
C++11 и выше: некоторые особенности
языка

Коноводов Владимир

кафедра математической кибернетики ВМК

11.12.2017

C++11: auto и decltype
Автоматический вывод типа переменной сильно упрощает
жизнь.
auto x = 0;
auto y = x, *z = &x; // int * y
auto& ref = x; // int& ref
const auto & xcref = x; // const int&
auto* p = &x; //int* p;
const auto* cp = p; // const int * p;
const auto pc = &x ; // int * const pc

decltype используется всегда в одном и том же контексте —
чтобы вернуть тип чего-то. А «чего-то» находится у него как
аргумент в скобочках. Чаще всего хочется получить тип
переменной или тип выражения. Очень удобно использовать
decltype в шаблонах.
decltype(1 + 2) x = 1; // int
decltype(x) y = x; // int
decltype(1,x) z = x; // ???

C++11: фигурные скобки

Создаем контейнер, содержащий определенный набор значений.
std::vector<int> v {1, 3, 5};
TFoo a{};

// вектор с 10 элементами, каждый =20
std::vector<int> v1 (10, 20);

// конструктор с std::initializer_list:
// вектор из 2х элементов 10 и 20
std::vector<int> v2 {10, 20};

C++11: фигурные скобки

#include <iostream>
class T {

public:
T(int a, bool b) { std::cout << "int, bool" << std::endl;}
T(int a, double b) { std::cout << "int, double" << std::endl;}
T(std::initializer_list<long double> l) {

std::cout << "init list" << std::endl;
}

};

int main() {
T t1(10, true);
T t2 {10, true};
T t3(10, 0.2);
T t4 {10, 0.2};

}

C++11: фигурные скобки

#include <iostream>
class T {

public:
T(int a, bool b) { std::cout << "int, bool" << std::endl;}
T(int a, double b) { std::cout << "int, double" << std::endl;}
T(std::initializer_list<long double> l) {

std::cout << "init list" << std::endl;
}

};

int main() {
T t1(10, true); // int, bool
T t2 {10, true}; // init list
T t3(10, 0.2); // int, double
T t4 {10, 0.2}; // init list

}

C++11: range-based циклы

for (auto x : container) {
// x – копия элемента в контейнере

}
for (auto& x : container) {

// x – ссылка на элемент в контейнере
}

C++11: Псевдонимы

typedef:

typedef
std::shared_ptr<std::map<std::string, std::string> >
TMyPtr;

typedef bool (*FPtr)(int, int);

using (C++11):
using TMyPtr =

std::shared_ptr<std::map<std::string, std::string> >;
using FPtr = bool (*)(int, int);

В чем отличие typedef от using?
Объявление псевдонимов поддерживает шаблонизацию.

C++11: scoped enumerations

enum Color {black, white, blue};
bool white; // error!

C++11:

enum class Color { red, green = 20, blue };
Color r = Color::blue;
switch (r) {

case Color::red: // ...
case Color::green: // ...
case Color::blue: // ...

}
int n = r; // ошибка
int n = static_cast<int>(r);

Базовый тип — int.

constexpr

const int a = 10;
const int b = std::numeric_limits<int>::max(); // <limits>
const int c = INT_MAX;

int a;
const int b = a; // ok
constexpr auto s = a; // error

constexpr int f() {return 1024;}

constexpr-функция должна состоять из одного return (C++11),
возвращать константу или вызывать такую же функцию.
Вычисление должно производиться во время компиляции (с
аргументами, значения которых известны во время
компиляции).

Пример: проверка простоты числа в
compile-time

constexpr bool is_div(int a, int b) {
return (b == 1) || (a % b != 0 && is_div(a, b - 1));

}

constexpr bool is_prime(int number) {
return number != 1 && is_div(number, number / 2);

}

int main() {
static_assert(is_prime(29) , " 29 is not prime");
static_assert(is_prime(36) , " 36 is prime");
return 0;

}

C++11: лямбда-выражения

Быстрый способ создать такую структуру с оператором ():
struct T {

bool operator()(int x){};
};
Do(T(), ...);

I [] — список переменных, которые захватывает
лямбда-выражение;

I () — входные аргументы функции;
I {} — тело функции.

C++11: лямбда-выражения

[capture] (params) mutable exception_attribute -> ret {body}
[capture] (params) -> ret {body}
[capture] (params) {body}
[capture] {body}

Пример:

std::vector<int> v = {-1, -2, -3, -4, -5, 1, 2, 3, 4 ,5};
std::sort(v.begin(), v.end(), [](int l, int r) {

return l * l < r * r;
});

C++11: лямбда-выражения

I [] — без захвата переменных
I [=] — все переменные захватываются по значению
I [&] — все переменные захватываются по ссылке
I [x] — захват x по значению
I [&x] — захват x по ссылке
I [x, &y] — захват x по значению, y по ссылке
I [=, &x, &y] — захват всех переменных по значению, но

x,y – по ссылке
I [&, x] — захват всех переменных по ссылке, кроме x
I [this] — для доступа к переменной класса

C++11: move-семантика
template <typename T>
void Swap(T& a, T& b) {

T t(a);
a = b;
b = t;

}

Много лишних копирований. Неплохо бы сказать компилятору,
что они необязательны. Сообщим компилятору, что копия не
нужна, и можем значение, которое лежит в a полностью
переместить в объект t . А что там оставить — что угодно,
например, содержимое пустого вектора.

template <typename T>
void Swap(T& a, T& b) {

T t(std::move(a)); // move constructor
a = std::move(b); // move operator =
b = std::move(t); // move operator =

}

C++11: move-семантика

TFoo a, b;
// TFoo &&c = b; – that's not ok
TFoo &&c = std::move(b);
a = c; // copy constructor
a = std::move(b); // move constructor

void f(T&& x); // rvalue-ссылка

T&& x = T(); // rvalue-ссылка

template<typename T>
void f(T&& x); // универсальная ссылка

template<typename T>
void f(std::vector<T>&& x); // rvalue-ссылка

C++11: универсальные ссылки

Шаблон с универсальной ссылкой
template <typename T>
void call(T&& obj);

I Если в качестве аргумента передается lvalue, то T
выводится как lvalue-ссылка.

I Если в качестве аргумента передается rvalue, то T не
является ссылкой.

int x;
call(x); // T - int&
call(std::move(x)); // T - int

Проблемы new и delete

1. Можно забыть написать delete.
2. Можно написать лишний delete.
3. Утечки памяти при исключениях и т.п.
4. delete / delete[].

Как решать?

I Оставить delete умным указателям.
I Оставить new make-функциям.

Smart pointers

Чем плохи обычные встроенные указатели?
I Указывают на массив или на объект?
I Владеет ли указатель тем, на что указывает?
I Трудно обеспечить уничтожение ровно один раз.
I Обычно сложно определить, является ли указатель

висячим.
I Нельзя предоставить информацию компилятору о том,

могут ли два указателя указывать на одну область памяти.
«Умный» («интеллектуальный») указатель притворяется
обычным указателем с дополнительными функциями.
Обертка над обычными указателями.

С++11: std::unique_ptr

I Реализует семантику исключительного владения
I Перемещение передает владение от исходного указателя

целевому, целевой при этом обнуляется.
I Копирование не разрешается.
I При деструкции освобождает ресурс, которым владеет.

Обычное использование – возвращаемый тип фабричных
функций для объектов иерархии:
template <typename T>
std::unique_ptr<Base> makeObject(T&& params);

Как избавиться от new?

Написать обертку!
template <typename T, typename... Ts>
std::unique_ptr<T> make_unique(Ts&&... params) {

return std::unique_ptr<T>(
new T(std::forward<Ts>(params)...)

)
}

Чего не хватает? Массивов, пользовательских удалителей.
Функция уже есть — std::make_unique в C++14.

std::unique_ptr<Base> p(new Base); // дважды пишем Base
auto p1(std::make_unique<Base>()); // make

С++11: std::shared_ptr

I Реализует семантику совместного владения.
I Использует метод подсчета ссылок. Счетчик ссылок

хранится в динамически выделяемой памяти. Объект про
счетчик ссылок ничего не знает.

I Тип удалителя не является частью типа указателя.
I Может работать только для указателей на объекты.

Что происходит здесь?
sp1 = sp2;

C++11: std::shared_ptr

I Перемещение быстрее копирования.
I Счетчик ссылок хранится в динамически выделяемой

памяти.
I Пользовательский удалитель не является частью типа

указателя.

C++14

I Расширенный вывод возвращаемого значения функций.
I Менее ограниченные constexpr-функции.
I Захват выражений в лямбдах.
I . . .

C++17

I std::optional
I template<auto>
I std::variant
I . . .

C++17: std::variant

Это такой union, который знает, какой именно тип он хранит.

std::variant<int, char, double> v;
v = 5;
std::cout << std::get<int>(v);

// std::cout << std::get<double>(v);
// исключение std::bad_variant_access

// std::cout << std::get<float>(v);
// не компилируется

auto p = std::get_if<char>(&v); // nullptr

