observed channel σk(yj) at an arbitrary step k makes communication over

σk(yh) observable from step k + 1 on and for the rest of the extent of σk(yh), that

is, until eventually a step k′ > k is reached such that σk′(yh) �= σk(yh), which is

indicated by chh. Let OL be the formula �−(I ∧ IL ∧ C). OL states that oj holds at

step k iff σk(yj) ∈ CE(a, k) for all k < ω and j ∈ L.

Expressing Kx1,...,xm furthermore requires reference to executions E′ which ex-

hibit the same sequence of observable actions as the actual execution E. To this end

we introduce an extra copy L′ = {q′1, . . . , q′K} of the vocabulary L of our Kripke

model M , whose paths we described using the formula E . We write x′ for the

boolean combination [q′i/qi : i = 1, . . . ,K]x, x = tau, busyj , commj1,j2 , chj . Similarly

we assume additional sets p′j,l, o
′
j , j = 1, . . . , N , l = 1, . . . ,M , of the variables pj,l

and oj , to describe the extents of the values of individual variables and channel

observability in E′, and write I ′L, C
′, etc. for the variants of IL, C, etc., written in

the primed vocabulary.
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Let the substitutions involved in writing E′ in the form (6) be σ′
k, k < ω.

According to our encoding, observing the same actions in E and E′ means that if

oj and commj,h, hold at some step k, then oj′ and comm′
j′,h′ hold for some j′, h′

such that σk(yj) = σ′
k(yj′) and σk(yh) = σ′

k(yh′). To express the latter identities,

we introduce the atomic propositions ej,j′ , j, j
′ = 1, . . . , N . The intended meaning

of ej,j′ at step k is that σk(yj) = σ′
k(yj′) �= ∗, that is, k ∈ LE(n) ∩ LE′(n) where

n = σk(yj) = σ′
k(yj′).

The valuation of ej,j′ , j, j
′ = 1, . . . , N , along a path describes correctly a possible

overlap of the extents LE(n) and LE′(n) of some name n in a pair of executions E

and E′, iff it has the properties which are expressed by the following LTL formulas

ej,j′ ⇒ busyj ∧ busy′j′ ∧
∧
h�=j

¬eh,j′ ∧
∧

h′ �=j′
¬ej,h′

ej,j′ ⇒ ©

⎛
⎜⎜⎝ej,j′ ∧ ¬chj ∧ ¬ch′j′W

chj ∧
(∧

h

¬eh,j′ ∧ ¬ch′j′Wch′j′

)
∨

ch′j′ ∧
(∧

h

¬ej,h ∧ ¬chjWchj

)
⎞
⎟⎟⎠

ej,j′ ⇒

⎛
⎜⎜⎝ej,j′ ∧ ¬chj ∧ ¬ch′j′V

chj ∧ �
(∧

h

¬eh,j′ ∧ ¬ch′j′Vch′j′
)
∨

ch′j′ ∧ �
(∧

h

¬ej,h ∧ ¬chjVchj
)

⎞
⎟⎟⎠

At step k, the first formula states that σk(yj) = σ′
k(yj′) �= ∗ can hold for at most one

pair j, j′. The second and the third formulas state that σk(yj) = σ′
k(yj′) = n at step

k implies σk′(yj) = σ′
k′(yj′) for all k′ ∈ LE(n) ∩ LE′(n), σk′(yj) �= σ′

k′(yh) for all h

and k′ ∈ LE(n)\LE′(n), and σ′
k′(yj′) �= σk′(yh) for all h and k′ ∈ LE′(n)\LE(n). Let

Nj,j′ be the conjunction of these formulas. We denote the formula �−(I∧∀� ∧
j,j′

Nj,j′)

by N .

Using the variables ej,j′ we can express that E and E′ have the same observable

communication by the formulas

oj ⇒
∧
h

(ej,h ⇒ o′h), o′j′ ⇒
∧
h

(ek,j′ ⇒ oh) (10)

ej,j′ ⇒ (pj,l ⇔ p′j′,l) (11)

oj ∧ commj,h ⇒
∨
j′,h′

(ej,j′ ∧ eh,h′ ∧ comm′
j′,h′) (12)

o′j′ ∧ comm′
j′,h′ ⇒

∨
j,h

(ej,j′ ∧ eh,h′ ∧ commj,h). (13)

The formulas (10) state that CE(a, k) = CE′(a, k) for the reference step k. The

formula (11) states that the account of the valuation of individual variables given by

pj,l and p′j′,l is consistent with the identities between in E and E′ as described using

ej,j′ . The formulas (12) and (13) state that the actions on observable channels in the

two executions are identical. We denote the conjunction of (10)-(13) by Sj,j′,h,h′ . We

denote �
∧

j,j′,h,h′
Sj,j′,h,h′ by S. The satisfaction of S at step k means that E ∼a,k E′
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holds, provided that executions E and E′ correspond to the satisfying path, that

is, provided that busyj , chj , tau, commj1,j2 , busy
′
j′ , ch

′
j′ , tau and comm′

j′1,j
′
2
correctly

describe E and E′, respectively, pj,l, p′j′,l and ej,j′ correctly describe the identities

between the names involved in E and E′, and the values of the individual variables

xl, and, finally, oj and o′j , correctly describe the observability of channels. This

condition is expressed by the conjunction

N ∧ E ∧
∧

xn∈FV (ϕ)

Vn ∧O{1,...,m} ∧

⎛
⎝E ′ ∧

∧
xn∈FV (ϕ)

V ′
n ∧O′

{1,...,m}

⎞
⎠

The subscripts written with i and j, and also l as the main symbol above range

over {1, . . . , N} and {1, . . . ,M}, respectively.
Now we are ready to write a translation clause for Kx1,...,xmϕ. (The initially

observable channels are chosen to be values of the first m individual variables

x1, . . . , xm for the sake of simplicity.) Kx1,...,xmϕ translates into

∀q′1 . . . ∀q′1
∀p′1,1 . . . ∀p′1,M . . . ∀p′N,1 . . . ∀p′N,M

∀o1 . . . ∀oN∀o′1 . . . ∀o′N
∀e1,1 . . . ∀e1,N . . . ∀eN,1 . . . ∀eN,N

⎛
⎜⎝N ∧ S ∧ E ′ ∧ ∧

xn∈FV (ϕ)

V ′
n∧

O{1,...,m} ∧O′
{1,...,m} ⇒ t(ϕ)′

⎞
⎟⎠

The quantifier prefix of t(Kx1,...,xmϕ) provides fresh sets of variables q′1, . . . , q
′
K to

enable the description of E′, p′j′,l′ to describe the identities between the values

of the individual variables and the names involved in E′, oj and o′j′ to mark the

observability of channels in E and E′, respectively, and a set of variables ej,j′ to

express whatever identities hold between the names occurring in E and E′ during
their various extents. The conditions on these variables which actually force their

truth values to give a consistent account of E′, the way individual variables refer to

names in E′, the observability of channels in both executions, the identities between

names occurring in E and E′, and the fact that E ∼a E′ for a knower a who can

initially observe the channels v(x1), . . . , v(xm) are expressed in the conjunction on

the left of ⇒ in the matrix of the formula by E ′,
∧

xn∈FV (ϕ)

V ′
n, O{1,...,m}, O

′
{1,...,m},

N , and S, respectively. On the whole, the translation states that if a cannot

tell apart some E′ from the actual execution E, then the encoding of E′ satisfies
t(ϕ) as well, which is the defining condition for the satisfaction of Kx1,...,xmϕ. The

free propositional variables of t(Kx1,...,xmϕ) are q1, . . . , qK , and pj,l, j = 1, . . . , N ,

xl ∈ FV (ϕ), which describe the actual execution E and the identities between the

names occurring in E and the values of the (free) variables of ϕ, provided that their

truth values satisfy E and the relevant Vl, respectively.

The correctness of our translation can be formuated as follows:

Theorem 3.1 Given a π-process P 0 and an EPCTL∗ sentence ϕ in the respective

predicate vocabulary, T (P 0), v, 〈P 0, ∅〉 |= ϕ iff |=QCTL∗ E ⇒ t(ϕ).
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The proof can be obtained by following the detailed explanation of the meaning

of the formulas used to define the various clauses for t(.) above.

4 Unsolvability of model-checking with external com-
munication

Model-checking is not recursively enumerable for finite control π-processes with ex-

ternal communication even for the LTL subset of EPCTL∗, without the epistemic

modality. To prove this, we define a class of behaviours in which the environment

e acts as unbounded storage by an LTL formula. Let I and O be binary predicate

symbols which denote input from and output to e, respectively, just like the predi-

cate symbol C about internal communication. We intend to state that whenever e

receives two names x and y in a row along a dedicated channel cons, it ”registers”

the pair 〈x, y〉 under some name z and, from that step onwards, whenever given z

along the dedicated channels car (cdr), e sends back x (y) along reply . A formula

constraining e to behave this way can be written as follows. The formula

silence � ∀x
(
∧c∈{cons,car ,cdr ,reply} ¬I(c, x) ∧ ¬O(c, x)

)
.

states that the latest action was not communication with e. Let

�sϕ � (silenceUϕ) and �−sϕ � (silenceSϕ);

R � �silence ∨�−s∃xI(reply , x).

R states that the latest communication with e, if any, was a reply. Then

�−s(O(cons, y) ∧ ��−s(O(cons, x) ∧ �R)) ⇒
∃z�s(I(reply , z) ∧©∀t�(O(car , z) ∧©�s(I(reply , t) ⇒ t = x)))

states that e is bound to return x whenever asked to retrieve the first member of

the pair 〈x, y〉 previously registered as z. Similar formulas can be written to express

retrieving y, and registering pairs. We leave it to the reader to realise that, with

e assumed to behave this way, a finite control process PM can be constructed to

simulate the working of any given Turing machine M , with the parts of M ’s tape

on the left and on the right of M ’s current position represented as two lists built

of pairs, which can be stored by e in the above fashion. This entails that the non-

halting problem for Turing machines M reduces to the model-checking problem for

processes of the form PM against the conjunction of the formulas which describe

the working of e as storage and a formula which states the non-termination of M .

The same plan can be used to show that the problem of model-checking finite-

control processes which communicate with a finite memory environment for predi-

cate LTL properties, that is, the problem of whether there exists a finite-control E

such that the runs of P | E for a given P have a given property written in the LTL

subset of our EPCTL∗, is recursively enumerable but still undecidable, as long as E
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is unrestricted. This can be realised by choosing P to range over the processes PM

which simulate Turing machines M as above, and the property in question to be

M terminates and E behaves as storage in the above way until M terminates. By

restricting M to be deterministic, PM |E can be chosen to have just one run. For

terminating M , the unique run of PM | E will satisfy the above property for any

E which is big enough to serve as storage throughout the terminating run of the

simulated M .

Concluding remarks

We have examined model checking of finite control π-calculus processes against for-

mulas in an epistemic extension of predicate CTL∗ with perfect recall. Since model

checking is undecidable for open π-calculus processes even for LTL, we instead

address closed process terms and tapping internal communication across a distin-

guished set of channels. This constrains the storage capacity of processes sufficiently

to render model checking decidable.

Model checking the π-calculus has been considered by several authors, but so

far only in branching time settings. Dam [5] obtained a first decidability result for

a predicate extension of modal μ-calculus. This result has been improved upon in

[7,17]. The latter work has been adapted to the stochastic π-calculus [13]. Recent

applications of π-calculus and its dialects to security protocol verification mostly

appeal to Dolev-Yao type knowledge extraction. An exception is [3], where the use

of epistemic reasoning in the context of π-calculus is suggested. An epistemically

flavoured extension of modal logic applied to CCS, a precursor of the π-calculus, is

proposed in [11].

We leave three main questions open for future investigation. First, we have

not explored the practical implications of the closed system modelling approach

suggested in this paper, and whether it can offer new approaches to specification

and verification, for instance along the lines suggested by [3]. Second, the model

checking algorithm presented here is non-elementary and needs to be improved in

order to become practically useful. It remains to be seen if existing approaches to

model checking of epistemic logics [10,15] can be extended. Third, it is of interest

to extend the results presented here to capture also strategic ability, for instance

along the lines of ATL [2].
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