SAT/SMT Solvers for Software Engineering and Security

A Short Course

by

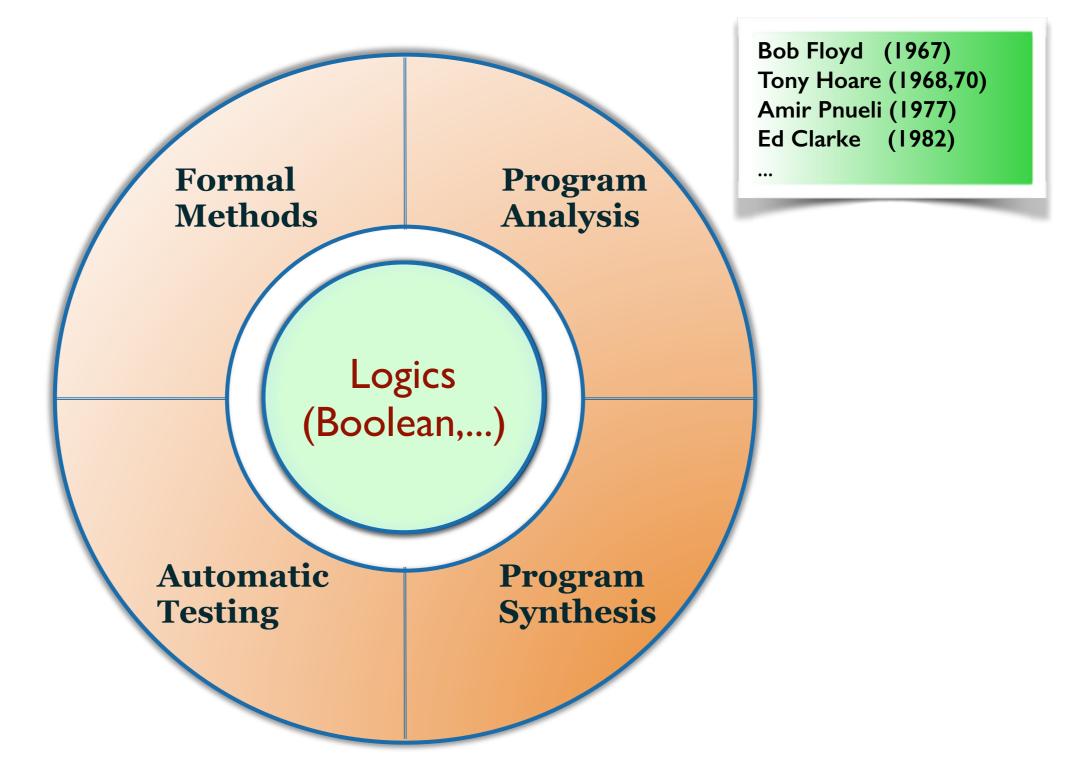
Vijay Ganesh Assistant Professor, University of Waterloo, Canada. Date: April 4-8, 2016 Venue: Moscow State University, Russia. Lecture I Symbolic Execution based Testing An Application of Solvers

> Vijay Ganesh Affiliation: University of Waterloo

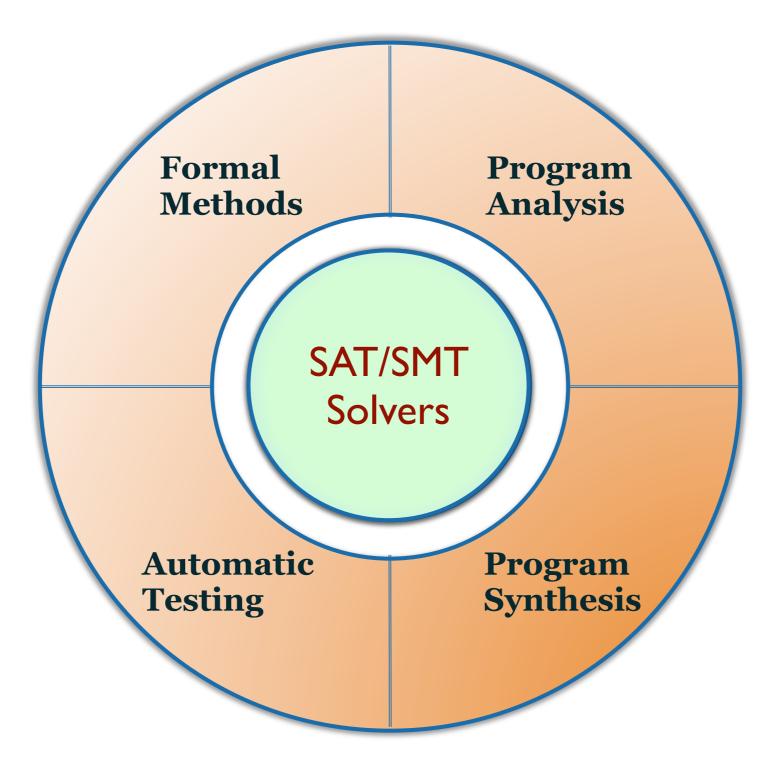
Goals of this Course An introduction to SAT/SMT Solvers and Apps

- On the importance of logic in software engineering and security
- What are constraint solvers (Boolean SAT and SMT solvers)
- Symbolic execution + solvers: a powerful combination
- Dynamic symbolic testing (aka, concolic testing)
- Anatomy of modern CDCL solvers
- Conclusions

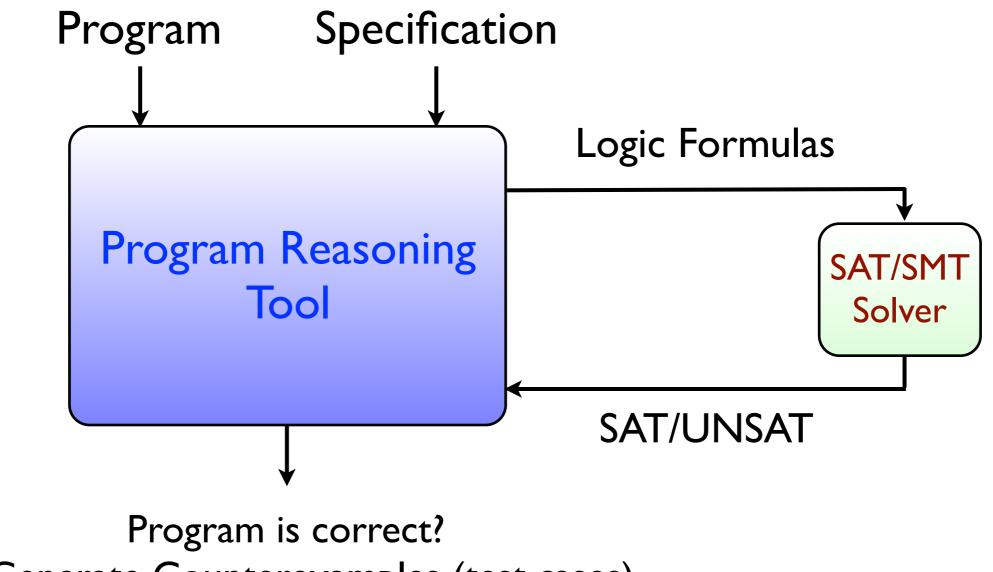
<u>A Foundation for Software Engineering</u> Logic Abstractions of Computation



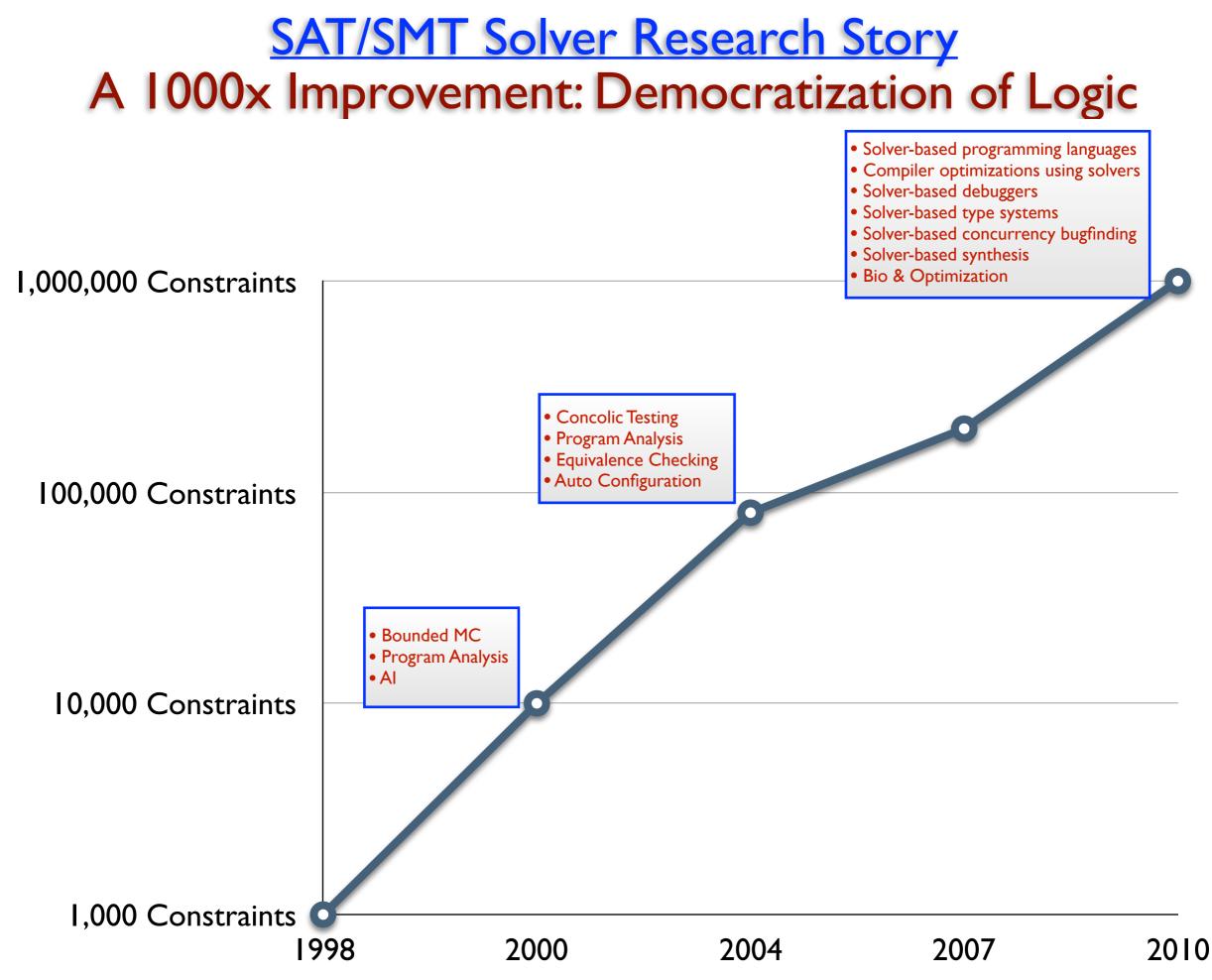
Software Engineering & SAT/SMT Solvers An Indispensable Tactic for Any Strategy



Software Engineering using Solvers Engineering, Usability, Novelty



or Generate Counterexamples (test cases)



The SAT/SMT Problem

- Rich logics (Modular arithmetic, Arrays, Strings,...)
- NP-complete, PSPACE-complete,...
- Practical, scalable, usable, automatic
- Enable novel software reliability approaches

Lecture Outline

Points already covered

Motivation for SAT/SMT solvers in software engineering

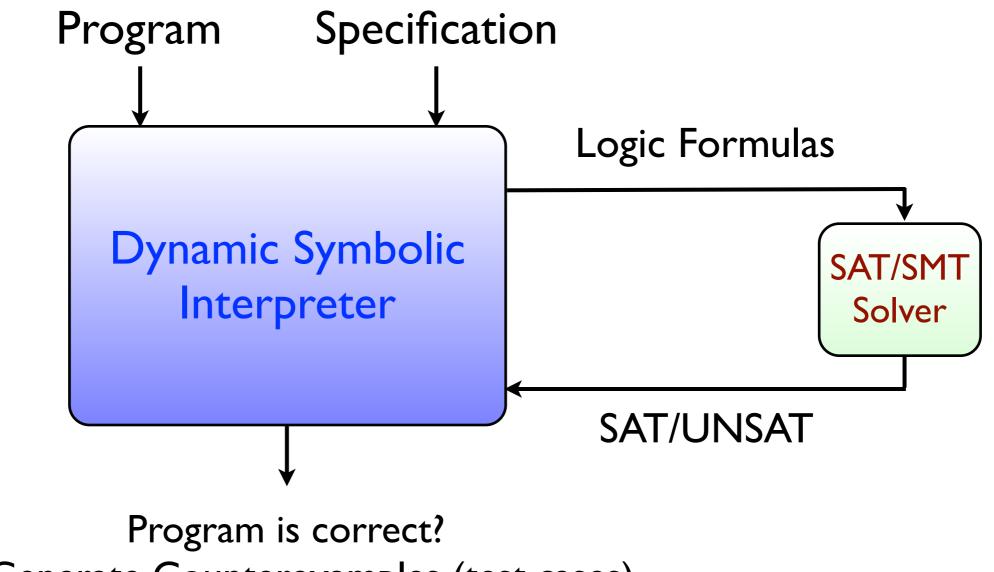
Migh-level description of the SAT/SMT problem & logics

Why you should care

Rest of the lecture

- Dynamic symbolic testing (aka concolic testing): A classic use of solvers
- Modern CDCL SAT solver architecture & techniques
- SAT/SMT-based applications
- Future of SAT/SMT solvers
- Some history (who, when,...) and references sprinkled throughout the talk

Dynamic Symbolic Testing Symbolic/Concrete Execution + Solvers



or Generate Counterexamples (test cases)

Concolic Testing: Example

```
int double (int v) {
    return 2*v;
}
```

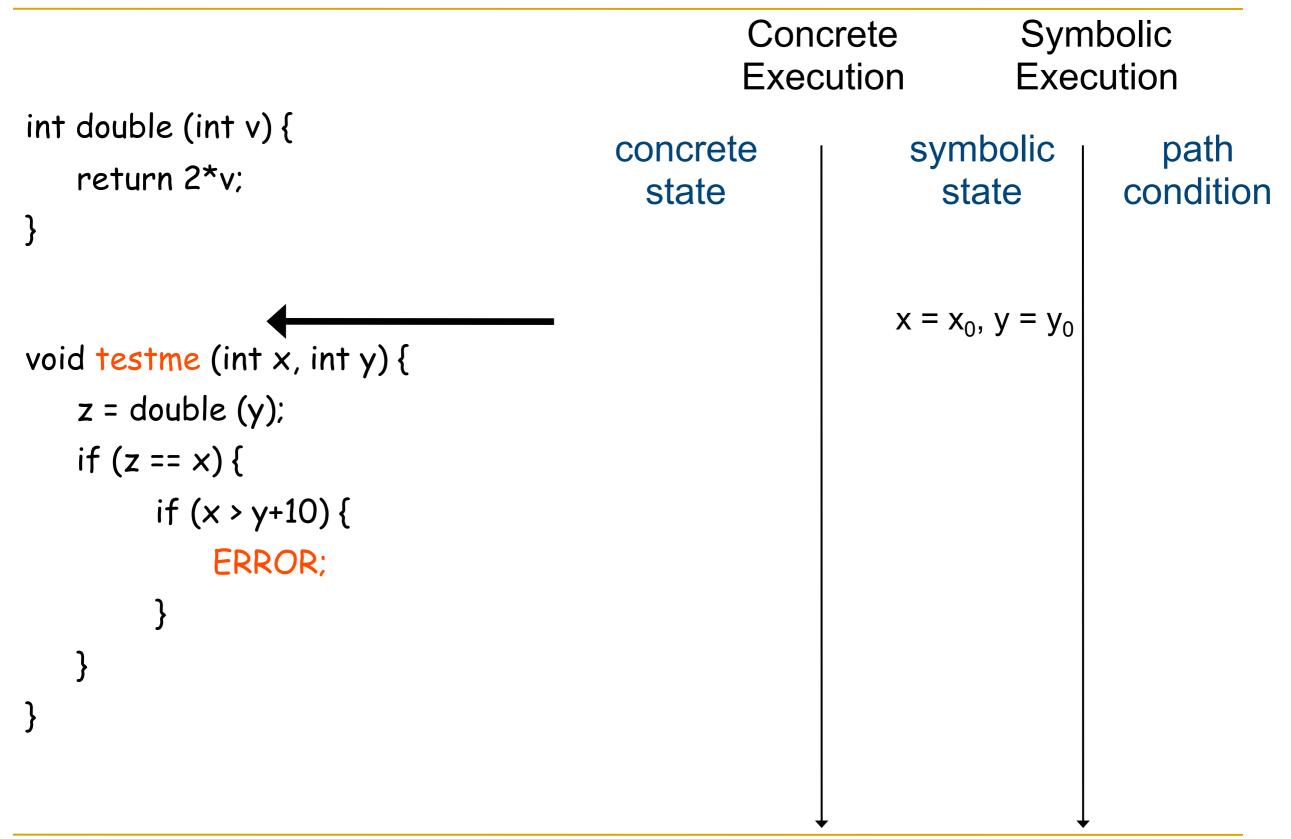
```
void testme (int x, int y) {
    z = double (y);
    if (z == x) {
        if (x > y+10) {
            ERROR;
        }
    }
}
```

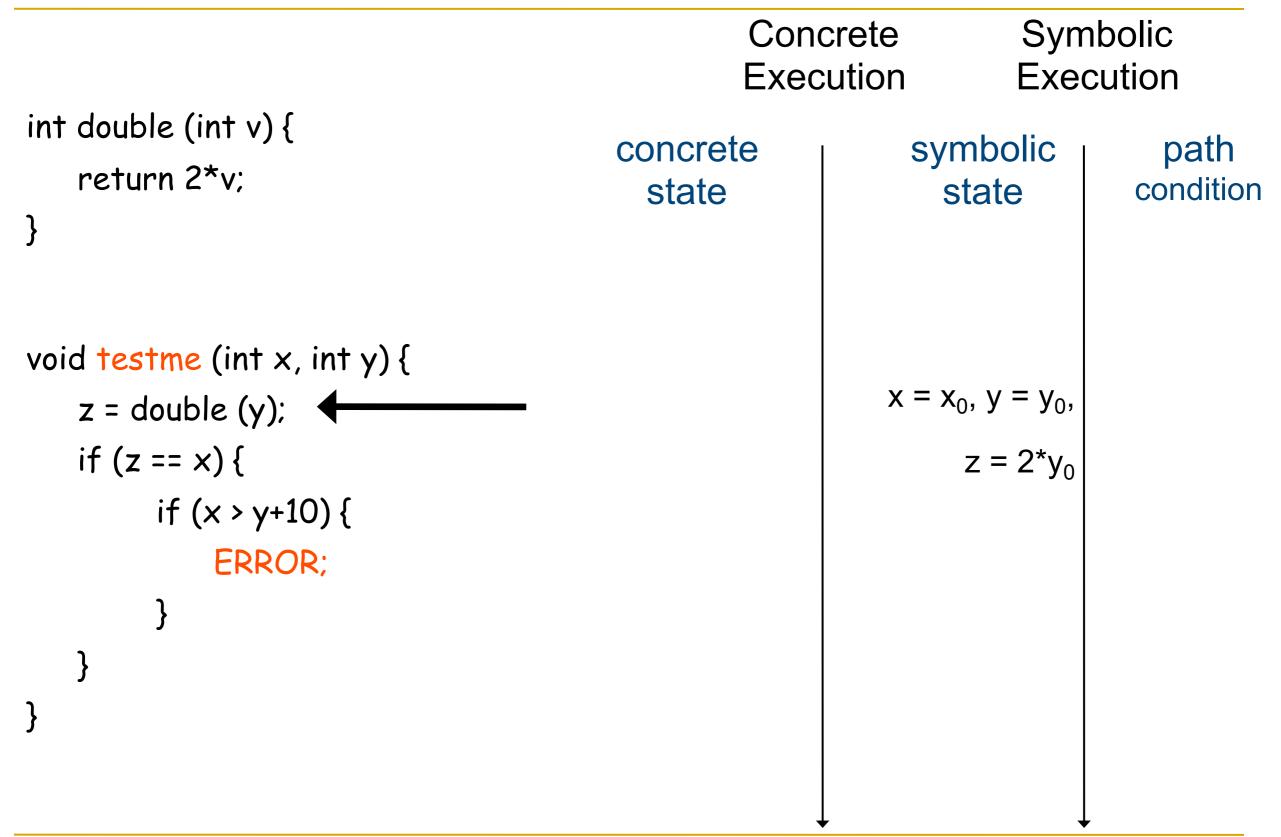
Concolic Testing: Example

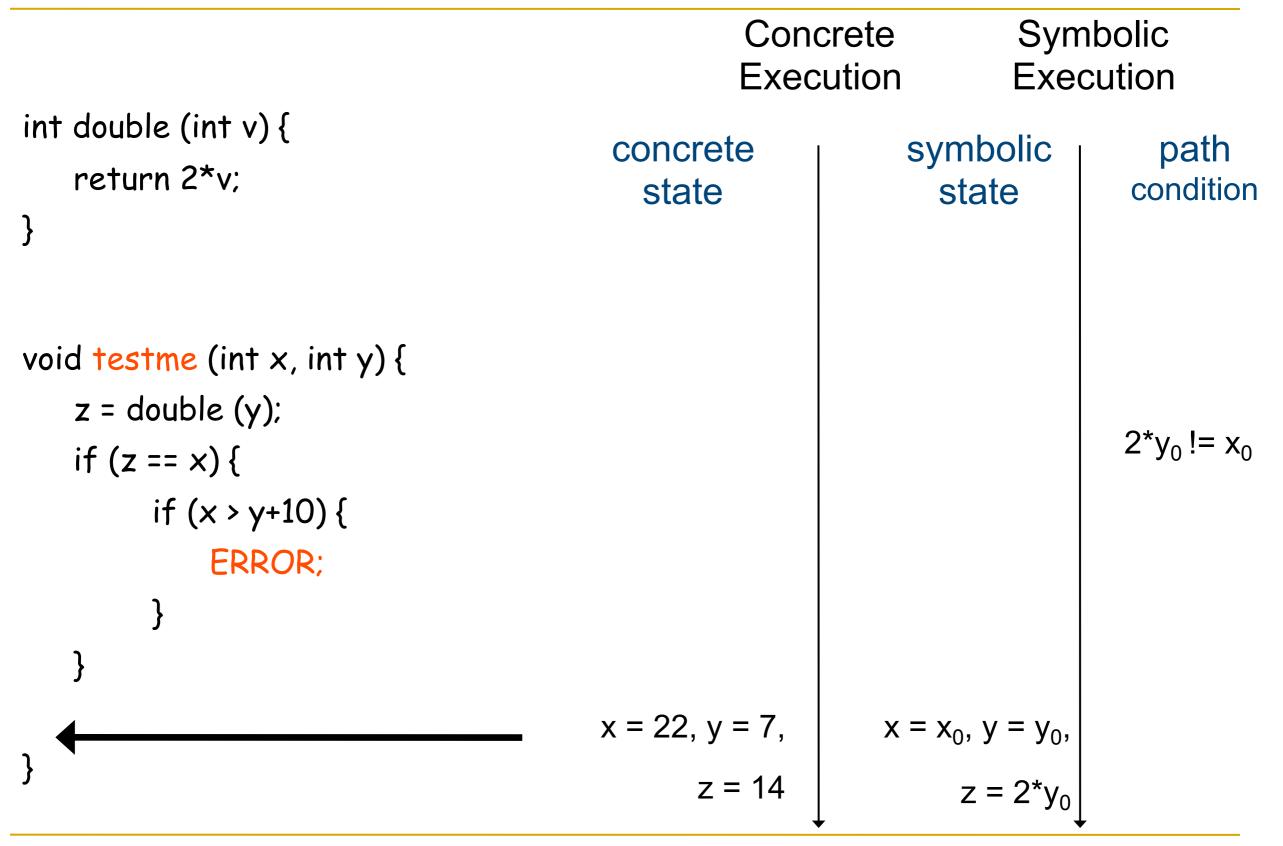
}

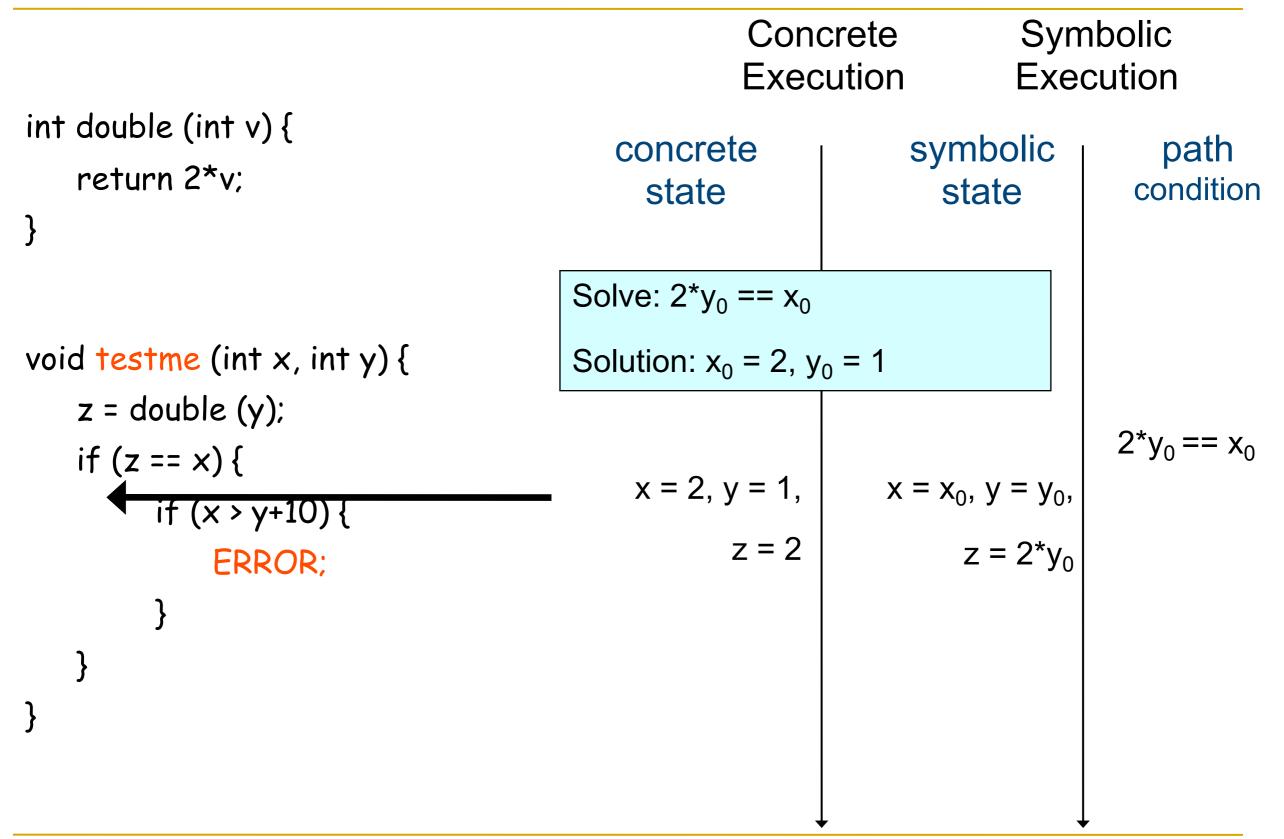
```
int double (int v) {
   return 2*v;
}
                                                  2*y == x
                                                                  Y
                                      Ν
void testme (int x, int y) {
   z = double (y);
                                                              x > y+10
                                                    Ν
   if (z == x) {
         if (x > y+10) {
             ERROR;
                                                                         ERROR
         }
   }
```

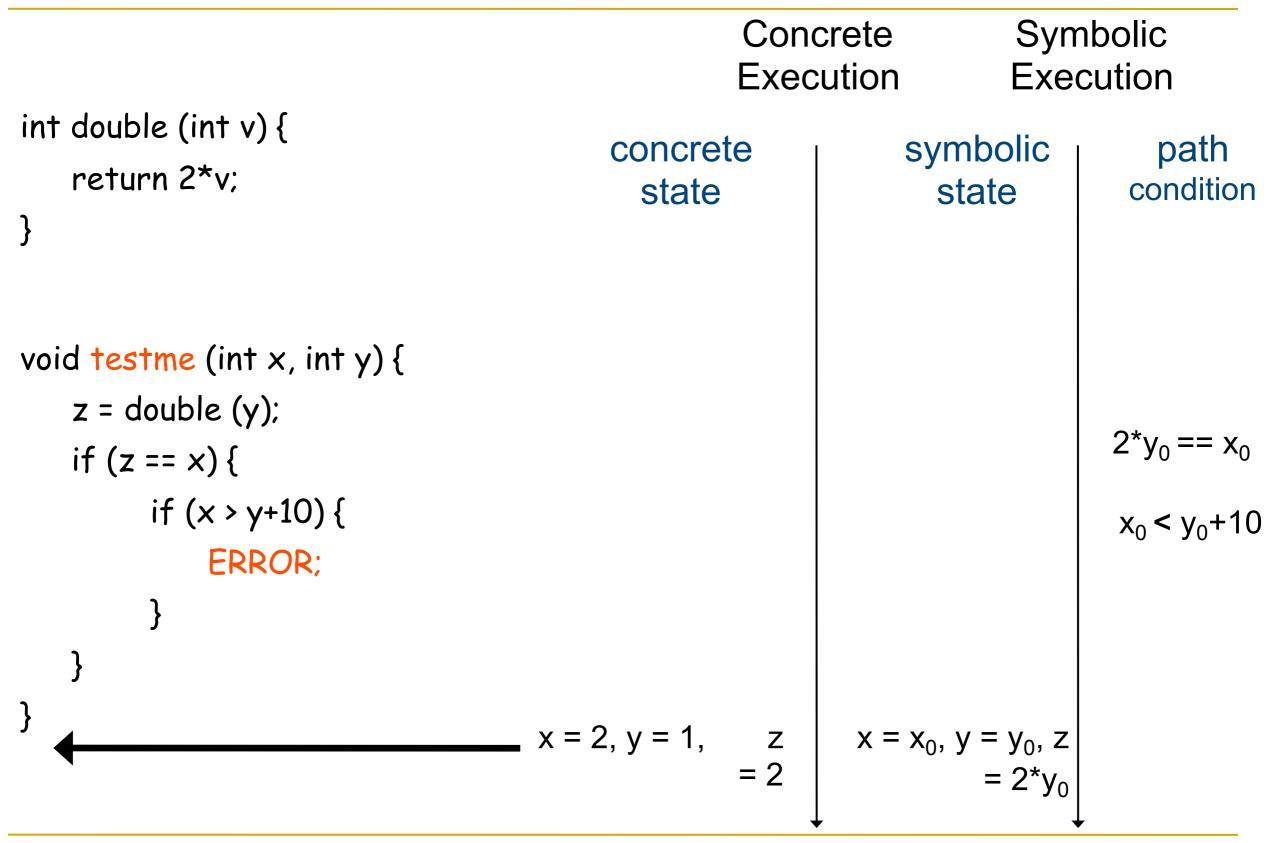
Y





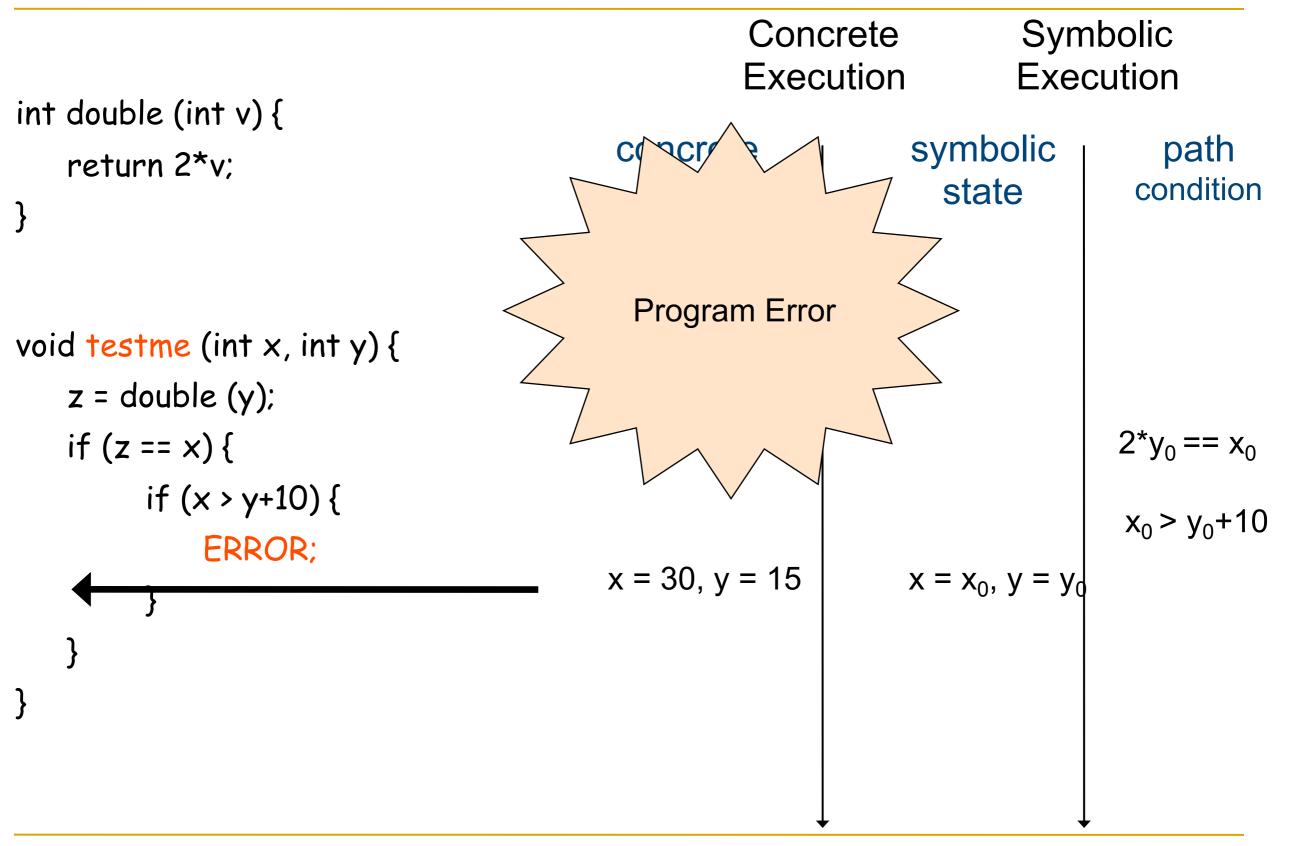






	-		•	mbolic ecution	
int double (int v) { return 2*v; }	concrete state			path condition	
	Solve: (2*y ₀ == x ₀) A				
void <mark>testme</mark> (int x, int y) { z = double (y);	Solution: $x_0 = 30$, $y_0 = 15$				
if (z == x) {				$2^*y_0 == x_0$	
if (x > y+10) { ERROR;				x₀ • y₀+10	
}					
}					
}	x = 2, y = 1,	$\mathbf{x} = \mathbf{x}_0$	$y_{0}, y = y_{0},$		
	z = 2		$z = 2^* y_0 \downarrow$		

	Concrete Execution		Symbolic Execution	
int double (int v) { return 2*v; }	concrete state	-	nbolic ate	path condition
<pre>void testme (int x, int y) { z = double (y); if (z == x) { if (x > y+10) { ERROR; } } }</pre>	x = 30, y = 15	$\mathbf{x} = \mathbf{x}_0$	o, y = y ₀	



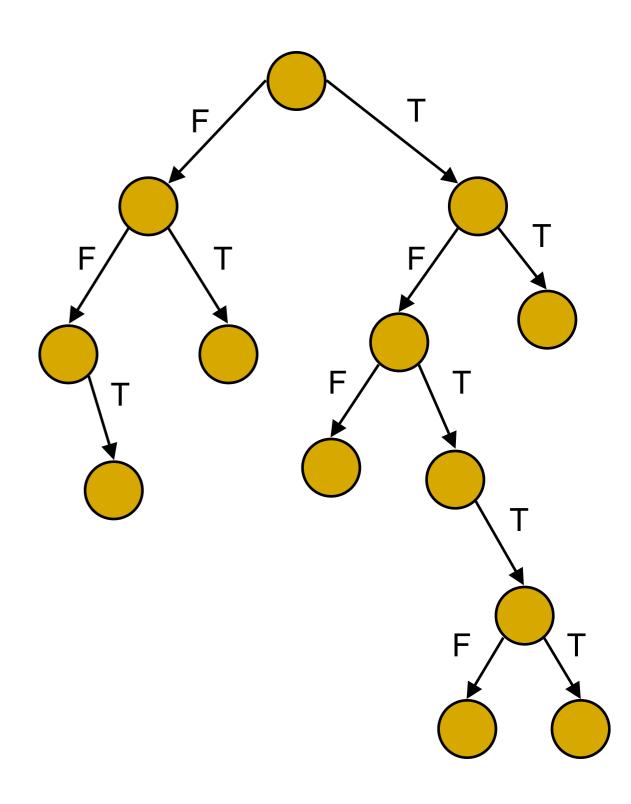
Concolic Testing Approach - Example 2

Concolic Execution

void <mark>testme</mark> (int x, int y) {				
if (hash(y) == x) { ERROR;	concrete state	symbolic state	path condition	
}	set y = 15, choose x randomly	$\mathbf{x} = \mathbf{x}_0, \ \mathbf{y} = \mathbf{y}_0$	hash(15) ==x	
	record hash(y)			
	Run again by setting			
	y = 15, x= hash(y)			
		\bot -	L	

Explicit Path (not State) Model Checking

- Traverse all execution paths one by one to detect errors
 - assertion violations
 - program crash
 - uncaught exceptions
- combine with valgrind to discover memory errors



Dynamic Symbolic Testing Some History

Symbolic execution for testing first proposed by Lori Clarke (1975) ACM SIGSOFT Outstanding Researcher Award 2012

Sollow up work by J.C. King (1976)

Rediscovered/modified in the context of powerful solvers, analysis, and appropriate concretizations by independent groups

Patrice Godefroid and Koushik Sen (2005)

🗹 Dawson Engler et al. (2005)

Micky Williams et al. (2004)

Many follow up works by George Candea, Dawn Song, David Molnar,...

Meyond testing: fault localization, repair, security,...

Dynamic Symbolic Testing and Analysis Tools

KLEE: the most well-known open-source symbolic execution tool (web: <u>https://klee.github.io/</u>)

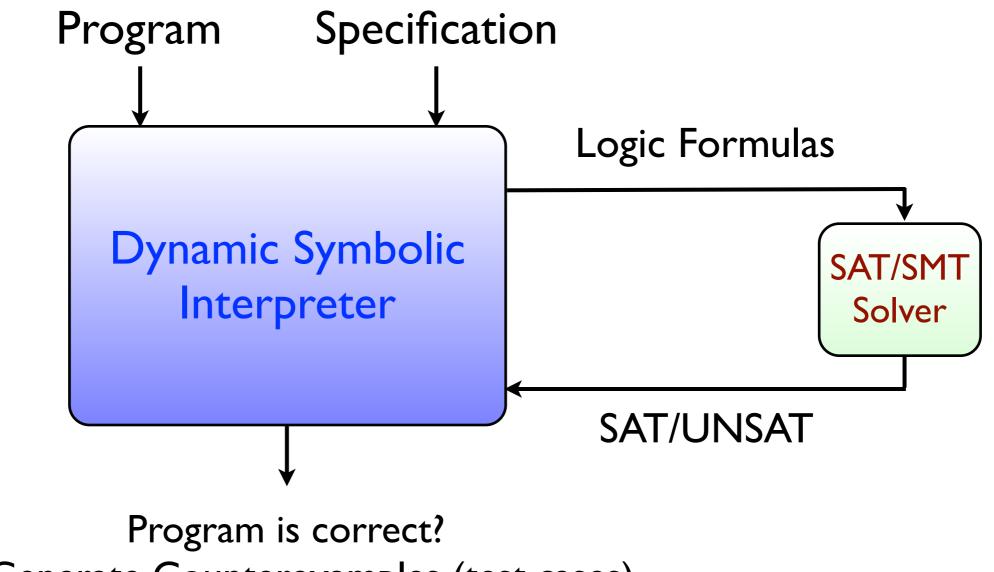
SAGE: Microsoft's dynamic symbolic execution tool (closed-source)

S2E: symbolic engine that is built on top of KLEE, but works on binaries (web: <u>http://dslab.epfl.ch/pubs/s2e-tocs.pdf</u>)

Jalangi: dynamic symbolic analysis tool for JavaScript (web: <u>https://github.com/Samsung/jalangi2</u>)

Other tools: Triton, BAP, Bitblaze, Webblaze

Dynamic Symbolic Testing Symbolic/Concrete Execution + Solvers



or Generate Counterexamples (test cases)

Lecture Outline

Points already covered

- Motivation for SAT/SMT solvers in software engineering
- Migh-level description of the SAT/SMT problem & logics
- Why you should care
- **M**Dynamic symbolic testing (sometime also called concolic testing)

Rest of the lecture

- Modern CDCL SAT solver architecture & techniques
- An overview of programmatic SAT solvers
- Some history (who, when,...) and references sprinkled throughout the talk

The Boolean SAT Problem Basic Definitions and Format

A literal p is a Boolean variable x or its negation $\neg x$.

A clause C is a disjunction of literals: $x_2 \vee \neg x_{41} \vee x_{15}$

A CNF is a conjunction of clauses: $(x_2 \lor \neg x_1 \lor x_5) \land (x_6 \lor \neg x_2) \land (x_3 \lor \neg x_4 \lor \neg x_6)$

All Boolean formulas assumed to be in CNF

Assignment is a mapping (binding) from variables to Boolean values (True, False).

A unit clause C is a clause with a single unbound literal

The **SAT-problem** is:

Find an assignment s.t. each input clause has a true literal (aka input formula has a solution or is SAT)

OR establish input formula has no solution (aka input formula is UNSAT)

The Input formula is represented in **DIMACS Format**:

c DIMACS

p cnf 6 3

- 2 1 5 0
- 6 -2 0
- 3 -4 -6 0

Vijay Ganesh

DPLL SAT Solver Architecture The Basic Solver

$DPLL(\Theta_{cnf}, assign) \{$ Propagate unit clauses; if "conflict": return FALSE; if "complete assign": return TRUE; "pick decision variable x"; return **DPLL**(Θ_{cnf} | x=0, assign[x=0]) || DPLL($\Theta_{cnf} |_{x=1}$, assign[x=1]);

- Propagate (Boolean Constant Propagation):
 - Propagate inferences due to unit clauses
 - Most time in solving goes into this

• Detect Conflict:

• Conflict: partial assignment is not satisfying

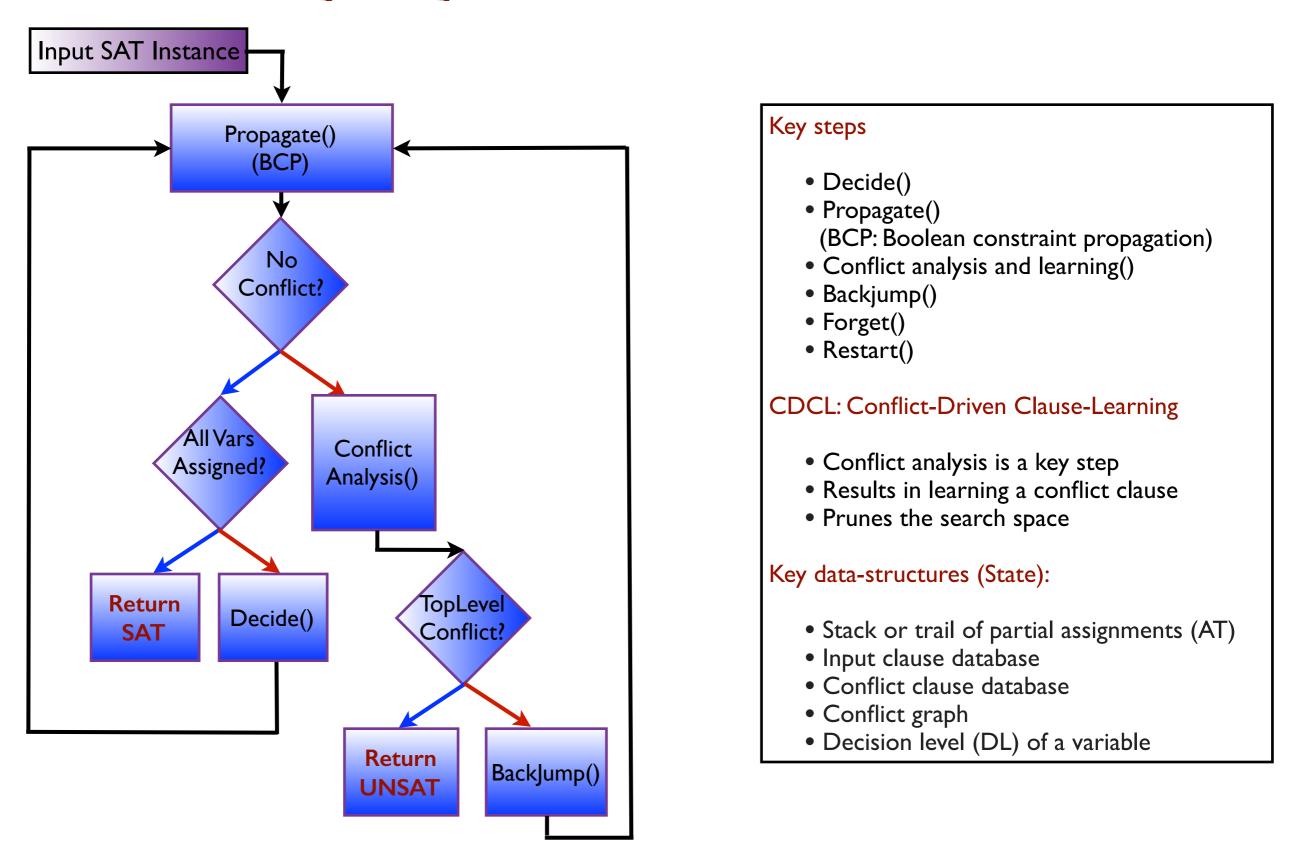
• Decide (Branch):

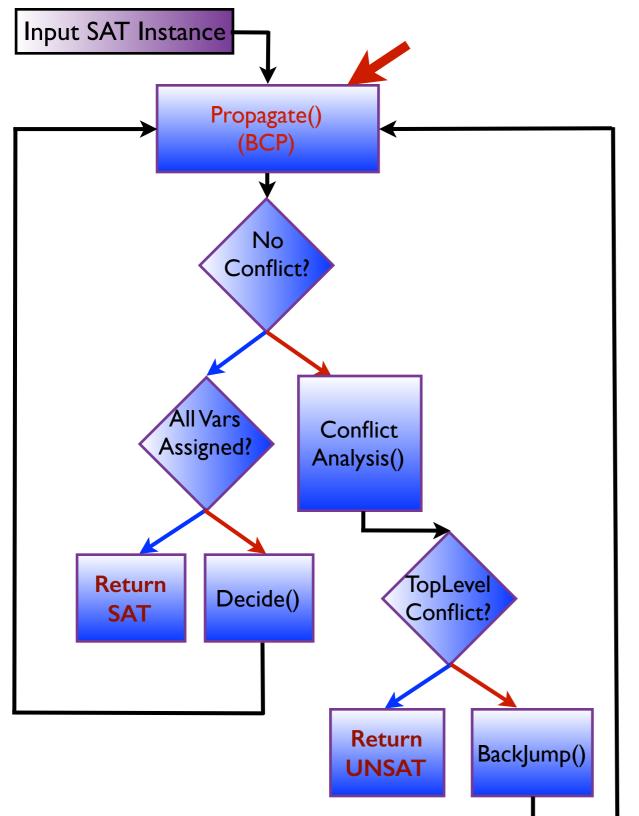
• Choose a variable & assign some value

• Backtracking:

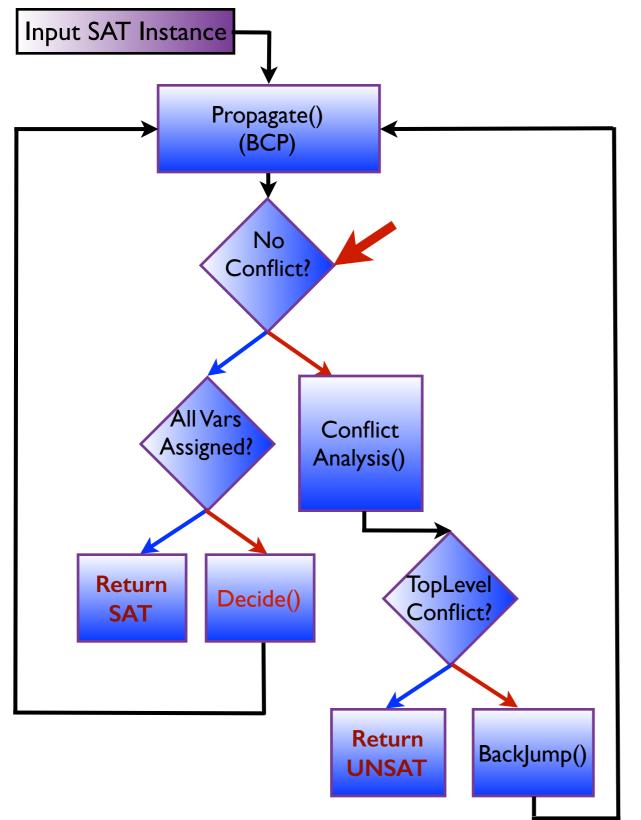
• Implicitly done by the recursion

Modern CDCL SAT Solver Architecture Key Steps and Data-structures





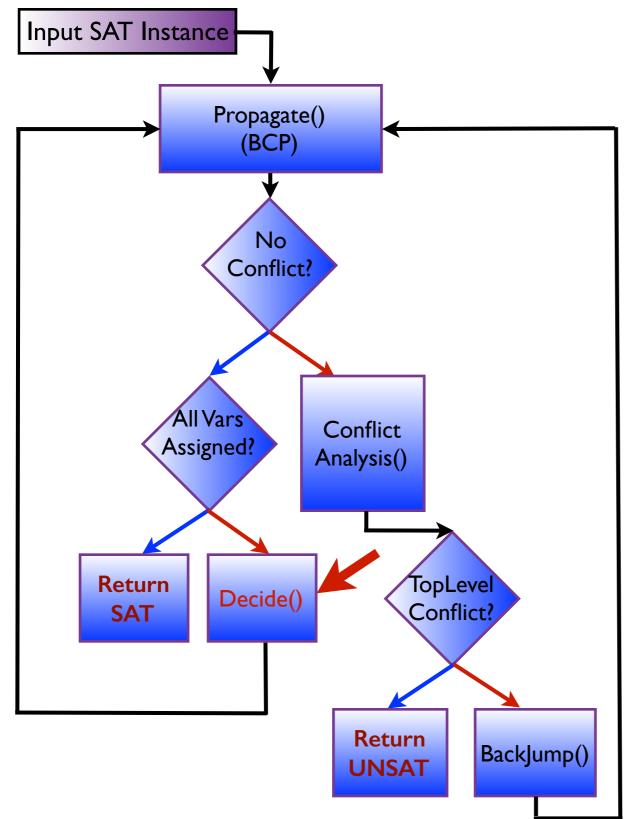
- Propagate (Boolean Constant Propagation):
 - Propagate inferences due to unit clauses
 - Most time in solving goes into this



- Propagate (Boolean Constant Propagation):
 - Propagate inferences due to unit clauses
 - Most time in solving goes into this

• Detect Conflict?

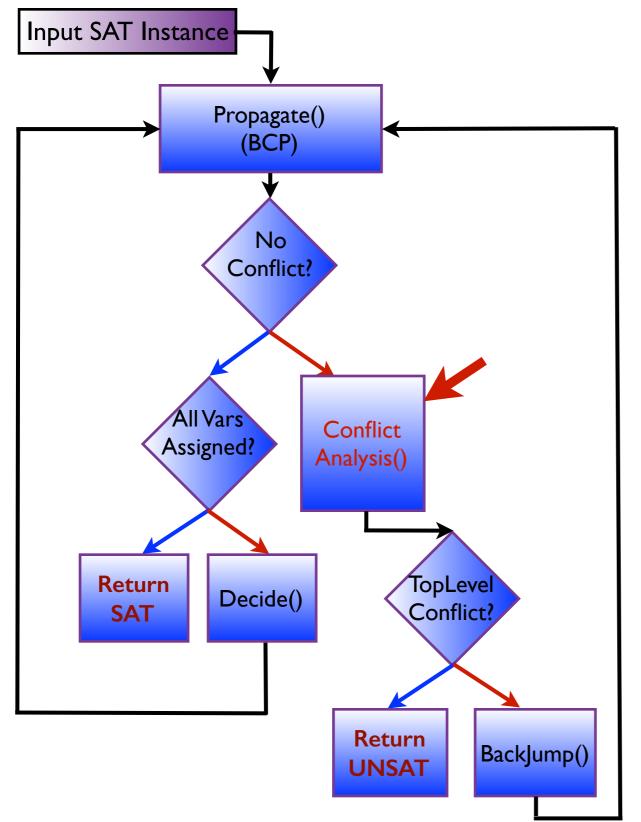
• Conflict: partial assignment is not satisfying



- Propagate (Boolean Constant Propagation):
 - Propagate inferences due to unit clauses
 - Most time in solving goes into this

• Detect Conflict?

- Conflict: partial assignment is not satisfying
- Decide (Branch):
 - Choose a variable & assign some value (decision)
 - Basic mechanism to do search
 - Imposes dynamic variable order
 - Decision Level (DL): variable \Rightarrow natural number



• Propagate:

- Propagate inferences due to unit clauses
- Most time in solving goes into this

• Detect Conflict?

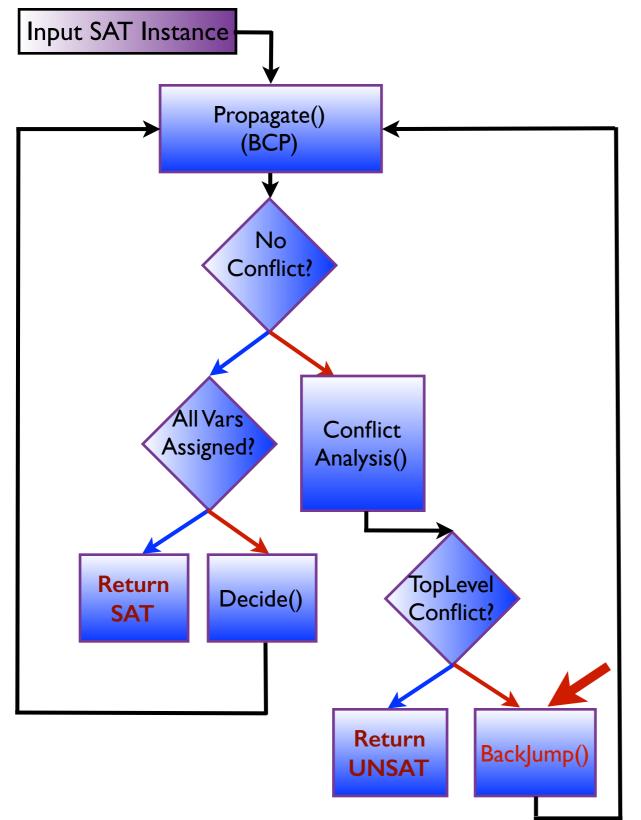
• Conflict: partial assignment is not satisfying

• Decide (Branch):

- Choose a variable & assign some value (decision)
- Each decision is a decision level
- Imposes dynamic variable order
- Decision Level (DL): variable \Rightarrow natural number

• Conflict analysis and clause learning:

- Compute assignments that lead to conflict (analysis)
- Construct conflict clause blocks the non-satisfying & a large set of other 'no-good' assignments (learning)
- Marques-Silva & Sakallah (1996)



• Propagate:

- Propagate inferences due to unit clauses
- Most time in solving goes into this

• Detect Conflict?

• Conflict: partial assignment is not satisfying

• Decide:

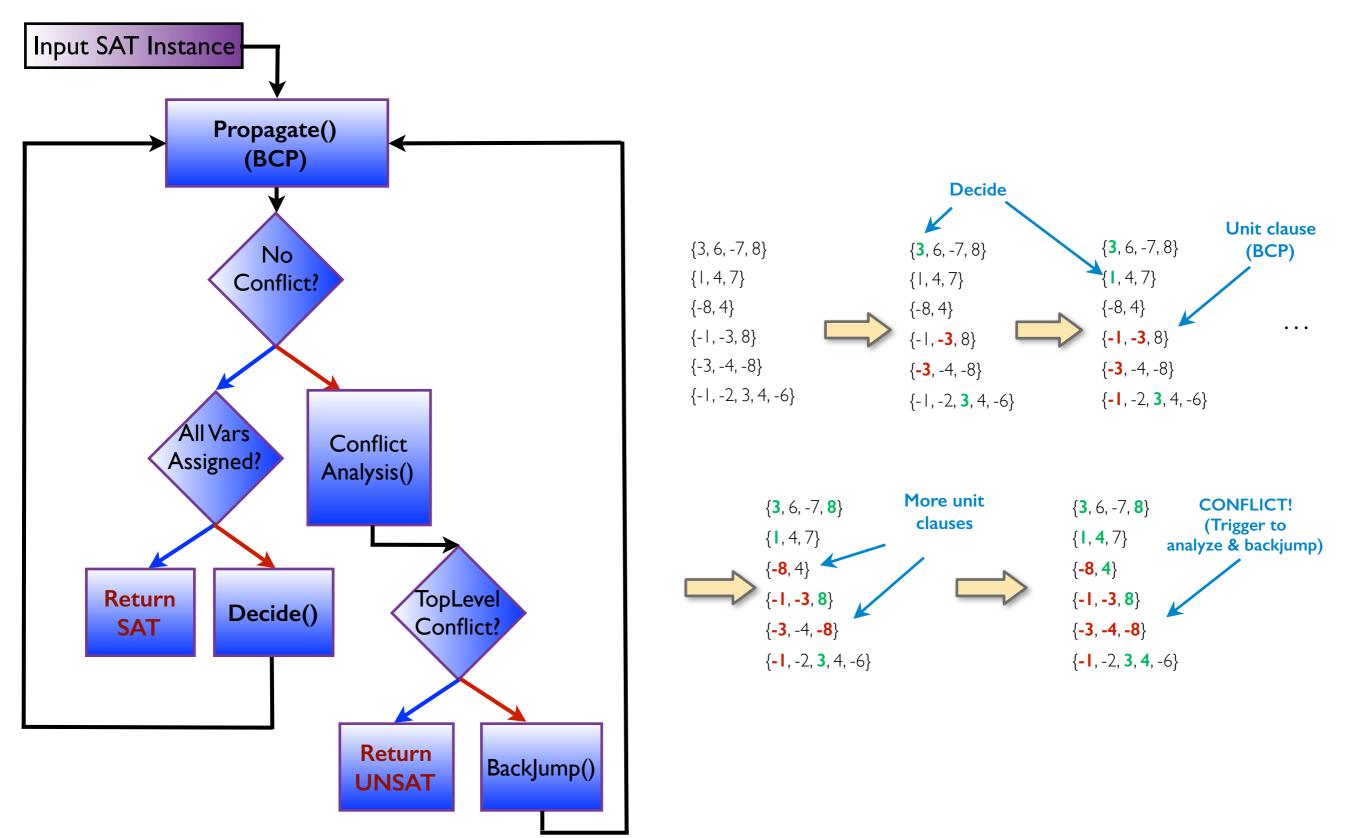
- Choose a variable & assign some value (decision)
- Each decision is a decision level
- Imposes dynamic variable order
- Decision Level (DL): variable \Rightarrow natural number

• Conflict analysis and clause learning:

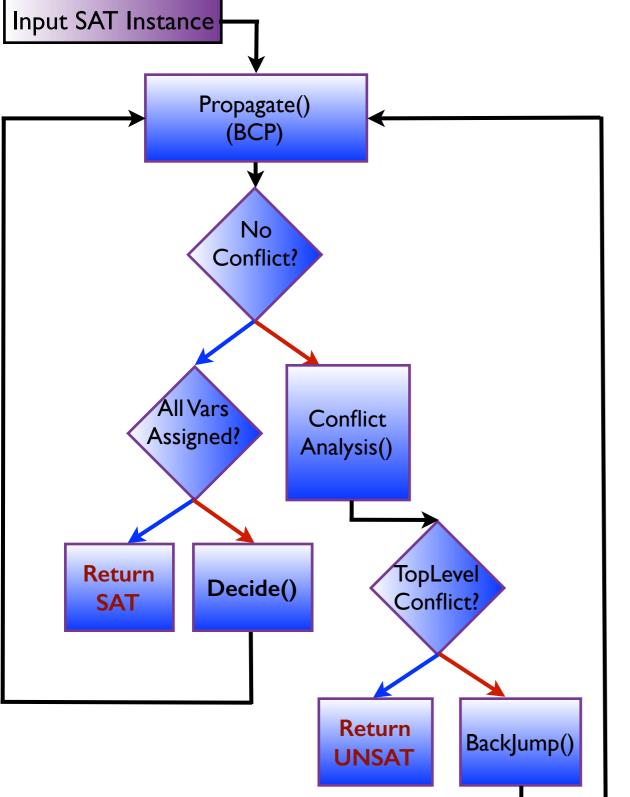
- Compute assignments that lead to conflict (analysis)
- Construct conflict clause blocks the non-satisfying & a large set of other 'no-good' assignments (learning)
- Marques-Silva & Sakallah (1996)

• Conflict-driven BackJump:

- Undo the decision(s) that caused no-good assignment
- Assign 'decision variables' different values
- Go back several decision levels
- Backjump: Marques-Silva, Sakallah (1999)
- Backtrack: Davis, Putnam, Loveland, Logemann (1962)

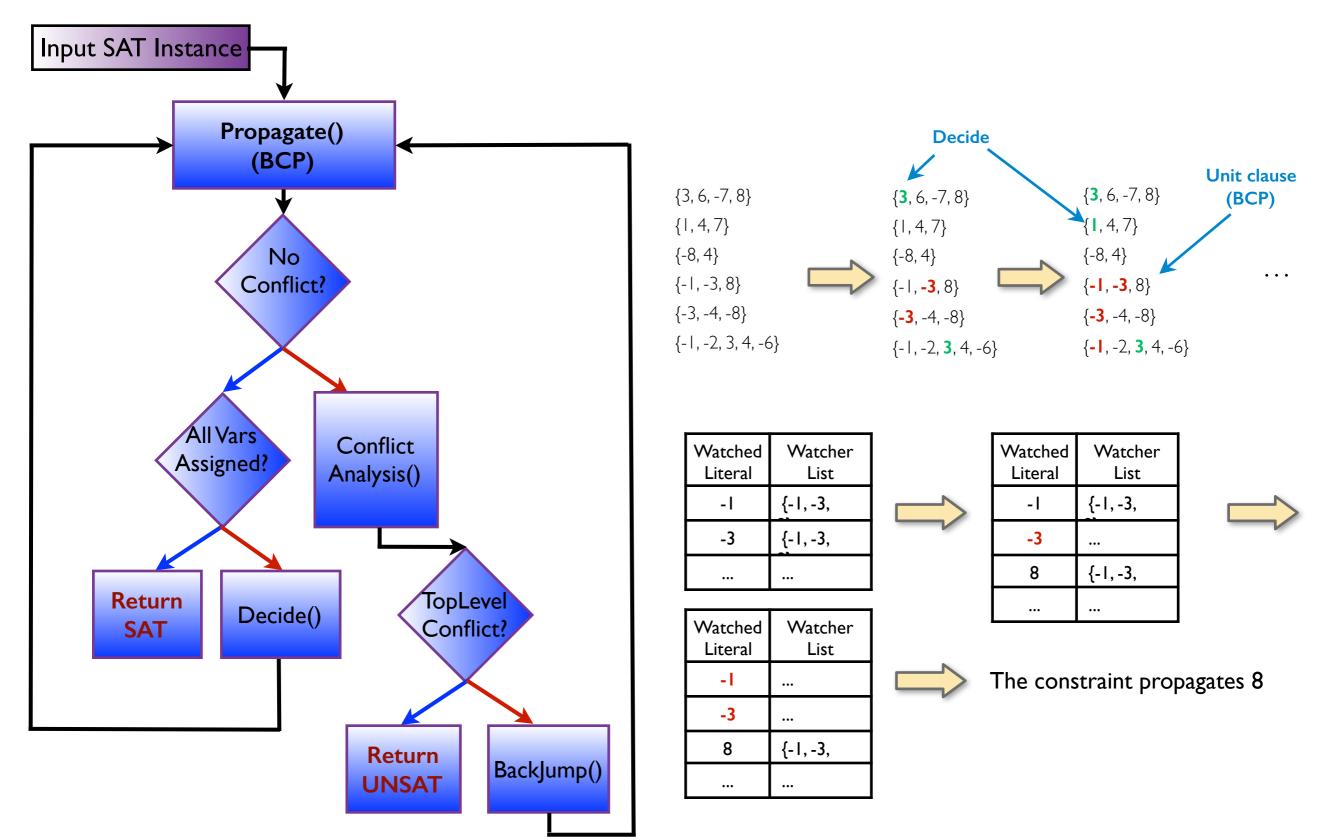


Modern CDCL SAT Solver Architecture Decide() Details: VSIDS Heuristic

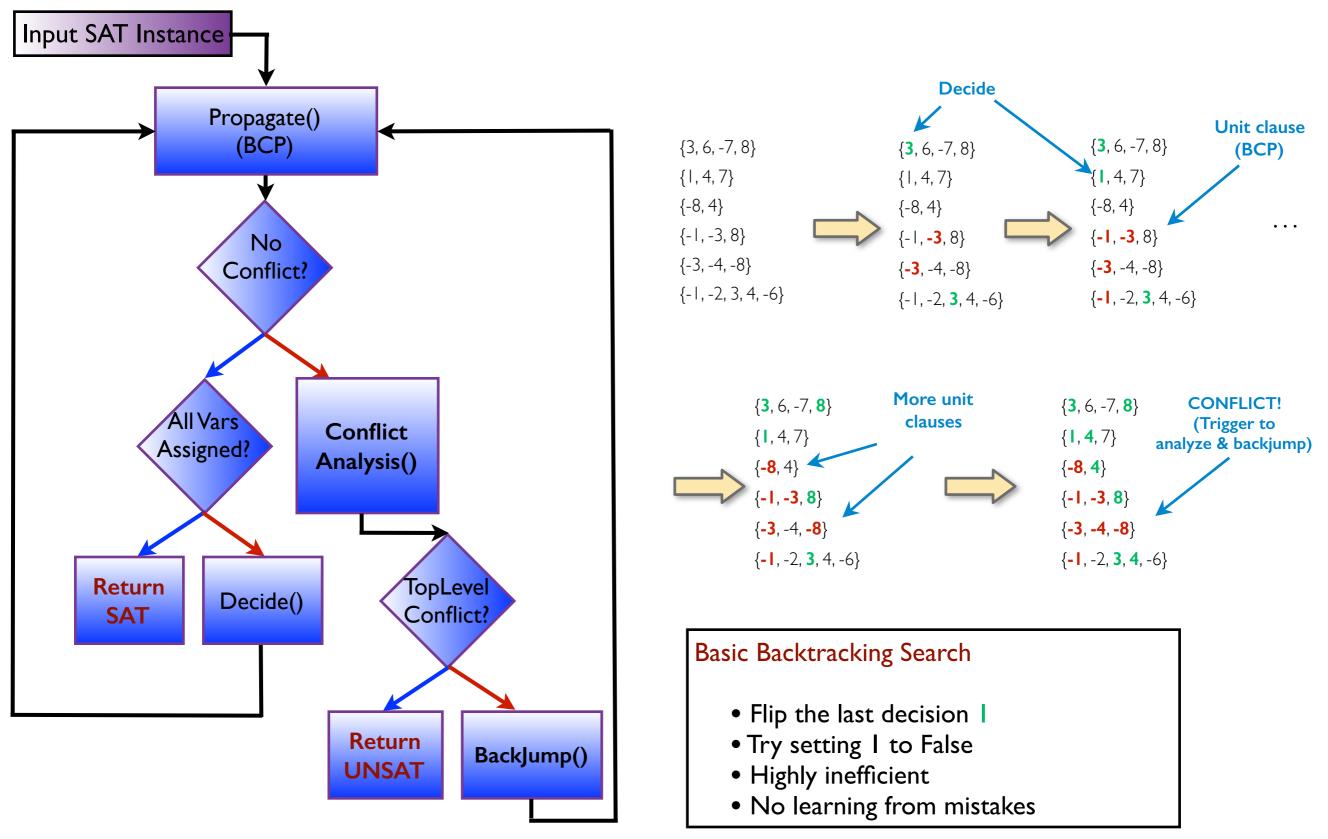


• Decide() or Branching(): • Choose a variable & assign some value (decision) • Imposes dynamic variable order (Malik et al. 2001) • How to choose a variable: VSIDS heuristics • Each variable has an activity • Activity is bumped additively, if variable occurs in conflict clause • Activity of all variables is decayed by multiplying by const < 1 • Next decision variable is the variable with highest activity • Over time, truly important variables get high activity • This is pure magic, and seems to work for many problems

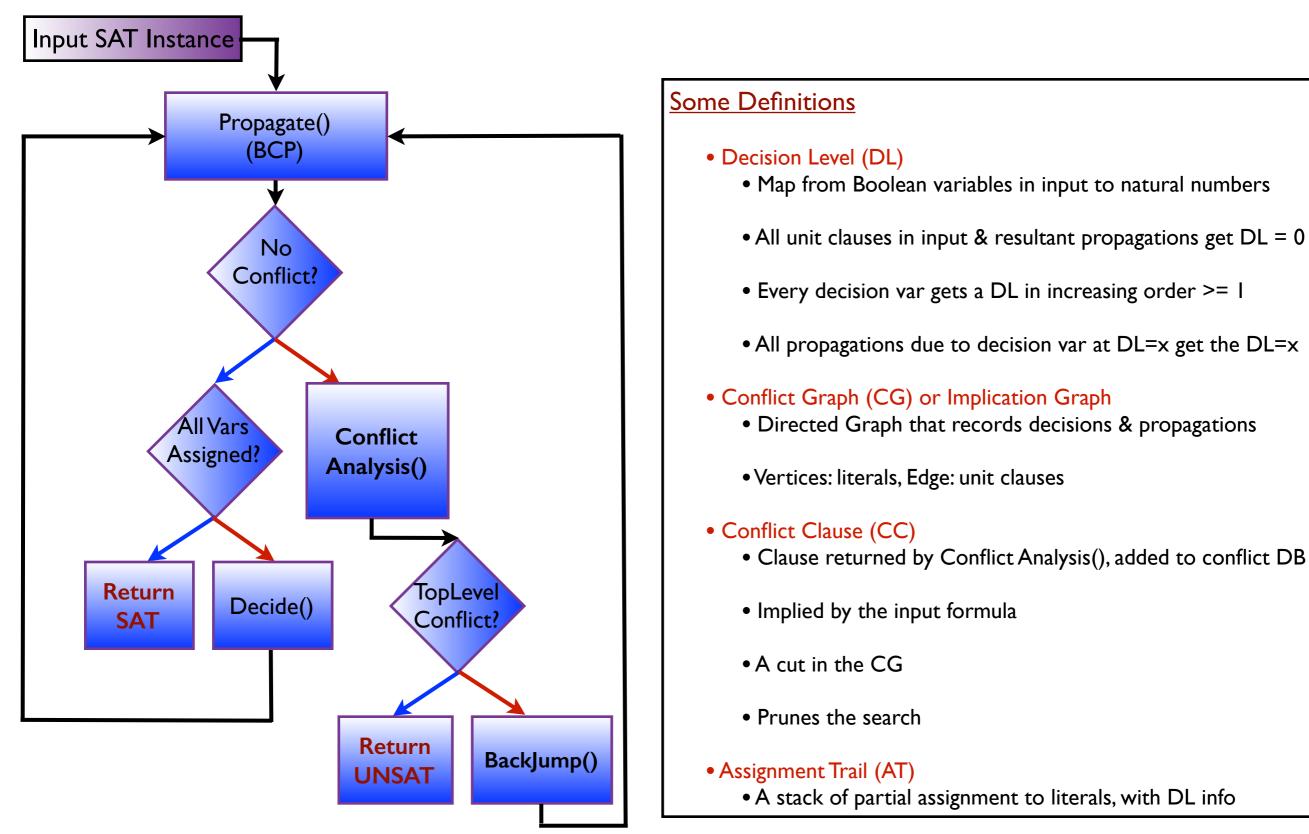
<u>Modern CDCL SAT Solver Architecture</u> Propagate() Details: Two-watched Literal Scheme



Modern CDCL SAT Solver Architecture Propagate(), Decide(), Analyze/Learn(), BackJump()



Modern CDCL SAT Solver Architecture Conflict Analysis/Learn() Details



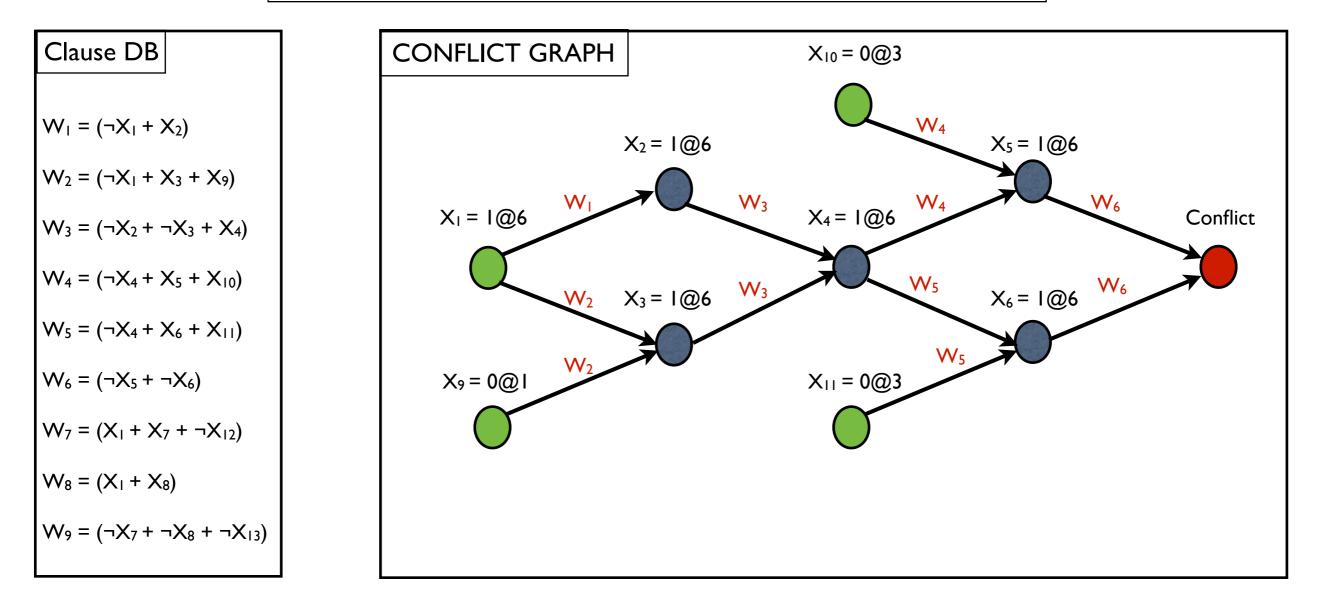
Vijay Ganesh

39

Modern CDCL SAT Solver Architecture Conflict Analysis/Learn() Details: Implication Graph

Current Assignment Trail: $\{X_9 = 0 @ I, X_{10} = 0 @ 3, X_{11} = 0 @ 3, X_{12} = I @ 2, X_{13} = I @ 2, ...\}$

Current decision: $\{X_1 = I@6\}$

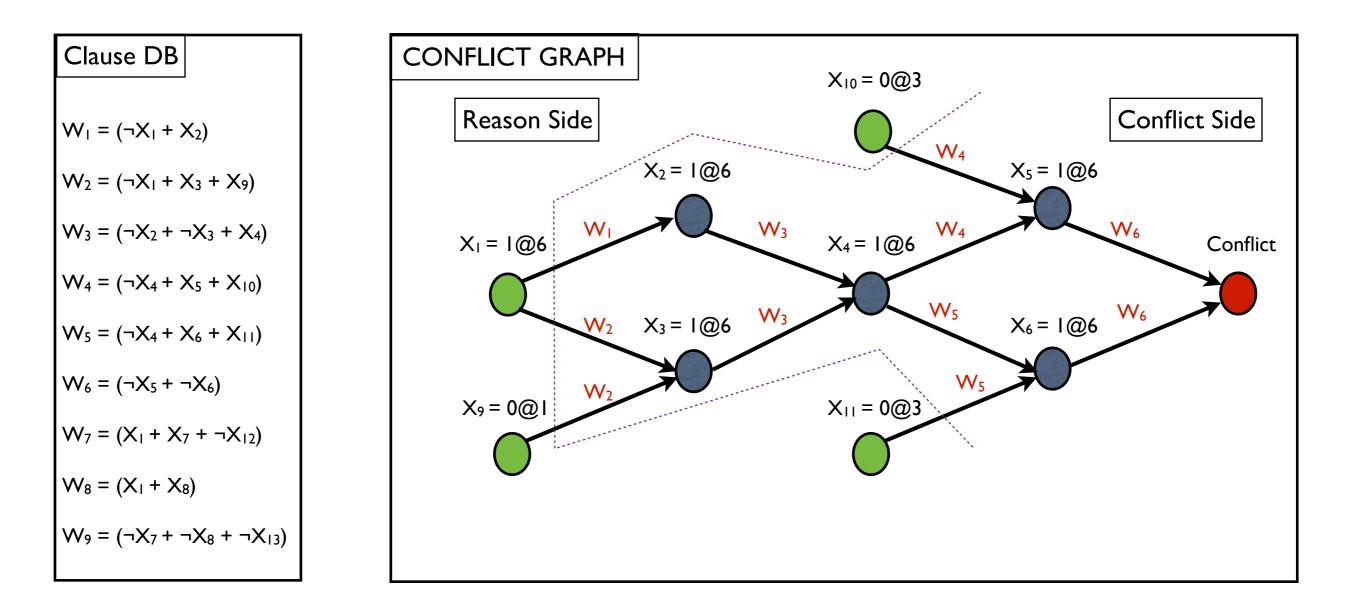


<u>Modern CDCL SAT Solver Architecture</u> Conflict Analysis/Learn() Details: Conflict Clause

Current Assignment Trail: $\{X_9 = 0@1, X_{10} = 0@3, X_{11} = 0@3, X_{12} = 1@2, X_{13} = 1@2, ...\}$

Current Decision: $\{X_1 = I@6\}$

Simplest strategy is to traverse the conflict graph backwards until decision variables: conflict clause includes only decision variables $(\neg X_1 + X_9 + X_{10} + X_{11})$

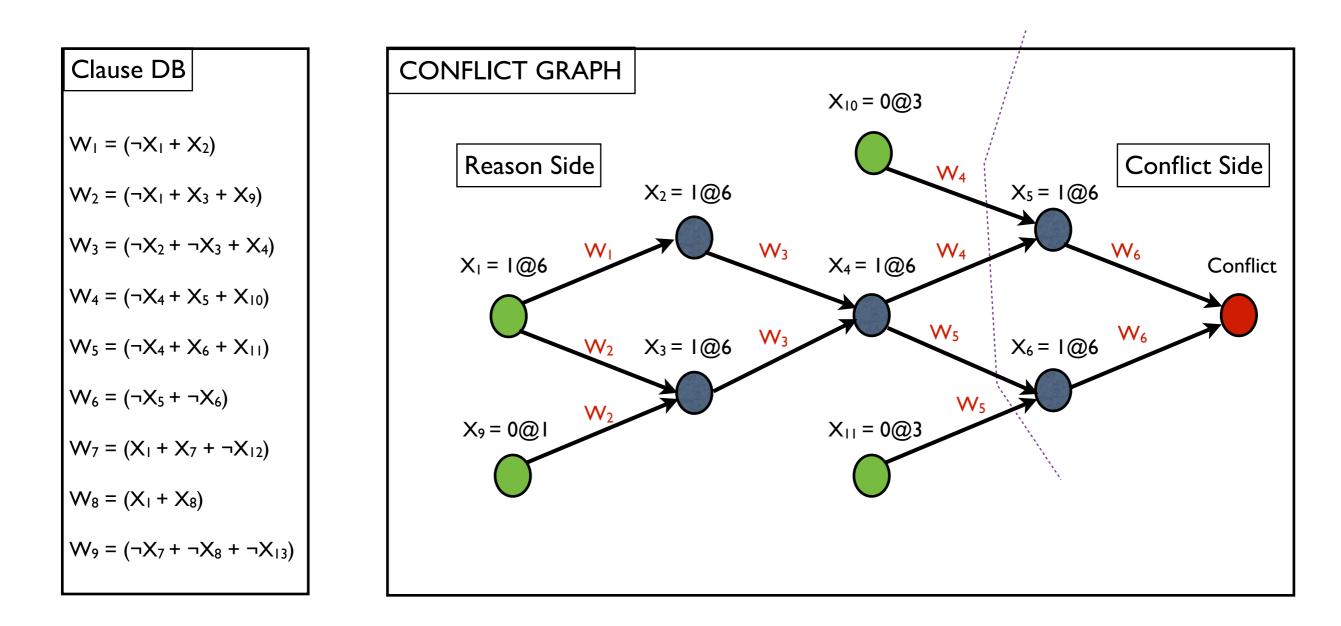


<u>Modern CDCL SAT Solver Architecture</u> Conflict Analysis/Learn() Details: Conflict Clause

Current Assignment Trail: $\{X_9 = 0@1, X_{10} = 0@3, X_{11} = 0@3, X_{12} = 1@2, X_{13} = 1@2, ...\}$

Current Decision: $\{X_1 = I@6\}$

Another strategy is to use First Unique Implicant Point (UIP): Traverse graph backwards in breadth-first, expand literals of conflict, stop at first UIP

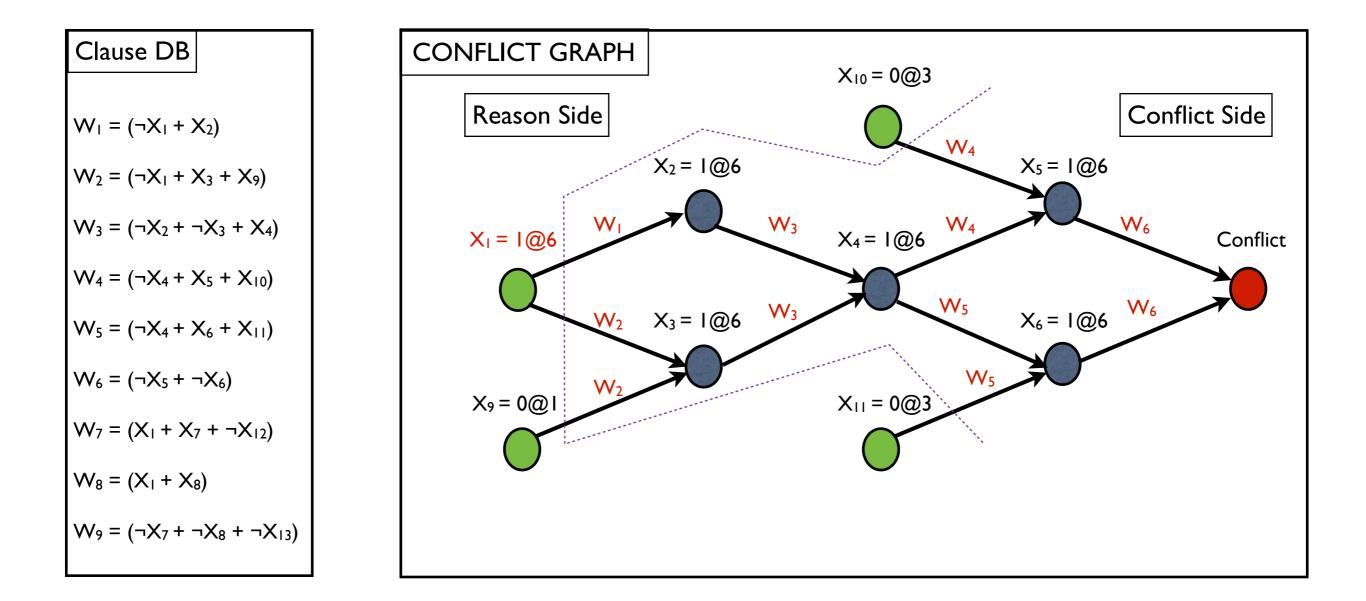


Modern CDCL SAT Solver Architecture Conflict Analysis/Learn() Details: BackTrack

Current Assignment Trail: $\{X_9 = 0@1, X_{10} = 0@3, X_{11} = 0@3, X_{12} = 1@2, X_{13} = 1@2, ...\}$

Current decision: $\{X_1 = I@6\}$

Strategy: Closest decision level (DL) \leq current DL for which conflict clause is unit. Undo {X₁ = 1@6}

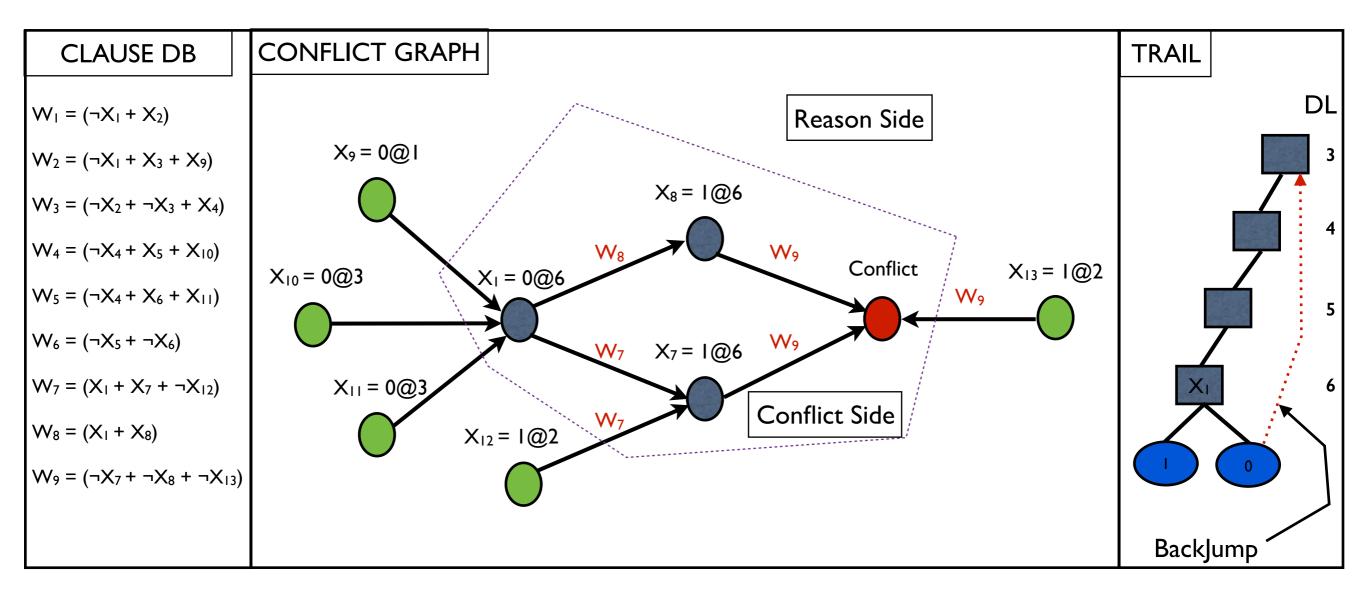


<u>Modern CDCL SAT Solver Architecture</u> Conflict Analysis/Learn() Details: BackJump

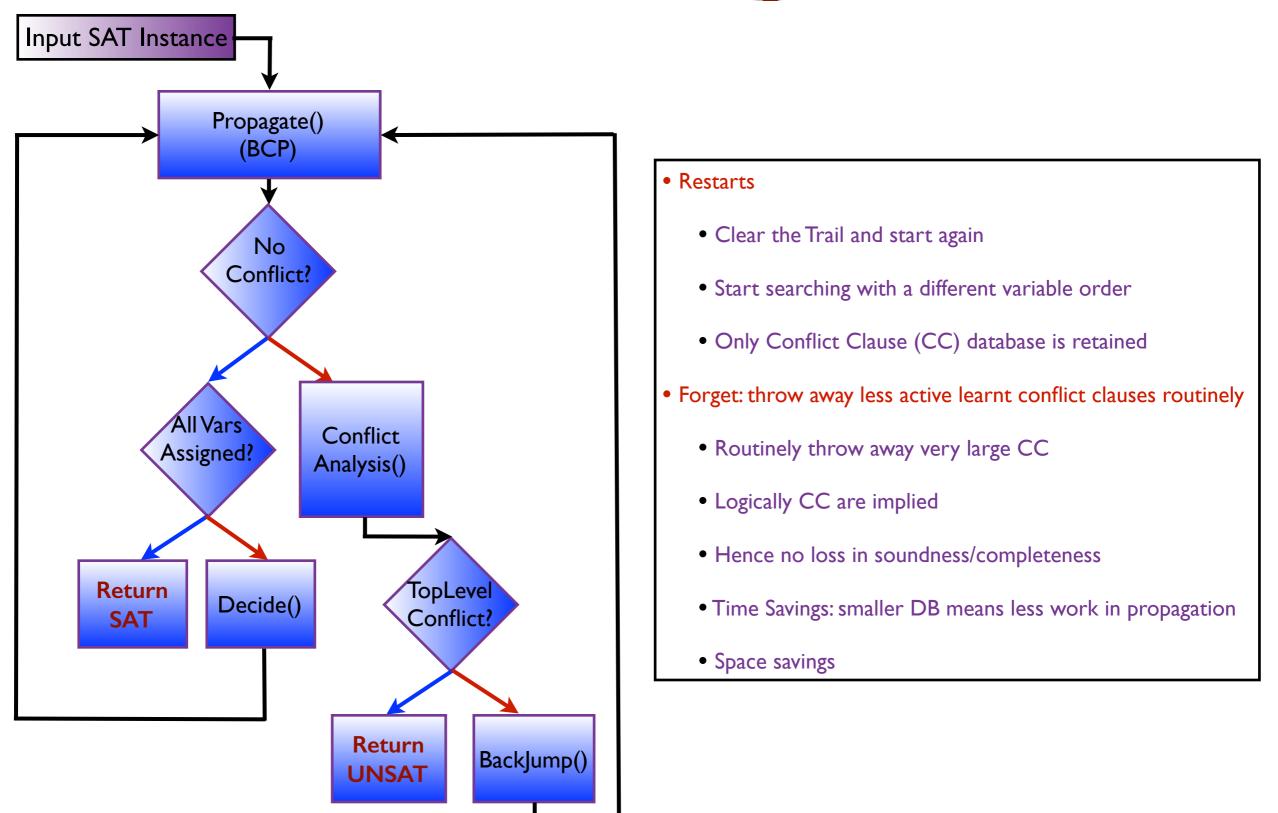
 $\neg X_1$ was implied literal, leading to another conflict described below

Conflict clause: $(X_9 + X_{10} + X_{11} + \neg X_{12} + \neg X_{13})$

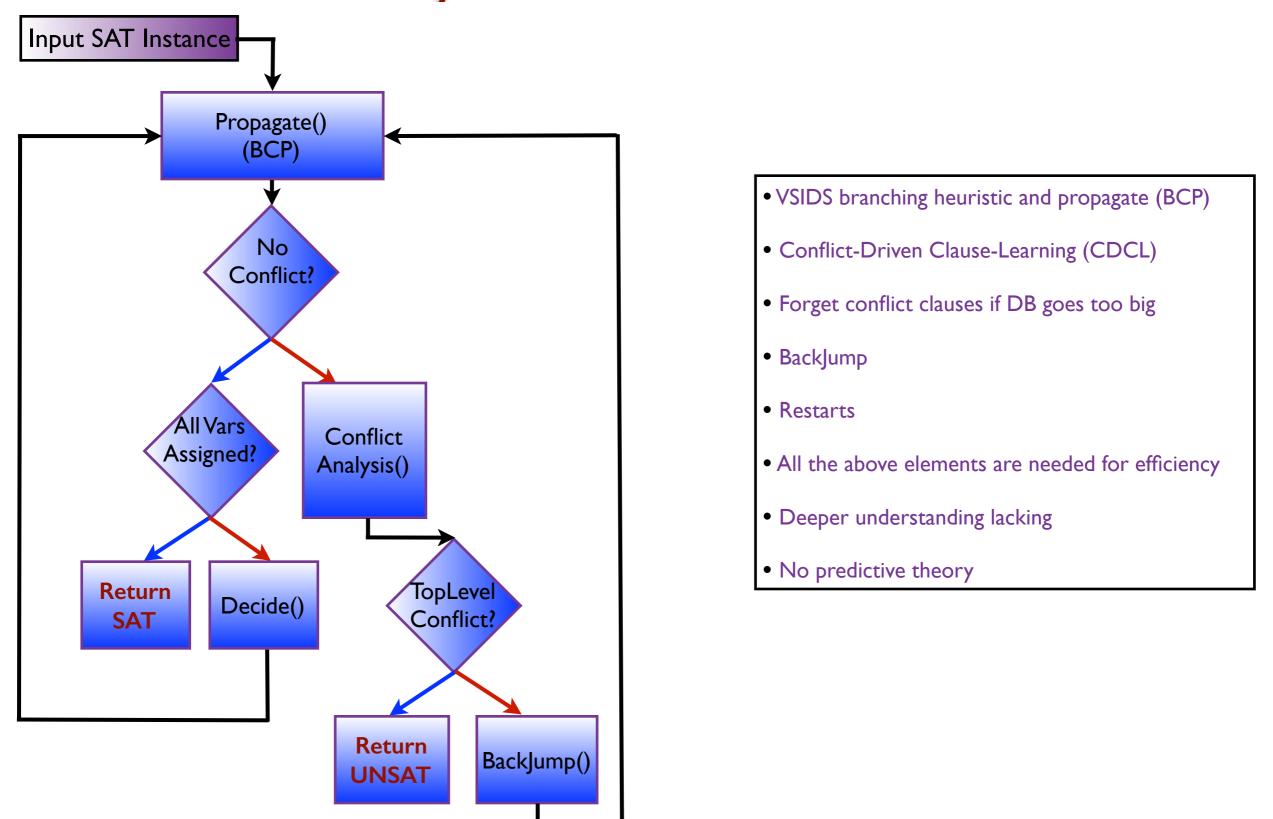
BackJump strategy: Closest decision level (DL) \leq current DL for which conflict clause is unit. Undo {X₁₀ = 0@3}



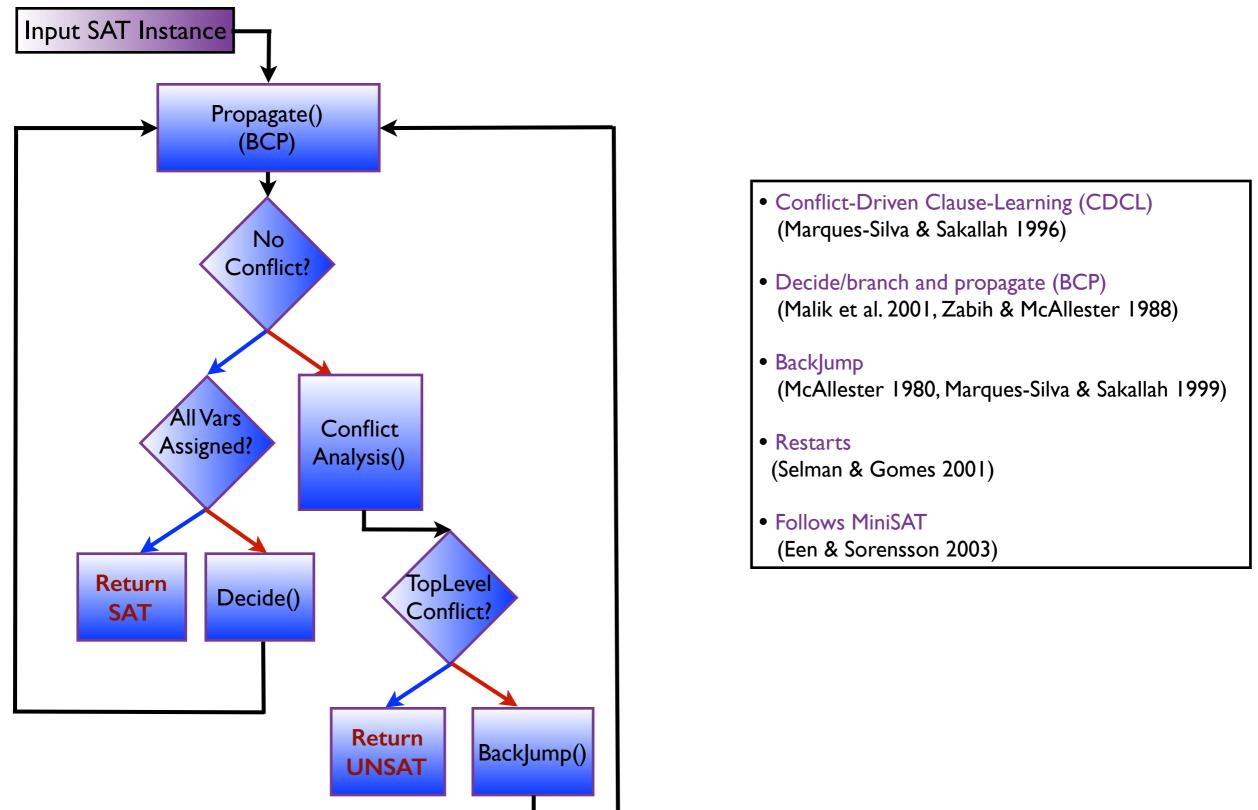
Modern CDCL SAT Solver Architecture Restarts and Forget



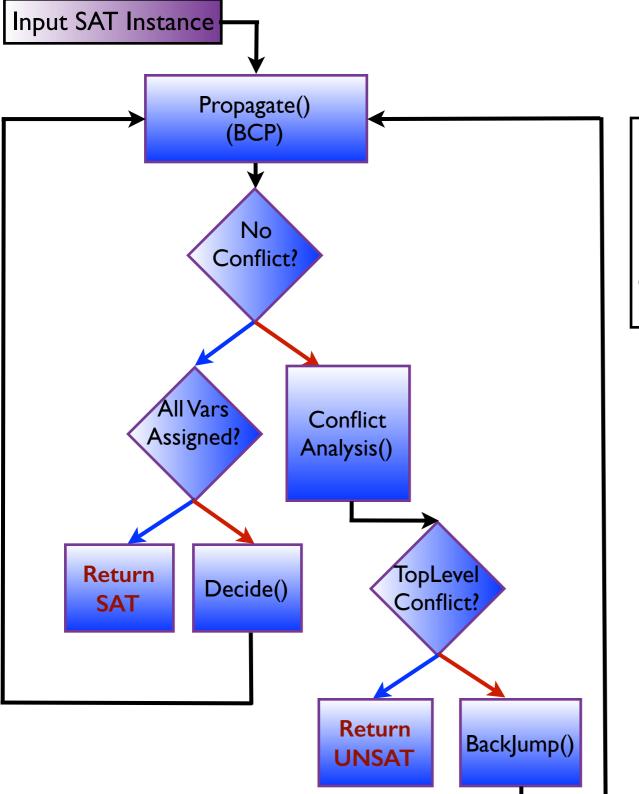
Modern CDCL SAT Solver Architecture Why is SAT efficient?



<u>Modern CDCL SAT Solver Architecture</u> Propagate(), Decide(), Analyze/Learn(), BackJump()



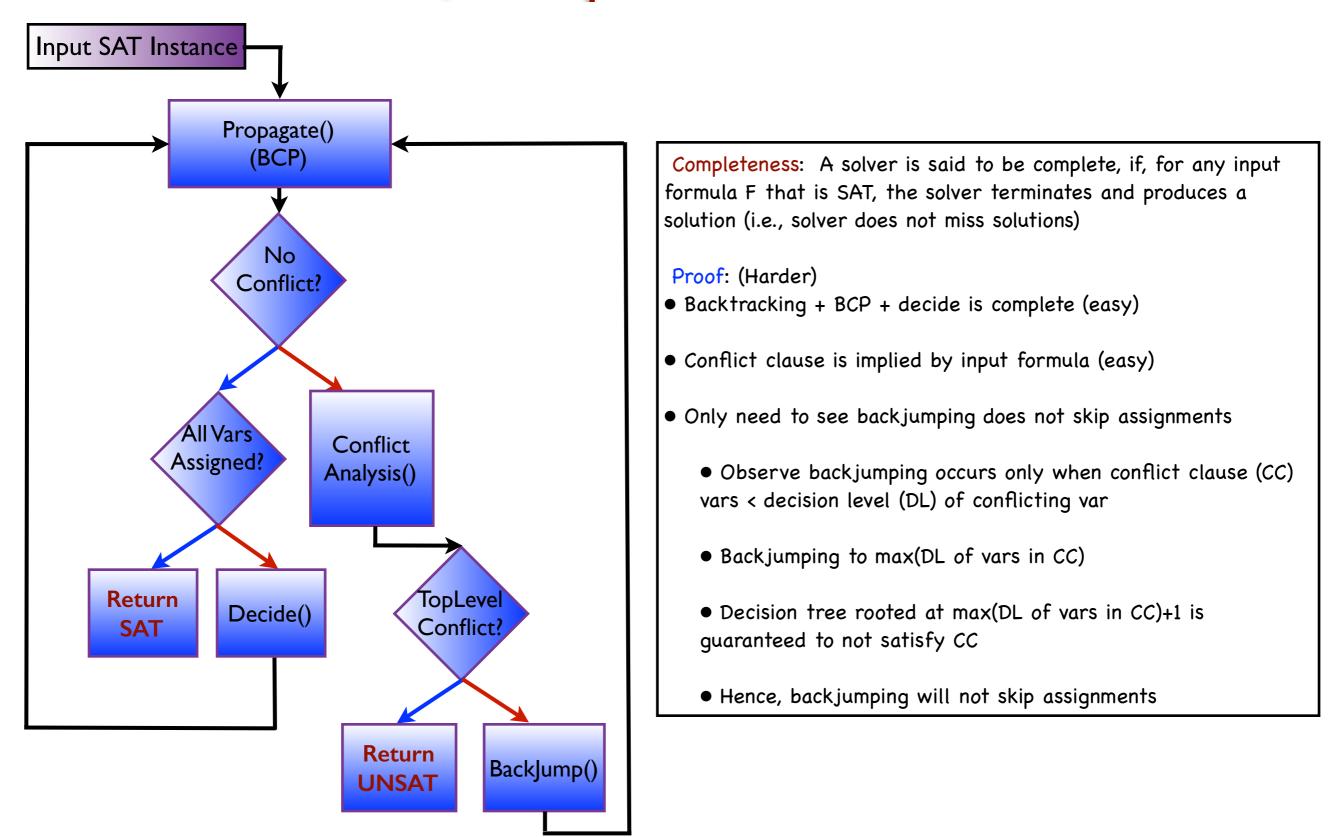
Modern CDCL SAT Solver Architecture Soundness, Completeness & Termination



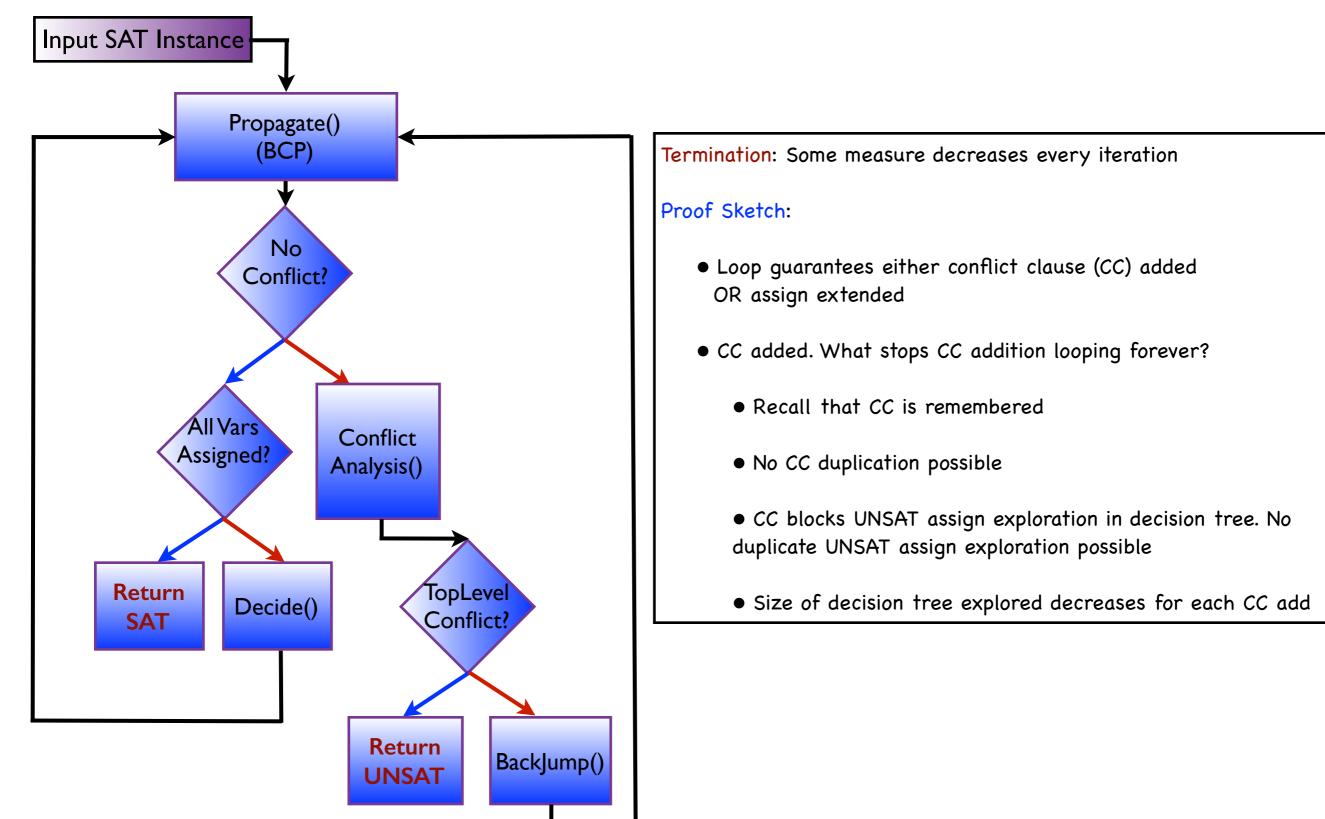
Soundness: A solver is said to be sound, if, for any input formula F, the solver terminates and produces a solution, then F is indeed SAT

Proof: (Easy) SAT is returned only when all vars have been assigned a value (True, False) by Decide or BCP, and solver checks the solution.

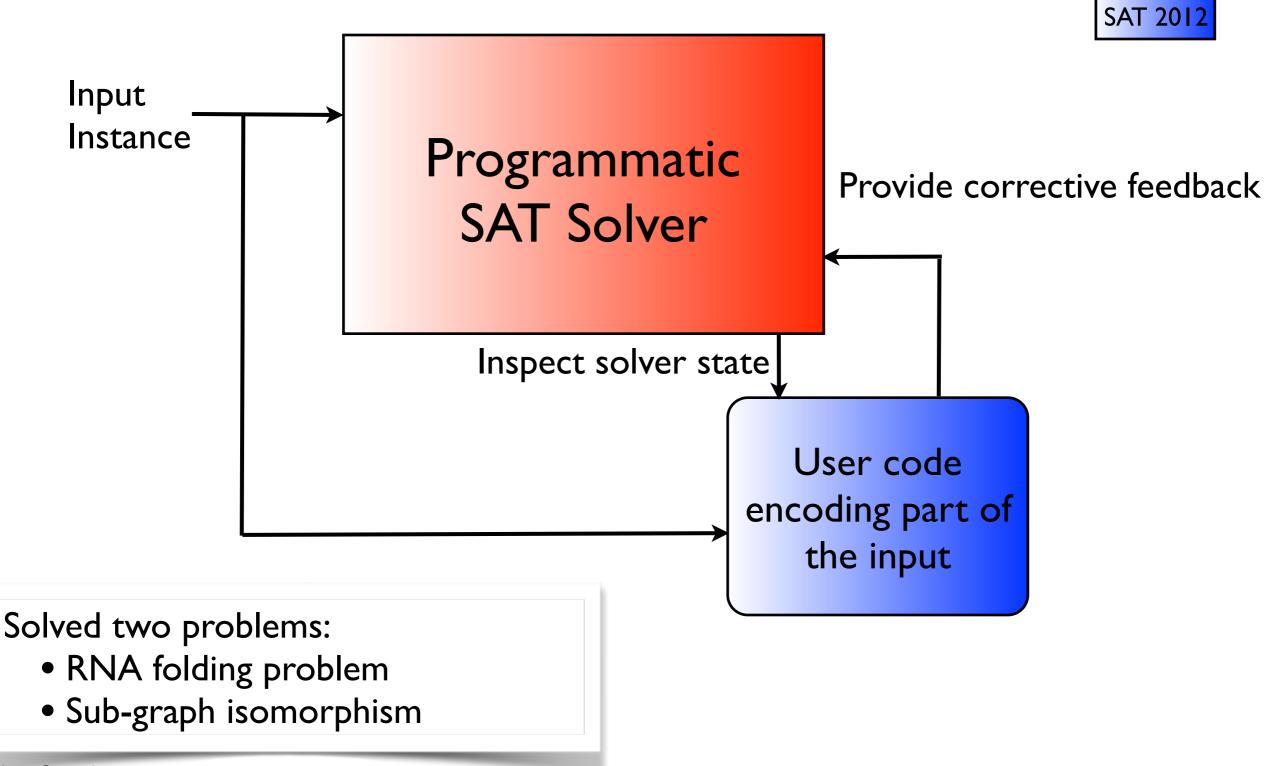
Modern CDCL SAT Solver Architecture Soundness, Completeness & Termination



Modern CDCL SAT Solver Architecture Soundness, Completeness & Termination



Problem: Solvers are blackboxes Solution: Programmatic SAT



Solvers and Software Engineering Putting it All Together

- I. SAT/SMT solvers are crucial for software engineering
- 2. SAT solvers key to SMT (Z3, CVC4, Yices, MathSAT, STP,...)
- 3. Huge impact in formal methods, program analysis and testing
- 4. Key ideas that make SAT efficient
 - I. Conflict-driven clause learning
 - 2. VSIDS (or similar) variable selection heuristics
 - 3. Backjumping
 - 4. Restarts
- 5. Teacher-student analogy

One Slide History of Constraint Solving Methods

Before modern conception of logic (Before Boole and Frege)

- From Babylon to present day: Huge amount of work on methods to solve (find roots of) polynomials over reals, integers,...
- System of linear equations over the reals (Chinese methods, Cramer's method, Gauss elimination)
- These methods were typically not complete (e.g., worked for a special class of polynomials)

After modern conception of logic

- •Systems of linear inequalities over the integers are solvable (Presburger, 1927)
- •Peano arithmetic is undecidable (hence, not solvable) (Godel, 1931)
- •First-order logic is undecidable (hence, not solvable) (Turing, 1936. Church, 1937)
- •A exponential-time algorithm for Boolean SAT problem (Davis, Putnam, Loveland, Loggeman in 1962)
- •Systems of Diophantine equations are not solvable (Matiyasevich. 1970)
- •Boolean SAT problem is NP-complete (Cook 1971)
- •Many efficient, scalable SAT procedures since 1962 for a variety of mathematical theories

Modern CDCL SAT Solver Architecture References & Important SAT Solvers

- I. Marques-Silva, J.P. and K.A. Sakallah. GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Transactions on Computers 48(5), 1999, 506-521.
- 2. Marques-Silva, J.P. and K.A. Sakallah. GRASP: A Search Algorithm for Propositional Satisfiability. Proceedings of ICCAD, 1996.
- 3. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. CHAFF: Engineering an efficient SAT solver. Proceedings of the Design Automation Conference (DAC), 2001, 530-535.
- 4. L. Zhang, C. F. Madigan, M. H. Moskewicz and S. Malik. *Efficient Conflict Driven Learning in a Boolean Satisfiability Solver*. Proceedings of ICCAD, 2001, 279-285.
- 5. Armin Bierre, Marijn Heule, Hans van Maaren, and Toby Walsh (Editors). *Handbook of Satisfiability*. 2009. IOS Press. <u>http://www.st.ewi.tudelft.nl/sat/handbook/</u>
- 6. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem proving. Communications of the ACM. 1962.
- 7. zChaff SAT Solver by Lintao Zhang 2002.
- 8. GRASP SAT Solver by Joao Marques-Silva and Karem Sakallah 1999.
- 9. MiniSAT Solver by Niklas Een and Niklas Sorenson 2005 present
- 10. SAT Live: http://www.satlive.org/, SAT Competition: http://www.satcompetition.org/
- II. SAT/SMT summer school: <u>http://people.csail.mit.edu/vganesh/summerschool/</u>