Распределённые алгоритмы

mk.cs.msu.ru o Лекционные курсы o Распределённые алгоритмы

Блок 10

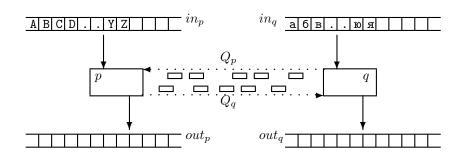
Безопасность симметричного протокола раздвижного окна

Лектор: Подымов Владислав Васильевич E-mail:

valdus@yandex.ru

5лок 10

Напоминание



Безопасность BSWP: в каждой достижимой конфигурации для каждого номера i верно $out_p[i] \in \{in_q[i], \bot\}$ и значение $out_q[i] \in \{in_p[i], \bot\}$

 $\forall x \in \mathfrak{R}(S) : \forall i \in \mathbb{N}_0 : out_p[i] \in \{in_q[i], \bot\} \& out_q[i] \in \{in_p[i], \bot\}$

Блок 10

Напоминание

- $ightharpoonup \ell_p : \mathbb{N}_0 = 0$
- $r_p : \mathbb{N}_0 = 0$
- ightharpoonup in_p : ARR[\mathcal{T}]
- ightharpoonup out_p: $ARR[\mathcal{T}] = (\bot, \bot, \bot, \ldots);$
- Действие S_p : $\{\ell_p < r_p + \mathfrak{c}_p\}$
 - 1. Выбрать $i \in \mathbb{N}_0$: $\ell_p \leq i < r_p + \mathfrak{c}_p$
 - 2. $send(\mathbf{pack}, in_p[i], i)$

Действие \mathbf{R}_p : {очередь Q_p непуста}

- 1. receive(pack, w, i)
- 2. Если $out_p[i] = \bot$:
 - 2.1 $out_p[i] := w;$
 - 2.2 $\ell_p := \max(\ell_p, i \mathfrak{c}_q + 1);$
 - 2.3 $r_p := \min(j \mid out_p[j] = \bot);$
- **Действие** L_p {очередь Q_p непуста}
 - 1. $receive(\underline{\mathbf{pack}}, w, i)$

Рассмотрим такую совокупность утверждений:

$$p^{0}$$
: $\forall i \in \{0, 1, ..., r_{p} - 1\} : out_{p}[i] \neq \bot$
 p^{1} : $\forall i \in \mathbb{N}_{0} : (\mathbf{pack}, w, i) \in Q_{p} \Rightarrow w = in_{q}[i] \& (i < r_{q} + \mathfrak{c}_{q})$
 p^{2} : $\forall i \in \mathbb{N}_{0} : out_{p}[i] \neq \bot \Rightarrow out_{p}[i] = in_{q}[i] \& (\ell_{p} > i - \mathfrak{c}_{q})$
 p^{3} : $\ell_{p} \leq r_{q}$
 q^{0} : $\forall i \in \{0, 1, ..., r_{q} - 1\} : out_{q}[i] \neq \bot$
 q^{1} : $\forall i \in \mathbb{N}_{0} : (\mathbf{pack}, w, i) \in Q_{q} \Rightarrow w = in_{p}[i] \& (i < \ell_{p} + \mathfrak{c}_{p})$
 q^{2} : $\forall i \in \mathbb{N}_{0} : out_{q}[i] \neq \bot \Rightarrow out_{q}[i] = in_{p}[i] \& (\ell_{q} > i - \mathfrak{c}_{p})$
 q^{3} : $\ell_{q} \leq r_{p}$

$$P_{BSWP} = p^0 \& p^1 \& p^2 \& p^3 \& q^0 \& q^1 \& q^2 \& q^3$$

Лемма (об инварианте BSWP). P_{BSWP} — инвариант BSWP

Доказательство этой леммы подробно разберём на семинаре

Блок 10 4/5

Теорема (безопасность BSWP). С.п. *S* **BSWP** обладает свойством безопасности BSWP

$$\forall x \in \mathfrak{R}(S) : \forall i \in \mathbb{N}_0 : out_p[i] \in \{in_q[i], \bot\} \& out_q[i] \in \{in_p[i], \bot\}$$

Доказательство.

По последней лемме, P_{BSWP} — инвариант BSWP

При этом из P_{BSWP} следуют

Значит, из P_{BSWP} следует

$$\forall i \in \mathbb{N}_0 : out_p[i] \in \{in_a[i], \bot\} \& out_a[i] \in \{in_p[i], \bot\}$$

Осталось только применить теорему о проверке безопасности с.п. ▼

Блок 10 5/5