
SAT/SMT&Solvers&for&&
So.ware&Engineering&and&Security!

!
A!Short!Course!

by!
Vijay!Ganesh!

Assistant!Professor,!University!of!Waterloo,!Canada.!
Date:!April!4A8,!2016!

Venue:!Moscow!State!University,!Russia.!



Lecture 1
Symbolic Execution based Testing 

An Application of Solvers 

Vijay Ganesh
Affiliation: University of Waterloo



Vijay Ganesh

Goals of this Course 
An introduction to SAT/SMT Solvers and Apps

3

• On the importance of logic in software engineering and security

• What are constraint solvers (Boolean SAT and SMT solvers)

• Symbolic execution + solvers: a powerful combination

• Dynamic symbolic testing (aka, concolic testing)

• Anatomy of modern CDCL solvers

• Conclusions



Vijay Ganesh

A Foundation for Software Engineering  
Logic Abstractions of Computation

Formal  
Methods 

Program  
Analysis 

Automatic  
Testing 

Program  
Synthesis 

Program 
Reasoning

Logics
(Boolean,...)

4

Bob Floyd   (1967) 
Tony Hoare (1968,70) 
Amir Pnueli (1977) 
Ed Clarke    (1982) 
...



Vijay Ganesh

Software Engineering & SAT/SMT Solvers 
An Indispensable Tactic for Any Strategy

Formal  
Methods 

Program  
Analysis 

Automatic  
Testing 

Program  
Synthesis 

SE Goal:
Reliable/Secure

Software

SAT/SMT
Solvers

5



Vijay Ganesh

Software Engineering using Solvers 
Engineering, Usability, Novelty

6

Program Reasoning 
Tool

Program Specification

Program is correct?
or Generate Counterexamples (test cases)

SAT/SMT 
Solver

Logic Formulas

SAT/UNSAT



Vijay Ganesh

1,000 Constraints

10,000 Constraints

100,000 Constraints

1,000,000 Constraints

1998 2000 2004 2007 2010

• Solver-based programming languages
• Compiler optimizations using solvers
• Solver-based debuggers
• Solver-based type systems
• Solver-based concurrency bugfinding
• Solver-based synthesis
• Bio & Optimization

• Bounded MC
• Program Analysis
• AI

• Concolic Testing
• Program Analysis
• Equivalence Checking
• Auto Configuration

SAT/SMT Solver Research Story 
A 1000x Improvement: Democratization of Logic

7



Vijay Ganesh

The SAT/SMT Problem

• Rich logics (Modular arithmetic, Arrays, Strings,...)  

• NP-complete, PSPACE-complete,...  

• Practical, scalable, usable, automatic  

• Enable novel software reliability approaches

Logic 
Formula

SAT

UNSAT
Solver

(q ∨ p ∨ ¬r)
(q ∨ ¬p ∨ r)

...

8



Vijay Ganesh

Lecture Outline

9

Points already covered

Motivation for SAT/SMT solvers in software engineering

High-level description of the SAT/SMT problem & logics

Why you should care

Rest of the lecture

• Dynamic symbolic testing (aka concolic testing): A classic use of solvers

• Modern CDCL SAT solver architecture & techniques

• SAT/SMT-based applications

• Future of SAT/SMT solvers

• Some history (who, when,...) and references sprinkled throughout the talk



Vijay Ganesh

Dynamic Symbolic Testing 
Symbolic/Concrete Execution + Solvers

10

Dynamic Symbolic 
Interpreter

Program Specification

Program is correct?
or Generate Counterexamples (test cases)

SAT/SMT 
Solver

Logic Formulas

SAT/UNSAT



Concolic Testing: Example

int double (int v) {  
 return 2*v;  
} 

void testme (int x, int y) { 
 z = double (y); 
 if (z == x) { 
  if (x > y+10) { 
        ERROR; 
  }  
 } 
}

The concolic testing slides are courtesy Koushik Sen



Concolic Testing: Example

ERROR

2*y == x

x > y+10

Y

Y

N

N

int double (int v) {  
 return 2*v;  
} 

void testme (int x, int y) { 
 z = double (y); 
 if (z == x) { 
  if (x > y+10) { 
        ERROR; 
  }  
 } 
}



Concolic Testing Approach

int double (int v) {  
 return 2*v;  
} 

void testme (int x, int y) { 
 z = double (y); 
 if (z == x) { 
  if (x > y+10) { 
        ERROR; 
  }  
 } 
}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = x0, y = y0



Concolic Testing Approach

int double (int v) {  
 return 2*v;  
} 

void testme (int x, int y) { 
 z = double (y); 
 if (z == x) { 
  if (x > y+10) { 
        ERROR; 
  }  
 } 
}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = x0, y = y0,  

z = 2*y0



Concolic Testing Approach

int double (int v) {  
 return 2*v;  
} 

void testme (int x, int y) { 
 z = double (y); 
 if (z == x) { 
  if (x > y+10) { 
        ERROR; 
  }  
 } 

}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 22, y = 7, 

z = 14

x = x0, y = y0,  

z = 2*y0

2*y0 != x0



Concolic Testing Approach

int double (int v) {  
 return 2*v;  
} 

void testme (int x, int y) { 
 z = double (y); 
 if (z == x) { 
  if (x > y+10) { 
        ERROR; 
  }  
 } 
}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 2, y = 1,        

z = 2

x = x0, y = y0,  

z = 2*y0

2*y0 == x0

Solve: 2*y0 == x0 

Solution: x0 = 2, y0 = 1



Concolic Testing Approach

int double (int v) {  
 return 2*v;  
} 

void testme (int x, int y) { 
 z = double (y); 
 if (z == x) { 
  if (x > y+10) { 
        ERROR; 
  }  
 } 
}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 2, y = 1,       z 
= 2

x = x0, y = y0, z 
= 2*y0

2*y0 == x0

x0 < y0+10



Concolic Testing Approach

int double (int v) {  
 return 2*v;  
} 

void testme (int x, int y) { 
 z = double (y); 
 if (z == x) { 
  if (x > y+10) { 
        ERROR; 
  }  
 } 
}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 2, y = 1,    

   z = 2

x = x0, y = y0,  

z = 2*y0

Solve: (2*y0 == x0) AND (x0 > y0 + 10) 

Solution: x0 = 30, y0 = 15

2*y0 == x0

x0 · y0+10



Concolic Testing Approach

int double (int v) {  
 return 2*v;  
} 

void testme (int x, int y) { 
 z = double (y); 
 if (z == x) { 
  if (x > y+10) { 
        ERROR; 
  }  
 } 
}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 30, y = 15 x = x0, y = y0



Concolic Testing Approach

int double (int v) {  
 return 2*v;  
} 

void testme (int x, int y) { 
 z = double (y); 
 if (z == x) { 
  if (x > y+10) { 
        ERROR; 
  }  
 } 
}

Concrete 
Execution

Symbolic 
Execution

concrete 
state

symbolic 
state

path 
condition

x = 30, y = 15 x = x0, y = y0

2*y0 == x0

x0 > y0+10

Program Error



Concolic Testing Approach - Example 2

void testme (int x, int y) { 
 if (hash(y) == x) { 

     ERROR; 
 } 
}

Concolic 
Execution

concrete 
state

symbolic 
state

path 
condition

set y = 15, 
choose x 
randomly 

record hash(y) 

Run again by 
setting  

y = 15, x= hash(y)

x = x0, y = y0 hash(15) ==x



Explicit Path (not State) Model Checking
n Traverse all execution 

paths one by one to 
detect errors 
q assertion violations 
q program crash 
q uncaught exceptions  

n combine with valgrind to 
discover memory errors

F T

F F

F

F

T

T

T

T

T

T



Vijay Ganesh

Dynamic Symbolic Testing 
Some History

23

Symbolic execution for testing first proposed by Lori Clarke (1975)  
    ACM SIGSOFT Outstanding Researcher Award 2012

 Follow up work by J.C. King (1976)

Rediscovered/modified in the context of powerful solvers, analysis, and 
appropriate concretizations by independent groups

 Patrice Godefroid and Koushik Sen (2005)

 Dawson Engler et al. (2005)  

 Nicky Williams et al. (2004)

Many follow up works by George Candea, Dawn Song, David Molnar,...

Beyond testing: fault localization, repair, security,...



Vijay Ganesh

Dynamic Symbolic Testing and Analysis 
Tools

24

 KLEE: the most well-known open-source symbolic execution tool (web: 
https://klee.github.io/)

 SAGE: Microsoft’s dynamic symbolic execution tool (closed-source)

 S2E: symbolic engine that is built on top of KLEE, but works on binaries 
(web: http://dslab.epfl.ch/pubs/s2e-tocs.pdf)

Jalangi: dynamic symbolic analysis tool for JavaScript (web: https://
github.com/Samsung/jalangi2)

Other tools: Triton, BAP, Bitblaze, Webblaze

https://klee.github.io/
http://dslab.epfl.ch/pubs/s2e-tocs.pdf
https://github.com/Samsung/jalangi2


Vijay Ganesh

Dynamic Symbolic Testing 
Symbolic/Concrete Execution + Solvers

25

Dynamic Symbolic 
Interpreter

Program Specification

Program is correct?
or Generate Counterexamples (test cases)

SAT/SMT 
Solver

Logic Formulas

SAT/UNSAT



Vijay Ganesh

Lecture Outline

26

Points already covered

Motivation for SAT/SMT solvers in software engineering

High-level description of the SAT/SMT problem & logics

Why you should care

Dynamic symbolic testing (sometime also called concolic testing)

Rest of the lecture

• Modern CDCL SAT solver architecture & techniques

• An overview of programmatic SAT solvers

• Some history (who, when,...) and references sprinkled throughout the talk



Vijay Ganesh

The Boolean SAT Problem 
Basic Definitions and Format

 A literal p is a Boolean variable x or its negation ¬x.

 A clause C is a disjunction of literals:  x2 ∨ ¬x41 ∨ x15

 A CNF is a conjunction of clauses: (x2 ∨ ¬x1 ∨ x5) ∧ (x6 ∨ ¬x2) ∧ (x3 ∨ ¬x4 ∨ ¬x6)

 All Boolean formulas assumed to be in CNF 

 Assignment is a mapping (binding) from variables to Boolean values (True, False).

 A unit clause C is a clause with a single unbound literal

 The SAT-problem is:

 Find an assignment s.t. each input clause has a true literal (aka input formula has a solution or is SAT) 

 OR establish input formula has no solution (aka input formula is UNSAT)

 The Input formula is represented in DIMACS Format:

c DIMACS

p cnf 6 3

2 -1 5 0

6 -2 0

3 -4 -6 0



Vijay Ganesh

DPLL SAT Solver Architecture 
The Basic Solver

28

DPLL(Θcnf, assign) { 

Propagate unit clauses;

if ”conflict”: return FALSE;
    

if ”complete assign”: return TRUE;

”pick decision variable x”;

    
return 

DPLL(Θcnf⎮x=0, assign[x=0])
 || DPLL(Θcnf⎮x=1, assign[x=1]);

}

• Propagate (Boolean Constant Propagation):
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict:
• Conflict: partial assignment is not satisfying

• Decide (Branch): 
• Choose a variable & assign some value

• Backtracking:
• Implicitly done by the recursion



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Key Steps and Data-structures

29

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

Key steps 

• Decide()
• Propagate()  
  (BCP: Boolean constraint propagation)
• Conflict analysis and learning()
• Backjump()
• Forget()
• Restart()

CDCL: Conflict-Driven Clause-Learning

• Conflict analysis is a key step
• Results in learning a conflict clause
• Prunes the search space

Key data-structures (State):

• Stack or trail of partial assignments (AT)
• Input clause database
• Conflict clause database
• Conflict graph
• Decision level (DL) of a variable



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Propagate(), Decide(),  Analyze/Learn(), BackJump()

30

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

• Propagate (Boolean Constant Propagation):
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide: 
• Choose a variable & assign some value (decision)
• Each decision is a decision level
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning: 
• Analyze the reason (learn conflict clause) 
• Conflict clause blocks the non-satisfying &
 a large set of  other ‘no-good’ assignments

• Marques-Silva & Sakallah (1999)  

• BackJump: 
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Marques-Silva & Sakallah (1999)
• Backtrack (Davis, Putnam, Loveland, Logemann 1962)



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Propagate(), Decide(),  Analyze/Learn(), BackJump()

31

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

• Propagate (Boolean Constant Propagation): 
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide (Branch): 
• Choose a variable & assign some value (decision)
• Basic mechanism to do search
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning: 
 Analyze the reason (learn conflict clause) 

• Conflict clause blocks the non-satisfying &
 a large set of  other ‘no-good’ assignments

• Marques-Silva & Sakallah (1999)  

• BackJump: 
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Marques-Silva & Sakallah (1999)
• Backtrack (Davis, Putnam, Loveland, Logemann 1962)



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Propagate(), Decide(),  Analyze/Learn(), BackJump()

32

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

• Propagate (Boolean Constant Propagation): 
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide (Branch): 
• Choose a variable & assign some value (decision)
• Basic mechanism to do search
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning: 
• Analyze the reason (learn conflict clause) 
• Conflict clause blocks the non-satisfying &
 a large set of  other ‘no-good’ assignments

• Marques-Silva & Sakallah (1999)  

• BackJump: 
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Marques-Silva & Sakallah (1999)
• Backtrack (Davis, Putnam, Loveland, Logemann 1962)



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Propagate(), Decide(),  Analyze/Learn(), BackJump()

33

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

• Propagate: 
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide (Branch): 
• Choose a variable & assign some value (decision)
• Each decision is a decision level
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning:
• Compute assignments that lead to conflict (analysis)
• Construct conflict clause blocks the non-satisfying &
 a large set of  other ‘no-good’ assignments (learning)

• Marques-Silva & Sakallah (1996)  

• BackJump: 
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Marques-Silva & Sakallah (1999)
• Backtrack (Davis, Putnam, Loveland, Logemann 1962)



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Propagate(), Decide(),  Analyze/Learn(), BackJump()

34

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

• Propagate: 
• Propagate inferences due to unit clauses
• Most time in solving goes into this

• Detect Conflict?
• Conflict: partial assignment is not satisfying

• Decide: 
• Choose a variable & assign some value (decision)
• Each decision is a decision level
• Imposes dynamic variable order
• Decision Level (DL): variable ⇒ natural number

• Conflict analysis and clause learning: 
• Compute assignments that lead to conflict (analysis)
• Construct conflict clause blocks the non-satisfying &
 a large set of  other ‘no-good’ assignments (learning)

• Marques-Silva & Sakallah (1996)  

• Conflict-driven BackJump: 
• Undo the decision(s) that caused no-good assignment
• Assign ‘decision variables’ different values
• Go back several decision levels
• Backjump: Marques-Silva, Sakallah (1999)
• Backtrack: Davis, Putnam, Loveland, Logemann (1962)



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Propagate(), Decide(),  Analyze/Learn(), BackJump()

35

Propagate() 
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

. . .

 {3, 6, -7, 8}
 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

Unit clause  
(BCP) {3, 6, -7, 8}

 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

 {3, 6, -7, 8}
 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

Decide

 {3, 6, -7, 8}
 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

More unit  
clauses 

 {3, 6, -7, 8}
 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

CONFLICT!  
(Trigger to 

analyze & backjump)



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Decide() Details:  VSIDS Heuristic

36

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

• Decide() or Branching():  

• Choose a variable & assign some value (decision)

• Imposes dynamic variable order (Malik et al. 2001)

• How to choose a variable:  

• VSIDS heuristics 

• Each variable has an activity  

• Activity is bumped additively, if variable occurs in conflict clause  

• Activity of all variables is decayed by multiplying by const < 1  

• Next decision variable is the variable with highest activity  

• Over time, truly important variables get high activity  

• This is pure magic, and seems to work for many problems



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Propagate() Details: Two-watched Literal Scheme

37

Propagate() 
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

. . .

 {3, 6, -7, 8}
 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

Unit clause  
(BCP) {3, 6, -7, 8}

 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

 {3, 6, -7, 8}
 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

Decide

Watched 
Literal

Watcher 
List

-1  {-1, -3, 
8},...

-3  {-1, -3, 
8},...

...  ...

Watched 
Literal

Watcher 
List

-1  {-1, -3, 
8},...

-3  ...

8  {-1, -3, 
8},......  ...

The constraint propagates 8

Watched 
Literal

Watcher 
List

-1  ...

-3  ...

8  {-1, -3, 
8},......  ...



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Propagate(), Decide(),  Analyze/Learn(), BackJump()

38

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict 
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

. . .

 {3, 6, -7, 8}
 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

Unit clause  
(BCP) {3, 6, -7, 8}

 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

 {3, 6, -7, 8}
 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

Decide

 {3, 6, -7, 8}
 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

More unit  
clauses 

 {3, 6, -7, 8}
 {1, 4, 7}
 {-8, 4}
 {-1, -3, 8}
 {-3, -4, -8}
 {-1, -2, 3, 4, -6}

CONFLICT!  
(Trigger to 

analyze & backjump)

Basic Backtracking Search 

• Flip the last decision 1
• Try setting 1 to False
• Highly inefficient
• No learning from mistakes



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Conflict Analysis/Learn() Details

39

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict 
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

Some Definitions

• Decision Level (DL)
• Map from Boolean variables in input to natural numbers

• All unit clauses in input & resultant propagations get DL = 0  

• Every decision var gets a DL in increasing order >= 1

• All propagations due to decision var at DL=x get the DL=x

• Conflict Graph (CG) or Implication Graph
• Directed Graph that records decisions & propagations

• Vertices: literals, Edge: unit clauses
 

• Conflict Clause (CC)
• Clause returned by Conflict Analysis(), added to conflict DB  

• Implied by the input formula  

• A cut in the CG

• Prunes the search 

• Assignment Trail (AT)
• A stack of partial assignment to literals, with DL info



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Conflict Analysis/Learn() Details: Implication Graph

40

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

X1 = 1@6

X2 = 1@6

X10 = 0@3

X3 = 1@6

X4 = 1@6

X5 = 1@6

X6 = 1@6

X11 = 0@3

Conflict

X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4

W4

W6

W6

W1 = (¬X1 + X2)  

W2 = (¬X1 + X3 + X9)
 
W3 = (¬X2 + ¬X3 + X4)
 
W4 = (¬X4 + X5 + X10)
 
W5 = (¬X4 + X6 + X11)
 
W6 = (¬X5 + ¬X6)
 
W7 = (X1 + X7 + ¬X12)
 
W8 = (X1 + X8)
 
W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB CONFLICT GRAPH



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Conflict Analysis/Learn() Details: Conflict Clause

41

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current Decision: {X1 = 1@6}

Simplest strategy is to traverse the conflict graph backwards until decision variables: 
conflict clause includes only decision variables (¬X1 + X9 + X10 + X11)

W1 = (¬X1 + X2)  

W2 = (¬X1 + X3 + X9)
 
W3 = (¬X2 + ¬X3 + X4)
 
W4 = (¬X4 + X5 + X10)
 
W5 = (¬X4 + X6 + X11)
 
W6 = (¬X5 + ¬X6)
 
W7 = (X1 + X7 + ¬X12)
 
W8 = (X1 + X8)
 
W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Reason Side
W4

X10 = 0@3

X1 = 1@6

X2 = 1@6

X3 = 1@6

X4 = 1@6

X5 = 1@6

X6 = 1@6

X11 = 0@3

Conflict

X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4 W6

W6

Conflict Side

CONFLICT GRAPH



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Conflict Analysis/Learn() Details: Conflict Clause

42

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current Decision: {X1 = 1@6}

Another strategy is to use First Unique Implicant Point (UIP):
Traverse graph backwards in breadth-first, expand literals of conflict, stop at first UIP

W1 = (¬X1 + X2)  

W2 = (¬X1 + X3 + X9)
 
W3 = (¬X2 + ¬X3 + X4)
 
W4 = (¬X4 + X5 + X10)
 
W5 = (¬X4 + X6 + X11)
 
W6 = (¬X5 + ¬X6)
 
W7 = (X1 + X7 + ¬X12)
 
W8 = (X1 + X8)
 
W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB CONFLICT GRAPH

W4

X10 = 0@3

X1 = 1@6

X2 = 1@6

X3 = 1@6

X4 = 1@6

X5 = 1@6

X6 = 1@6

X11 = 0@3

Conflict

X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4 W6

W6

Reason Side Conflict Side



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Conflict Analysis/Learn() Details: BackTrack

43

Current Assignment Trail: {X9 = 0@1, X10 = 0@3, X11 = 0@3, X12 = 1@2, X13 = 1@2, ...}

Current decision: {X1 = 1@6}

Strategy: Closest decision level (DL) ≤ current DL for which conflict clause is unit. Undo {X1 = 1@6}

W1 = (¬X1 + X2)  

W2 = (¬X1 + X3 + X9)
 
W3 = (¬X2 + ¬X3 + X4)
 
W4 = (¬X4 + X5 + X10)
 
W5 = (¬X4 + X6 + X11)
 
W6 = (¬X5 + ¬X6)
 
W7 = (X1 + X7 + ¬X12)
 
W8 = (X1 + X8)
 
W9 = (¬X7 + ¬X8 + ¬X13)

Clause DB

Reason Side
W4

X10 = 0@3

X1 = 1@6

X2 = 1@6

X3 = 1@6

X4 = 1@6

X5 = 1@6

X6 = 1@6

X11 = 0@3

Conflict

X9 = 0@1

W1

W2

W2

W3

W3 W5

W5

W4 W6

W6

Conflict Side

CONFLICT GRAPH



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Conflict Analysis/Learn() Details: BackJump

44

¬X1 was implied literal, leading to another conflict described below  

Conflict clause: (X9 + X10 + X11 + ¬X12 + ¬X13)

BackJump strategy: Closest decision level (DL) ≤ current DL for which conflict clause is unit. Undo {X10 = 0@3}

X1 = 0@6

X8 = 1@6

X7 = 1@6

Conflict

X12 = 1@2

W8

W7

W7

W9

W9

X9 = 0@1

X10 = 0@3

X11 = 0@3

X13 = 1@2
W9

Reason Side

Conflict Side

CONFLICT GRAPH

3

1 0

TRAIL

4

5

6

BackJump

X1

DLW1 = (¬X1 + X2)  

W2 = (¬X1 + X3 + X9)
 
W3 = (¬X2 + ¬X3 + X4)
 
W4 = (¬X4 + X5 + X10)
 
W5 = (¬X4 + X6 + X11)
 
W6 = (¬X5 + ¬X6)
 
W7 = (X1 + X7 + ¬X12)
 
W8 = (X1 + X8)
 
W9 = (¬X7 + ¬X8 + ¬X13)

CLAUSE DB



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Restarts and Forget

45

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

• Restarts

• Clear the Trail and start again

• Start searching with a different variable order

• Only Conflict Clause (CC) database is retained  

• Forget: throw away less active learnt conflict clauses routinely

• Routinely throw away very large CC

• Logically CC are implied

• Hence no loss in soundness/completeness

• Time Savings: smaller DB means less work in propagation

• Space savings



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Why is SAT efficient?

46

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

• VSIDS branching heuristic and propagate (BCP)

• Conflict-Driven Clause-Learning (CDCL)

• Forget conflict clauses if DB goes too big

• BackJump 

• Restarts 

• All the above elements are needed for efficiency

• Deeper understanding lacking

• No predictive theory



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Propagate(), Decide(),  Analyze/Learn(), BackJump()

47

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance

• Conflict-Driven Clause-Learning (CDCL)  
   (Marques-Silva & Sakallah 1996)

• Decide/branch and propagate (BCP)  
   (Malik et al. 2001, Zabih & McAllester 1988)

• BackJump 
   (McAllester 1980, Marques-Silva & Sakallah 1999)

• Restarts 
  (Selman & Gomes 2001)  

• Follows MiniSAT  
   (Een & Sorensson 2003)



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Soundness, Completeness & Termination

48

 Soundness:  A solver is said to be sound, if, for any input formula F, 
the solver terminates and produces a solution, then F is indeed SAT



 Proof: (Easy) SAT is returned only when all vars have been 
assigned a value (True, False) by Decide or BCP, and solver checks 
the solution.

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Soundness, Completeness & Termination

49

 Completeness:  A solver is said to be complete, if, for any input 
formula F that is SAT, the solver terminates and produces a 
solution (i.e., solver does not miss solutions)



 Proof: (Harder)


• Backtracking + BCP + decide is complete (easy)  

• Conflict clause is implied by input formula (easy)  

• Only need to see backjumping does not skip assignments  

• Observe backjumping occurs only when conflict clause (CC) 
vars < decision level (DL) of conflicting var  

• Backjumping to max(DL of vars in CC)  

• Decision tree rooted at max(DL of vars in CC)+1 is 
guaranteed to not satisfy CC 

• Hence, backjumping will not skip assignments

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
Soundness, Completeness & Termination

50

Termination: Some measure decreases every iteration



Proof Sketch:



• Loop guarantees either conflict clause (CC) added  
  OR assign extended 



• CC added. What stops CC addition looping forever?



• Recall that CC is remembered



• No CC duplication possible



• CC blocks UNSAT assign exploration in decision tree. No 
duplicate UNSAT assign exploration possible



• Size of decision tree explored decreases for each CC add

Propagate()
(BCP)

No
Conflict?

All Vars
Assigned?

Conflict
Analysis()

Return 
SAT

Decide()
TopLevel
Conflict?

Return 
UNSAT

BackJump()

Input SAT Instance



Vijay Ganesh

Problem: Solvers are blackboxes 
Solution: Programmatic SAT

51

Input 
Instance Programmatic 

SAT Solver

User code
encoding part of

the input

Inspect solver state

Provide corrective feedback

SAT 2012

Solved two problems:
• RNA folding problem
• Sub-graph isomorphism



Vijay Ganesh

Solvers and Software Engineering 
Putting it All Together

52

1.  SAT/SMT solvers are crucial for software engineering 

2.  SAT solvers key to SMT (Z3, CVC4,  Yices, MathSAT, STP,...)

3.  Huge impact in formal methods, program analysis and testing 

4.   Key ideas that make SAT efficient  

1.Conflict-driven clause learning
2.VSIDS (or similar) variable selection heuristics
3.Backjumping
4.Restarts 

5.  Teacher-student analogy



Vijay Ganesh

One Slide History of Constraint Solving Methods

53

Before modern conception of logic (Before Boole and Frege)

• From Babylon to present day: Huge amount of work on methods to solve (find roots of) polynomials 
over reals, integers,...

• System of linear equations over the reals (Chinese methods, Cramer’s method, Gauss elimination)

• These methods were typically not complete (e.g., worked for a special class of polynomials)

After modern conception of logic

•Systems of linear inequalities over the integers are solvable (Presburger, 1927)

•Peano arithmetic is undecidable (hence, not solvable) (Godel, 1931)

•First-order logic is undecidable (hence, not solvable) (Turing,1936. Church, 1937)

•A exponential-time algorithm for Boolean SAT problem (Davis, Putnam, Loveland, Loggeman in 1962)

•Systems of Diophantine equations are not solvable (Matiyasevich. 1970)

•Boolean SAT problem is NP-complete (Cook 1971)

•Many efficient, scalable SAT procedures since 1962 for a variety of mathematical theories 



Vijay Ganesh

Modern CDCL SAT Solver Architecture 
References & Important SAT Solvers

54

1. Marques-Silva, J.P. and K.A. Sakallah. GRASP: A Search Algorithm for Propositional Satisfiability. IEEE Transactions on 
Computers 48(5), 1999, 506-521.  

2. Marques-Silva, J.P. and K.A. Sakallah. GRASP: A Search Algorithm for Propositional Satisfiability. Proceedings of ICCAD, 
1996.  

3. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. CHAFF: Engineering an efficient SAT solver. Proceedings of the 
Design Automation Conference (DAC), 2001, 530-535.  

4. L. Zhang, C. F. Madigan, M. H. Moskewicz and S. Malik. Efficient Conflict Driven Learning in a Boolean Satisfiability Solver. 
Proceedings of ICCAD, 2001, 279-285.  

5. Armin Bierre, Marijn Heule, Hans van Maaren, and Toby Walsh (Editors). Handbook of Satisfiability.  2009. IOS Press. 
http://www.st.ewi.tudelft.nl/sat/handbook/ 

6. M. Davis, G. Logemann, and D. Loveland.  A machine program for theorem proving. Communications of the ACM.1962.  

7. zChaff SAT Solver by Lintao Zhang 2002.  

8. GRASP SAT Solver by Joao Marques-Silva and Karem Sakallah 1999.  

9. MiniSAT Solver by Niklas Een and Niklas Sorenson 2005 - present

10. SAT Live: http://www.satlive.org/, SAT Competition: http://www.satcompetition.org/

11. SAT/SMT summer school: http://people.csail.mit.edu/vganesh/summerschool/

http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.satlive.org
http://www.satcompetition.org
http://people.csail.mit.edu/vganesh/summerschool/

