C++11 v Bblwe: HeKOTOpble 0COBEHHOCTU
A3blKa

Koxosogos Bnagumup
kacbegpa MaTemaTudeckoli knubepHetnkn BMK

11.12.2017

C++11: auto mn decltype

ABTOMaTWYECKMNIA BbIBOA TWMNa NEPEMEHHOR CUBHO ynpoLiaeT

XKU3Hb.
auto x = 0;
auto y = x, *z = &x; // int * y

auto& ref = x; // int¥ ref

const auto & xcref = x; // const inté
auto*x p = &x; //int* p;

const autox cp = p; // const int * p;
const auto pc = &x ; // int * const pc

decltype Mcnonb3yeTcs BCErfa B OLHOM 1 TOM XKe KOHTEKCTE —
4TOBbI BEPHYTHL TUM YEro-To. A «4ero-To» Haxo4UTCs y HEro Kak
aprymeHT B ckoboukax. Yalue Bcero xo4eTcs noay4uTb TUn
nepemMeHHoi unm Tun eoipaxkennsi. OyeHb yaobHO ncnonb3osaThb
decltype B wabnoHax.

decltype(l + 2) x = 1; // 4nt
decltype(x) y = x; // int
decltype(1,x) z = x; // 22?

C++411: durypHble ckobku

CozpaeM KoHTeiiHep, cogepxkaluii onpeaeneHHblii Habop 3HaYeHNi.

std::vector<int> v {1, 3, 5};
TFoo a{};

// sekmop c 10 ssemenmamu, Kawdwil =20
std: :vector<int> v1 (10, 20);

// koncmpykmop c std::initializer_list:
// eekmop us 2z saemenmos 10 u 20
std: :vector<int> v2 {10, 20};

C++411: durypHble ckobku

#include <iostream>
class T {
public:
T(int a, bool b) { std::cout << "int, bool" << std::endl;}
T(int a, double b) { std::cout << "int, double" << std::endl;}
T(std::initializer_list<long double> 1) {
std::cout << "init list" << std::endl;
}
};

int main() {
T t1(10, true);
T t2 {10, true};
T t3(10, 0.2);
T t4 {10, 0.2};

C++411: durypHble ckobku

#include <iostream>
class T {
public:
T(int a, bool b) { std::cout << "int, bool" << std::endl;}
T(int a, double b) { std::cout << "int, double" << std::endl;}
T(std::initializer_list<long double> 1) {
std::cout << "init list" << std::endl;
}
};

int main() {
T t1(10, true); // int, bool
T t2 {10, true}; // init list
T t3(10, 0.2); // int, double
T t4 {10, 0.2}; // init list

C++411: range-based unknobl

for (auto x : container) {
// T - Konus saemenma 8 Konmelnepe
}
for (auto& x : container) {
// T - ccelaka Ha daemenm 8 Koumelnepe

C++11: lNcespoHUMbI

typedef:

typedef
std: :shared_ptr<std::map<std::string, std::string> >
TMyPtr;
typedef bool (*FPtr)(int, int);
using (C++11):
using TMyPtr =
std: :shared_ptr<std::map<std::string, std::string> >;
using FPtr = bool (*)(int, int);
B uyem otnnume typedef ot using?
Ob6bsiBneHne NCEBAOHMMOB MOAAEPXKMBAET WAbNOHMU3AUNIO.

C++411: scoped enumerations

enum Color {black, white, blue};
bool white; // error!

C++11:

enum class Color { red, green = 20, blue };
Color r = Color: :blue;
switch (r) {
case Color::red: // ..
case Color::green: // ...
case Color::blue: // ..
}
int n = r; // owubka
int n = static_cast<int>(r);

Bazosbiii Tun — int.

constexpr

const int a = 10;

const int b = std::numeric_limits<int>::max(); // <limits>
const int c¢ = INT_MAX;

int a;

const int b = a; // ok
constexpr auto s = a; // error

constexpr int f() {return 1024;}

constexpr-yHKLMs JODKHA cocTosTb 3 ogHoro return (C++11),
BO3BPaLLaTh KOHCTAHTY WM BbI3biBaTb TaKyHO Xe (byHKLMIO.
Bbiuncnenme fonxHoO npomsBoguThCs BO BpeMsi komnuasiuum (c
apryMeHTaMu, 3Ha4eHUst KOTOPbIX N3BECTHbI BO BPEMS
KOMMANASILNN).

Mpumep: npoBepka NpoCcTOThbI 4Yncia B
compile-time

constexpr bool is_div(int a, int b) {
return (b == 1) || (a % b '= 0 & is_div(a, b - 1));
}

constexpr bool is_prime(int number) {
return number !'= 1 &% is_div(number, number / 2);

¥

int main() {
static_assert(is_prime(29) , " 29 is not prime");
static_assert(is_prime(36) , " 36 is prime");
return O;

¥

C++11: nambaa-Bbipa>keHuns

BobicTpblii cnocob cosmaTh Takyto CTpYKTypy € onepatopom ():

struct T {

bool operator() (int x){};
s
Do(TO, ...);

> [] — cnncok nepemMeHHbIX, KOTOpPble 3aXBaTbIBAET
NsiMbAa-BbIpaXkeHUe,;

» () — BXofHble apryMeHTbl byHKLNY;

» {} — Teno dyHkuuM.

C++11: nambaa-Bbipa>keHuns

[capture] (params) mutable exception_attribute -> ret {body}
[capture] (params) -> ret {body}

[capture] (params) {body}

[capture] {body}

Mpumep:

std: :vector<int> v = {-1, -2, -3, -4, -5, 1, 2, 3, 4 ,5};
std::sort(v.begin(), v.end(), [I(int 1, int r) {
return 1 * 1 < r * r;

B

C++11: nambaa-Bbipa>keHuns

» [] — be3 3axBaTa NepeMeHHbIX

» [=] — BCe nepeMeHHble 3aXBaTbIBAOTCS MO 3HAYEHUIO
» [&] — BCe nepeMeHHble 3aXBaThLIBAOTCSA MO CCbIJIKE

> [x] — 3axBaT X MO 3HaAYeHUtO

» [&x] — 3axBaT X MO CCblJIKe

> [x, &y] — 3axBaT X NO 3HAYEHUIO, ¥ MO CCblIKE

> [=, &x, &y] — 3axBaT BCeX MepeMeHHbIX MO 3HAYEHUIO, HO
X,y — MO CCblIKE

» [&, x] — 3axBaT BCeX MepPeMEeHHbIX NO CCblIKE, KPOMEe X

» [this] — pns pocTyna K nepemeHHoli kyacca

C++11: move-cemaHTunka

template <typename T>
void Swap(T& a, T& b) {

T t(a);
a = b;
b =t;

}

MHoro nuwHux konnposaHuii. Hennoxo bbl ckazaTb KOMNUAATOPY,
4TO OHU HeobsizaTenbHbl. CoOBLMM KOMMUASTOPY, YTO KOMUS He
HY>KHa, U MOXEM 3HayeHNe, KOTOPOE JIEXXUT B @ MOJIHOCThLIO
nepemMecTnTb B 00BbEKT t . A 4TO TaM OCTaBUTbL — YTO YFOAHO,
HanpuMmep, CofepP>XXMMOe NyCTOro BEKTOPA.

template <typename T>

void Swap(T& a, T& b) {
T t(std::move(a)); // move constructor
a = std::move(b); // move operator
b = std::move(t); // move operator

C++11: move-cemaHTuKa

TFoo a, b;

// TFoo &fc = b; - that's not ok

TFoo &&c = std::move(b);

a=c; // copy constructor

a = std::move(b); // move constructor

void f(T&& x); // rmvalue-cconka

T&& x = T(); // rvalue-cconka

template<typename T>
void £(T&& x); // ynueepcaabras ccovuaka

template<typename T>
void f(std::vector<T>&& x); // rvalue-ccoinka

C++11: yHuBepcanbHble CCbINKN

LLlabnoH ¢ yHMBepcaibHOM CCbINKOIA

template <typename T>
void call(T&& obj);

» Ecnn B kavecTBe aprymeHTa nepegaetcst Ivalue, To T
BbIBOAUTCS Kak lvalue-ccbinka.

» Ecnu B KauecTBe aprymeHnTa nepegaetcs rvalue, To T He
SIBJIIETCS CCbIJIKOMA.

int x;
call(x); // T - int8
call(std: :move(x)); // T - int

NMpobnembl new n delete

1. MoxHo 3abbITe HanucaTb delete.

2. MoxHo HanucaTe anwHwuii delete.

3. VTe4kM NamsaTn Npu NCKIIOHEHNSX U T.1.
4. delete / delete]].

Kak pewats?

» OctaButb delete ymHbIM yKaszaTensm.

» OctaButb new make-cbyHKUNSM.

Smart pointers

Yem nnoxm obbluHblE BCTPOEHHbIE yKa3aTenu?
» VKa3bIBalOT Ha MaccuB Win Ha ObbeKT?
» Bnapgeet nm ykasatesnb TeM, Ha 4TO yKasbiBaeT?
> TpygHo obecnednTb YHUHTOXEHUE POBHO OAMH Pas.

» OBbIYHO CNOXHO onpeaennTb, ABNAETCA NN YKA3aTE b
BNCAYUM.

> Henb3s npepoctaBuTh MHDOPMALINIO KOMMUASATOPY O TOM,
MOTYT /N ABa YKa3aTeNsi yKasblBaTb Ha OAHY obnacTb mamsTu.
«YMHBIA» («MHTENNEKTYaNbHbIN») yKa3aTeslb NPUTBOPSIETCS

ODbIYHBIM yKa3aTenem C AONONHUTENbHBIMU DYHKLUAMN.
ObepTka Hap OObIYHBIMU yKa3aTeNsIMU.

C++11: std::unique_ ptr

v

Peanm3yeT CEMAHTUKY UCKNHOYUTENIBHOIO BJ1aEHUA

v

MNepemelleHne nepepaeT BRafeHNe OT UCXOZHOTO yKasaTens
LLeNeBOMY, LeNEeBON Npyu 3TOM obHynsieTcs.

» KonuposaHue He paspeLuaeTcs.

» [lpun pecTpykuum oceoboXkaaeT pecypc, KOTOPbIM BlajeerT.
Obbi4HOe Mcnonb3oBaHWe — BO3BPaLLaeMblii Tun habpuydHbix
byHKUN Ans 0BBEKTOB nepapxun:

template <typename T>
std: :unique_ptr<Base> makeObject(T&& params);

Kak nsbasntbcs ot new?

Hanucatb obeptky!
template <typename T, typename... Ts>
std: :unique_ptr<T> make_unique(Ts&&... params) {
return std::unique_ptr<T>(
new T(std::forward<Ts>(params)...)

}

Yero ne xBaTaetr? MaccnBoB, NoNb30BaTENLCKUX yAAAUTENEN.
DyHKuMs yxe ecTb — std: :make_unique B C++14.

std: :unique_ptr<Base> p(new Base); // deawxdst nuwem Base
auto pl(std::make_unique<Base>()); // make

C++11: std::shared ptr

> Peanm3yeT CEMAHTUKY COBMECTHOIO BJ1af€HUA.

> llcnonb3yeT meTog noacyeta ccoiok. CHeTHMK CCbinok
XPpaHNTCA B AUHaAMMYecku Boigensiemoin namstn. ObvekT npo
CYETYMK CCbIJIOK HUYEro He 3HaeT.

» Tun YAQANNTENA HE ABNAECTCA HaCTbiO TUNA YyKa3aTens.

» MoxeT paboTaTb TONbKO AJis yKasaTenei Ha 0DBbEKTHI.

Y70 npoucxoanT 3aeck?

spl = sp2;

C++11: std::shared ptr

> [lepemeLleHne BbiCTpee KOMMPOBaHUSI.

> C‘-IeT‘-II/IK CCbIJIOK XPaHUTCA B ANHAMWNYECKN BbI,EI,eJ'IﬂeMOVI
namsiTu.

> [lonb3oBaTeNbCKNiA yaainTeNb He SIBASIETCS 4acTbio Tuna
yKasaresisi.

C++14

v

PaclumpeHHblil BbIBOL BO3BPALLAEMOro 3HaYeHUst DYHKLMIA.

v

MeHee orpaHnyeHHble constexpr-chyHKUNH.

> 3axBaT BblpaXkeHuii B nambaax.

C++417

v

std::optional

v

template<auto>

> std::variant

C++17: std::variant

DT0 Takoii union, KOTOPbLIN 3HAET, KAKO WMEHHO TWUM OH XPaHWUT.

std::variant<int, char, double> v;
v = 5,
std::cout << std::get<int>(v);

// std::cout << std::get<double>(v);
// uckmovenue std::bad_variant_access

// std::cout << std::get<float>(v);
// He KoMmnuaupyemcs

auto p = std::get_if<char>(&v); // nullptr

