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Lecture 7

Model checking problem for LTL

Model checking algorithms for LTL:
tableau-based,
automata-based

Büchi automata:
basic properties and generalizations



LTL-formulae (reminder and new definitions)

AP is a set of atomic propositions assumed to be given in other definitions

In this lecture the following syntax of ltl-formulae is used:
ϕ ::= a | (ϕ&ϕ) | (¬ϕ) | (Xϕ) | (ϕUϕ),

where ϕ is an ltl-forula, and a ∈ AP

In examples (but not in proofs)
other known connectives are used as well: ∨, →, F, G, R

ϕ ∨ ψ ≡ ¬(¬ϕ&¬ψ) ϕ→ ψ ≡ ¬ϕ ∨ ψ
Fϕ ≡ trueUϕ Gϕ ≡ ¬F¬ϕ ϕRψ ≡ ¬(¬ϕU¬ψ)

In Lecture 4 all ltl-formulae started with the quantifier A

In this lecture the quantifier A is omitted due to its redundancy



LTL-formulae (reminder and new definitions)

An event is a subset of AP

A trace τ is an infinite sequence of events

τ [i ] is the i-th event of a trace τ (event numbers start with 0)

τ i is the suffix of a trace τ starting with the i-th event

A trace τ satisfies a formula ϕ (τ |= ϕ) in the following cases:
I τ |= a for a ∈ AP ⇔ a ∈ tr [0]

I τ |= ψ1 &ψ2 ⇔ τ |= ψ1 и τ |= ψ2

I τ |= Xψ ⇔ τ1 |= χ

I τ |= ψ1Uψ2 ⇔ there exists k , k ≥ 0, such that:
I τ k |= ψ2

I τm |= ψ1 for each m such that 0 ≤ m < k

Tr(ϕ) is the set of all traces τ such that τ |= ϕ
(a trace property defined by a formula ϕ)



LTL-formulae (reminder and new definitions)

Examples of ltl-formulae and (informally) corresonding properties:

1. The goal will be achieved eventually
Fgoal

2. Autumn will eventually come, and it will be warm up until that time
warmUautumn

3. Two bad days in a row are impossible
G(bad_day → X¬bad_day)

4. If a request is being sent infinitely often,
then a response occurs at least once

GFrequest → Fresponse

5. An eternity in either Heaven or Hell awaits for me
F(Gheaven ∨ Ghell)



Kripke structures (reminder)
A Kripke structure is a tuple M = (S ,S0,→, L), where:

I S is a finite set of states
I S0 ⊆ S is a set of initial states
I →⊆ S × S is a total transition relation
I L : S → 2AP is a labeling function

Totalty of → means that for every state s ∈ S there exists a state s ′ ∈ S
such that R(s, s ′)

A path π in a model M from a state s is an infinite state sequence of the
form

s → s1 → s2 → . . .

A trace α(π) of the path π is the sequence
L(s), L(s1), L(s2), . . .

Π(M) is the set of all paths in M from the initial states

Tr(M) = {α(π) | π ∈ Π(M)}



Model-checking problem for LTL (reminder)

Consider an ltl-formula ϕ and a Kripke structure M

A path π in M satisfies ϕ (M, π |= ϕ) iff
α(π) |= ϕ

The model M satisfies ϕ (M |= ϕ) iff every path π from Π(M) satisfies
ϕ, i.e.

Tr(M) ⊆ Tr(ϕ)

Model checking problem for LTL:
given a Kripke structure M and an ltl-formula ϕ

check whether the relation M |= ϕ holds



Tableau-based model checking algorithm for LTL

Those who attended the bachelor course “Mathematical logic and logic
programming” should already know this algorithm

But... it was long ago, and maybe you did not attend the course, or
forgot it completely, or just skipped the hard lectures

In any case, some discussion on this topic is needed
(but no proofs! — to keep it short and simple)

Starting point

Without loss of generality ϕ is considered to contain no double
negations: no subformulae of the form¬¬ψ (¬¬ψ ≡ ψ)

Note that M 6|= ϕ ⇔
there exists a path π in M from an initial state such that M, π 6|= ϕ

The algorithm (A) either finds such path π (and M 6|= ϕ)
or states that there are no such paths (and M |= ϕ)



Tableau-based model checking algorithm for LTL

Brief algorithm description

Illustration

ϕ: pUq M: p

p q

p p

H1 H2

H1

H2

H3

H4

H2

H1

H2

H1

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}



Tableau-based model checking algorithm for LTL

Brief algorithm description
A assigns to each state of M a number of conjectures —
special finite sets of formulae, each of which contains on of the formulae

ϕ, ¬ϕ, ψ (where ϕ = ¬ψ)

Illustration

ϕ: pUq

M:

p

p q

p p

H1 H2

H1

H2

H3

H4

H2

H1

H2

H1

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}



Tableau-based model checking algorithm for LTL

Brief algorithm description
Informally, the meaning of a conjecture H assigned to s is:
it is possible that there exists a path π in M from s
which satisfies every formula of H (α(π) |= H)

Illustration

ϕ: pUq

M:

p

p q

p p

H1 H2

H1

H2

H3

H4

H2

H1

H2

H1

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}



Tableau-based model checking algorithm for LTL

Brief algorithm description
A connects some pairs (state, conjecture) with arks

Informally, the meaning of an ark (s1,H1)→(s2,H2) is:
it is possible that there exists a path π = (s1 → s2 → . . . ) in M such that
α(π) |= H1 and α(π1) |= H2

Illustration

ϕ: pUq

M:

p

p q

p p

H1 H2

H1

H2

H3

H4

H2

H1

H2

H1

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}



Tableau-based model checking algorithm for LTL

Brief algorithm description
The resulting graph — a Hintikka structure — is marked in a special
way which allows to check for any state s whether there exists a path π̃
in M from s such that the mentioned satisfiability relations are not only
“possible”, but actually hold

Illustration

ϕ: pUq

M: p

p q

p p

H1 H2

H1

H2

H3

H4

H2

H1

H2

H1

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}



Tableau-based model checking algorithm for LTL

Brief algorithm description
M 6|= ϕ ⇔ there exists at least one mentioned path π̃ from a vertex (s,H)
where s is an initial state and ϕ /∈ H

Illustration

ϕ: pUq

M: p

p q

p p

H1 H2

H1

H2

H3

H4

H2

H1

H2

H1

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}



Tableau-based model checking algorithm for LTL

A formula ϕ is called negative, if ϕ = ¬ψ, and positive otherwise

A Fischer-Ladner closure [ϕ]fl of a formula ϕ is the set of formulae
consisting of:
1. all positive subformulae of ϕ
2. X(ψUχ) for each subformula ψUχ of ϕ

Example: [¬(pU¬q)]fl = {p, q, pU¬q,X(pU¬q)}

A conjecture (for ϕ) is a set of formulae of the following form:
F ∪ {¬ψ | χ ∈ [ϕ]fl \ F},

where F ⊆ [ϕ]fl

Example: {¬p,¬q, pU¬q,¬X(pU¬q)} is a conjecture for ¬(pU¬q)



Tableau-based model checking algorithm for LTL
A conjecture H is internally consistent iff
for all formulae ψ1 &ψ2 and χ1Uχ2 from [ϕ]fl the following holds:
1. ψ1 &ψ2 ∈ H ⇔ {ψ1, ψ2} ⊆ H

2. χ1Uχ2 ∈ H ⇔ χ2 ∈ H or {χ1,X(χ1Uχ2)} ⊆ H

Explanation: (2) represents the following “fixed-point” equivalence:
χ1Uχ2 ≡ χ2 ∨ χ1 &X(χ1Uχ2)

Examples:
I {¬p, q,¬X(pUq),

¬(

pUq

)

} is internally consistent
I {¬p, q,

¬

X(pUq),¬(pUq)} is not internally consistent

[ϕ]−fl = {¬ψ | ψ ∈ [ϕ]fl}
H i
τ is the set of all formulae ψ from [ϕ]fl ∪ [ϕ]−fl such that τ i |= ψ

(τ is a trace, i ≥ 0)

Proposition. For any trace τ and any index i , i ≥ 0, the set H i
τ is

an internally consistent conjecture



Tableau-based model checking algorithm for LTL
Conjectures H1, H2 are locally consistent iff for any formula Xχ from [ϕ]fl
the following holds:

Xχ ∈ H1 ⇔ χ ∈ H2

Proposition. For any trace τ and any index i , i ≥ 0, the
conjectures H i

τ and H i+1
τ are locally consistent

A conjecture H concludes a formula ψUχ from [ϕ]fl iff at least one of the
following conditions hold:
1. χ ∈ H

2. X(ψUχ) /∈ H

An infinite sequence H = (H0,H1, . . . ) of conjectures
is globally consistent iff for any formula ψUχ from [ϕ]fl
infinitely many conjectures from H conclude the formula ψUχ

Proposition. For any trace τ the sequence H0
τ ,H

1
τ ,H

2
τ , . . . is

globally consistent



Tableau-based model checking algorithm for LTL

For an infinite sequence H = H0,H1,H2, . . . of conjectures, τH is the
trace H0 ∩ AP,H1 ∩ AP,H2 ∩ AP, . . .

Proposition. For any infinite sequence H = (H0,H1,H2, . . . )
of conjectures the following holds: if

I each conjecture Hj is internally consistent,
I each pair (Hj ,Hj+1) is locally consistent, and
I H is globally consistent,

then for each index i , i ≥ 0, the equality Hi = H i
τH

holds

Note on globale consistency:
I H = {p,¬q,X(pUq), pUq} is an internally consistent conjecture
I H, H are locally consistent conjectures
I H,H,H, . . . is not a globally consistent sequence of conjectures
I ({p} , {p} , {p} , . . . ) 6|= pUq



Tableau-based model checking algorithm for LTL

A conjecture H is an s-conjecture for a state s of a Kripke structure
M = (S , S0,→, L) iff L(s) = H ∩ AP

A Hintikka structure HS(M, ϕ) for M and a formula ϕ is the following
labeled directed graph:

I vertices are all pairs (s,H) such that
s ∈ S , H is an internally consistent s-conjecture

I an arc (s1,H1)→(s2,H2) belongs to the structure ⇔
s1 → s2, and H1, H2 are locally consistent conjectures

I a vertex (s,H) is initial ⇔ s ∈ S0, and ϕ /∈ H

I each formula ψUχ from [ϕ]fl corresponds to a unique color cψUχ
I a vertex (s,H) is marked with cΦ ⇔ H concludes Φ



Tableau-based model checking algorithm for LTL

Example

ϕ:pUq M: p

p q

p p

H1

H1

H1 H1

H2

H2

H2 H2

H3

H4
H2

H3

H4H2

H2 H2

H2

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}



Tableau-based model checking algorithm for LTL

Example

ϕ:pUq p

p q

p p

H1

H1

H1 H1

H2

H2

H2 H2

H3

H4

H2

H3

H4H2

H2 H2

H2

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}

H1 and H2 are all internally consistent p -conjectures

H3 and H4 are all internally consistent q -conjectures



Tableau-based model checking algorithm for LTL

Example

ϕ:pUq p

p q

p p

H1

H1

H1 H1

H2

H2

H2 H2

H3

H4

H2

H3

H4H2

H2 H2

H2

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}

Local consistency of conjectures Hi , Hj :
X(pUq) ∈ Hi ⇔ pUq ∈ Hj



Tableau-based model checking algorithm for LTL

Example

ϕ:pUq

p

p q

p p

H1

H1

H1 H1

H2

H2

H2 H2

H3

H4

H2

H3

H4H2

H2 H2

H2

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}

H3 and H4 conclude pUq: q ∈ H3 ∩ H4

H2 concludes pUq: X(pUq) /∈ H2

H1 does not conclude pUq:
I q /∈ H1

I X(pUq) ∈ H1



Tableau-based model checking algorithm for LTL

Example

ϕ:pUq HS(M, ϕ):

p

p q

p p

H1

H1

H1 H1

H2

H2

H2 H2

H3

H4
H2

H3

H4H2

H2 H2

H2

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}

The only initial vertex (s,H):
I s is the initial state of M
I pUq /∈ H



Tableau-based model checking algorithm for LTL

Example

ϕ:pUq HS(M, ϕ):

p

p q

p p

H1

H1

H1 H1

H2

H2

H2 H2

H3

H4
H2

H3

H4H2

H2 H2

H2

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}

Theorem. M 6|= ϕ ⇔
H(M, ϕ) contains a path π from an initial vertex such that each
color occurs inifinitely often in π ⇔
at least one nontrivial (with at least one arc) strongly connected
component containing all colors is reachable from an initial vertex
in H(M, ϕ)



Tableau-based model checking algorithm for LTL

Example

ϕ:pUq HS(M, ϕ):

p

p q

p p

H1

H1

H1 H1

H2

H2

H2 H2

H3

H4
H2

H3

H4H2

H2 H2

H2

H1 = {p,¬q,

¬

X(pUq),

¬(

pUq

)

} H3 = {¬p, q,

¬

X(pUq), pUq}
H2 = {p,¬q,¬X(pUq),¬(pUq)} H4 = {¬p, q,¬X(pUq), pUq}

Conclusion: M 6|= ϕ



Interlude

Tableau-based model checking algorithm for CTL is inefficient, but
ideologically underlies other efficient algorithms (e.g. the symbolic
algorithm)

The same holds for LTL: tableau-based model checking algorithm for LTL
is inefficient, but ideologically underlies other efficient algorithms

The most popular efficient model checking algorithms for LTL used in
practice are automata-based



Automata-based algorithm: general scheme

Given: a Kripke structure M, an ltl-formula ϕ

Check: M |= ϕ?

General scheme:
1. Construct an automaton AM which recognizes the set of (inifinite!)

traces Tr(M) (L(AM) = Tr(M))
2. Construct an automaton A¬ϕ which recognizes the set of traces

Tr(¬ϕ) (L(A¬ϕ) = Tr(¬ϕ))
3. Combine AM and A¬ϕ into an automaton A recognizing the set

Tr(M) ∩ Tr(¬ϕ) (L(A) = L(AM) ∩ L(A¬ϕ))
4. Check whether A recognizes the empty set of traces: (L(A) = ∅)

I if L(A) = ∅, then M |= ϕ
I if L(A) 6= ∅, then M 6|= ϕ



Büchi automata
A Büchi automaton (BA) over an alphabet Σ is a tuple
A = (S ,S0, → ,F ), where:

I S is a finite set of states
I S0 ⊆ S is a set of initial states
I →⊆ S × Σ× S is a transition relation
I F ⊆ S is a set of accepting states

s
σ1,...,σk−−−−−→ s ′ is a graph-related representation of a transition

(s, σ1, s
′), . . . , (s, σk , s

′)

Example

a, b
a b

c

d

is an initial state
is an accepting state



Büchi automata

An ω-word is an infinite word

A run of a BA A = (S ,S0,→,F ) (on an ω-word σ1σ2σ3 . . . ) is an infinite
sequence of states of the form

s0
σ1−→ s1

σ2−→ s2
σ3−→ . . .

such that s0 ∈ S0

R(A,w) is the set of all runs of A on an ω-word w

inf (ρ) is the set of all states occuring infinitely often in a run ρ

A run ρ of A is accepting iff inf (ρ) ∩ F 6= ∅

The BA A accepts an ω-word w iff there exists at least one accepting run
of A on w , i.e.:

∃ρ ∈ R(A,w) : inf (ρ) ∩ F 6= ∅

L(A) is the language accepted by A: the set of all ω-words accepted by A



Büchi automata

Example

Consider the following BA A:

a, b
a b

c

d

Then
L(A) = {habcbcbc . . . bc · · · | h ∈ {a, b}∗}



Büchi automata and Kripke structures
Given: a Kripke structure M = (S ,S0,→, L)

Compute: a BA AM = (S ′,S ′0, 7→,F ) over 2AP such that
L(AM) = Tr(M)

Solution:
I S ′ = F = S

I S ′0 = S0

I s1
σ7−→ s2 ⇔ s1 → s2 и σ = L(s1)

Example

M: p

p q

p p

AM :

{p}
{p}

{q}

{p}

{p}

{p}

{q}



Büchi automata and ltl-formulae
Given: an ltl-formula ϕ

Compute: a BA Aϕ = (S , S0,→,F ) over 2AP such that L(Aϕ) = Tr(ϕ)

Let us start with some examples (AP = {a, b})

∅, {b}

{a} , {a, b}

∅, {b}

{a} , {a, b}

L(A) = Tr(GFa)



Büchi automata and ltl-formulae
Given: an ltl-formula ϕ

Compute: a BA Aϕ = (S , S0,→,F ) over 2AP such that L(Aϕ) = Tr(ϕ)

Let us start with some examples (AP = {a, b})

∅, {a} , {b} , {a, b}
{a} , {a, b}

{a} , {a, b}

L(A) = Tr(FGa)



Büchi automata and ltl-formulae
Given: an ltl-formula ϕ

Compute: a BA Aϕ = (S , S0,→,F ) over 2AP such that L(Aϕ) = Tr(ϕ)

Let us start with some examples (AP = {a, b})

∅, {b} , {a, b}

{a}

{b} , {a, b}

∅, {a}

L(A) = Tr(G(a→ Fb))



Büchi automata and ltl-formulae

General scheme of a translation of an ltl-formula into a BA:

ltl-formula ϕ

Generalized BA GAϕ

BA Aϕ



Generalized Büchi automata

A Generalized Büchi automaton (GBA) over an alphabet Σ is a tuple
GA = (S , S0,→,F), where:

I S is a finite set of states
I S0 ⊆ S is a set of initial states
I →⊆ S × Σ× S is a transition relation
I F ⊆ 2S is a collection of accepting sets

The only basic notion for GBA different from the same notion for BA is
the definition of an accepting run

A run ρ of a GBA GA is accepting iff for each accepting set F of GA the
inequality inf (ρ) ∩ F 6= ∅ holds

Corresponding acceptance condition for GA can be stated as follows:
∃ρ ∈ R(GA,w) : ∀F ∈ F : inf (ρ) ∩ F 6= ∅



Generalized Büchi automata
Theorem
For any GBA GA there exists a BA A such that L(A) = L(GA)

Proof.

Let us assume for clarity that GA = (S , S0,→,F), where
F = {F0, . . . ,Fk−1}

Consider the following BA A = (S ′,S ′0, 7→,F ):
I S ′ = {(s, i) | s ∈ S ; i ∈ {0, . . . , k − 1}}
I S ′0 = {(s, 0) | s ∈ S0}
I F = {(s, i) | s ∈ Fi ; i ∈ {0, . . . , k − 1}}
I if s /∈ Fi , then (s, i)

δ7−→ (s ′, i) ⇔ s
δ−→ s ′

I if s ∈ Fi , then (s, i)
δ7−→ (s ′, (i + 1)mod k) ⇔ s

δ−→ s ′

It is sufficient to show that L(GA) = L(A)



Generalized Büchi automata
Theorem
For any GBA GA there exists a BA A such that L(A) = L(GA)

Proof.

Illustration:

GA: a
b

a

b
c

b

c A:
a b

a

b
c

b
c

a b

a
b

c

b c



Generalized Büchi automata
Theorem
For any GBA GA there exists a BA A such that L(A) = L(GA)

Proof. (L(A) ⊆ L(GA))

Consider an ω-word δ0δ1 . . . accepted by A, and an accepting run ρ of A
on this word: (s0, i0)

δ07−→ (s1, i1)
δ17−→ . . .

Then the sequence ρ contains an infinite subsequence
(q0, 0), (q1, 1), . . . , (qk−1, k − 1), (qk , 0), (qk+1, 1), . . . ,

such that (qi , i mod k) ∈ F , i ≥ 0

By defition of A:

I ρ′ = (s0
δ0−→ s1

δ1−→ . . . ) is a run of GA
I qi ∈ Fi mod k , which means that for each accepting set Fj of GA at

least one state of Fj occurs in ρ′ infinitely often

Thus, ρ′ is an accepting run, and the word δ0δ1 . . . is accepted by GA



Generalized Büchi automata
Theorem
For any GBA GA there exists a BA A such that L(A) = L(GA)

Proof. (L(GA) ⊆ L(A))

Consider an ω-word δ0δ1 . . . accepted by GA, an accepting run ρ of GA
on this word: s0

δ0−→ s1
δ1−→ . . .

Consider the following subsequence q0, q1, q2, . . . of ρ:
I q0 is the first state of τ such that q0 ∈ F0

I qi+1 is the first state of τ following qi such that qi+1 ∈ Fi+1 mod k ,
i ≥ 0

By definition of A, the following run is an accepting run of A on δ0δ1 . . . :
(s0, 0) 7→ · · · 7→ (q0, 0) 7→ (si1 , 1) 7→ · · · 7→ (q1, 1) 7→ · · · 7→ (si2 , 2) 7→
· · · 7→ · · · 7→ (qk−1, k − 1) 7→ (sik , 0) 7→ · · · 7→ (qk , 0) 7→ (sk+1, 1) 7→ . . .

H



Generalized Büchi automata and ltl-formulae
Given: an ltl-formula ϕ

Construct: a GBA GAϕ = (S ,S0,→,F) over 2AP such that
L(GAϕ) = Tr(ϕ)

Solution (not the best one, but the simplest one):
I S is the set of all internally consistent conjectures for ϕ
I H ∈ S0 ⇔ ϕ ∈ H

I H1
X−→ H2 ⇔ X = H1 ∩ AP , and the conjectures H1, H2 are locally

consistent
I F = {F1, . . . ,Fk}, where

I ψ1, . . . , ψk are all subformulae of ϕ of the form χ1Uχ2 (arbitrarily
numbered)

I H ∈ Fi ⇔ the conjecture H concludes ψi

The proposed GBA can be alternatively defined as an arc-labeled Hintikka
system for ¬ϕ and a smallest Kripke model containing all possible traces
(Tr(M ′) = (22AP

)ω), and correctness of the GBA follows from Hintikka
system properties



Generalized Büchi automata and ltl-formulae
Example: GApUq

p, pUq
q,X(pUq)

p, pUq
q,¬X(pUq)

p, pUq
¬q,X(pUq)

p, ¬(pUq)
¬q,¬X(pUq)

¬p, pUq
q, X(pUq)

¬p, pUq
q, ¬X(pUq)

¬p,¬(pUq)
¬q,X(pUq)

¬p, ¬(pUq)
¬q,¬X(pUq)

(arc labels are omitted: an arc label equals to a state label for the source
state of the arc)



Büchi automata intersection
Theorem
For any BA A′, A′′ there exists a GBA GA such that
L(GA) = L(A′) ∩ L(A′′)

Proof.

Let us assume for clarity that A′ = (S ′,S ′0,→,F ′) и A′′ = (S ′′,S ′′0 , 7→,F ′′)

Consider the following GBA GA = (S ,S0,⇒,F)
(a Cartesian product of A′ and A′′):

I S = {(s ′, s ′′) | s ′ ∈ S ′; s ′′ ∈ S ′′}
I S0 = {(s ′, s ′′) | s ′ ∈ S ′0; s ′′ ∈ S ′′0 }
I (s ′1, s

′′
1 )

δ
=⇒ (s ′2, s

′′
2 ) ⇔ s ′1

δ−→ s ′2 and s ′′1
δ7−→ s ′′2

I F = {F1,F2}, where
F1 = {(s ′, s ′′) | s ′ ∈ F ′; s ′′ ∈ S ′′} and
F2 = {(s ′, s ′′) | s ′ ∈ S ′; s ′′ ∈ F ′′}

It is sufficient to show that L(GA) = L(A′) ∩ L(A′′)



Büchi automata intersection
Theorem
For any BA A′, A′′ there exists a GBA GA such that
L(GA) = L(A′) ∩ L(A′′)

Proof.

Illustration

A′:

A′′:

a
b

a
b

a

a

b

GA:

a

a

a

a

b
b



Büchi automata intersection
Theorem
For any BA A′, A′′ there exists a GBA GA such that
L(GA) = L(A′) ∩ L(A′′)

Proof. (L(GA) ⊆ L(A′) ∩ L(A′′))

Consider an accepting run ρ of GA:
(s ′0, s

′′
0 )

δ0=⇒ (s ′1, s
′′
1 )

δ1=⇒ . . .

By definition of GA:

I ρ′ = (s ′0
δ0−→ s ′1

δ1−→ . . .) is a run of A′

I ρ′′ = (s ′′0
δ07−→ s ′′1

δ17−→ . . .) is a run of A′′

I states from F1 occur infinitely often in ρ, and, therefore, in ρ′
I thus, ρ′ is an accepting run of A1

I states from F1 occur infinitely often in ρ, and, therefore, in ρ′′
I thus, ρ′′ is an accepting run of A2



Büchi automata intersection
Theorem
For any BA A′, A′′ there exists a GBA GA such that
L(GA) = L(A′) ∩ L(A′′)

Proof. (L(A′) ∩ L(A′′) ⊆ L(GA))

Consider accepting runs ρ′, ρ′′ of A′, A′′ respectively:
s ′0

δ0−→ s ′1
δ1−→ . . .

s ′′0
δ07−→ s ′′1

δ17−→ . . .

By definition of GA:

I ρ = ((s ′0, s
′′
0 )

δ0=⇒ (s ′1, s
′′
1 )

δ1=⇒ . . .) is a run of GA
I states of в F1 occur infinitely often in ρ′, and, therefore, in ρ
I states of в F2 occur infinitely often in ρ′′, and, therefore, in ρ

Thus, ρ is an accepting run of GA H



Emptiness checking for Büchi automata
Theorem
For any BA A:
L(A) = ∅ ⇔
at least one nontrivial strongly connected component containing
an accepting state is reachable from an initial state

Proof.Obvious?

Example

A1: a
a b

a

a, b
a, b

A2: a
a b

a

a, b

L(A1) 6= ∅
L(A2) = ∅



Automata-based model checking algorithm for
LTL
Given: a Kripke structure M, and an ltl-formula ϕ
Check: M |= ϕ?
Solution:

M ϕ

AM : L(AM) = Tr(M) GA¬ϕ: L(GA¬ϕ) = Tr(¬ϕ)

A¬ϕ: L(A¬ϕ) = L(GA¬ϕ)

GA: L(GA) = L(AM) ∩ L(A¬ϕ)

A: L(A) = L(GA)

M |= ϕ M 6|= ϕ

L(A) = ∅ L(A) 6= ∅


