
Formal techniques
for software and hardware

verification

Lecturers:

Vladimir Zakharov
Vladislav Podymov

e-mail:
valdus@yandex.ru

2020, fall semester

Lecture 9

Real-time systems

Timed automata (TA)

Infeasible runs of TA

Timed computational tree logic (TCTL)

Model checking problem for TCTL

Real-time systems
Imagine a system
consisting of a bird (B) and a mosquito swarm (S) so that :

I B is (a) either hungry or full, and
(b) either far from S, or near to it

I B is born hungry, and far from S

I When B is hungry, it flies close to S and hunts a mosquito
I When B eats a mosquito, it becomes full,

and then eventually becomes hungry again
I When S notices that B is near, S flies away from B

A “minimal” “natural” Kripke structure for the system
contains the following states:

hungry, far

hungry, near

full, far

full, near

Real-time systems

hungry, far

hungry, near

full, far

full, near

A lot of questions about system behavior immediately arise:
I Is S always able to fly away from B?
I Is B always able to eat a mosquito when it is near S?
I Is B able to fly near S being hungry indefinitely/infinitely?
I Is B able to simultaneously fly close to S and become hungry

(... and eat a mosquito [... and fly away])?

The answers depend on certain abilities (speed, reaction time, ...)
of B and S

Real-time systems

Let us refine the system with some time/speed constraints:
I B digests a mosquito for exactly 3 minutes
I B gets close to S from afar in 1 minute
I If B is hungry and flying near S,

then it catches a mosquito in 2 minutes
I If B is flying near S,

then S notices B after not less than 3 minutes,
and then flies away immediately

The refied system might operate as follows:

Time

Hunger

Proximity

0 1 3 4 6

π
6

√
2 4.8 3 +

√
21 2 3 4

far near far ...

far near far ...

hungry full hungry ...

...

Real-time systems

Let us refine the system with some time/speed constraints:
I B digests a mosquito for exactly 3 minutes
I B gets close to S from afar in 1 minute
I If B is hungry and flying near S,

then it catches a mosquito in 2 minutes
I If B is flying near S,

then S notices B after not less than 3 minutes,
and then flies away immediately

The refied system might operate as follows:

Time

Hunger

Proximity

0

1 3 4 6

π
6

√
2 4.8 3 +

√
2

1 2 3 4

far near far ...

far near far ...

hungry full hungry ...

...

Real-time systems

Let us refine the system with some time/speed constraints:
I B digests a mosquito for exactly 3 minutes
I B gets close to S from afar in 1 minute
I If B is hungry and flying near S,

then it catches a mosquito in 2 minutes
I If B is flying near S,

then S notices B after not less than 1 minute,
and then flies away immediately

The refied system might operate as follows:

Time

Hunger

Proximity

0

1 3 4 6

π
6

√
2 4.8 3 +

√
2

1 2 3 4

far near far ...

far near far ...

hungry full hungry ...

...

Real-time systems

Let us refine the system with some time/speed constraints:
I B digests a mosquito for exactly 3 minutes
I B gets close to S from afar in 1 minute
I If B is hungry and flying near S,

then it catches a mosquito in 2 minutes
I If B is flying near S,

then S notices B after not less than 1 minute,
and then flies away immediately

The refied system might operate as follows:

Time

Hunger

Proximity

0

1 3 4 6π
6

√
2 4.8 3 +

√
2

1 2 3 4

far near

far ...

far near far ...

hungry

full hungry ...

...

Real-time systems
A system is said to be real-time (RTS) if
it contains real-time constraints (deadlines) for its components, and
its execution depends on whether the deadlines are met or not

For some RTSs, missed deadlines lead to unwanted consequences,
but are still acceptable:

I If I wake up too early,
I will be drowsy, but alive

I If an important mail is late, life still goes on
I If a video frame is played late,

the video lags, but will probably fix itself

Such RTSs are called soft

Real-time systems
A system is said to be real-time (RTS) if
it contains real-time constraints (deadlines) for its components, and
its execution depends on whether the deadlines are met or not

For some RTSs the deadlines are critical and must be held at all
costs:

I If a car brakes too late, it may cost a (priceless) life
I If your parachute won’t open in time, you will most likely die
I If any processing stage duration for any CPU instruction

does not fit in a cycle, the whole CPU is completely useless

Such RTSs are called hard

Only hard RTSs are considered in this course

Real-time systems

An execution state of an RTS should contain a real time:

hungry,near,2’53” ?

Kripke structures are not well suited to description and formal
verification of systems with such timed states:

a Kripke structure is finite, and its paths are countable;
state space and runs of an RTS are usually uncountable

To overcome this problem, it is sufficient to:
1. Propose a finite description of uncountable RTSs

and a countable description of their uncountable pathes
2. Adapt discrete temporal logic notions to real time
3. Reduce the obtained RTS verification problem

to a known discrete verification problem (in the next lecture)

Timed automata by example
Back to the hungry bird:

hungry,far full,far

hungry,near full,near

chf

chf
cn, chn

cf

chn

cn

cf = 3;

cn ≥ 1;

cf = 3;

cn ≥ 1

chf ≤ 1

chn ≤ 2

cf ≤ 3

cf ≤ 3

Let us try to refine the bird-swarm (B-S) model with real-time
details starting with the automaton (Kripke structure) shown above

Imagine that when the automaton executes,
a collection of stopwatches (clocks) executes alongside:

I Clocks are constantly ticking at the same pace, starting with 0

I Any clock can be reset (set to 0) when a transition is executed
to start tracking time passed since the reset

Timed automata by example
Back to the hungry bird:

hungry,far full,far

hungry,near full,near

chf

chf
cn, chn

cf

chn

cn

cf = 3;

cn ≥ 1;

cf = 3;

cn ≥ 1

chf ≤ 1

chn ≤ 2

cf ≤ 3

cf ≤ 3

Each transition is marked with a subset of clocks
to be reset when the transition is executed

A clock ... tracks how much time passed since ...
cf B became full
cn B flew by S from afar
chf B found itself hungry far from S
chn B found itself hungry close to S

Timed automata by example
Back to the hungry bird:

hungry,far full,far

hungry,near full,near

chf

chf
cn, chn

cf

chn

cn

cf = 3;

cn ≥ 1;

cf = 3;

cn ≥ 1

chf ≤ 1

chn ≤ 2

cf ≤ 3

cf ≤ 3

Each state is marked with clock constraints (called invariants)
which must be satisfied while the automaton remains in the state

The constraints above mean that:
I B cannot be full for more than 3 time units (minutes)
I B cannot hunger afar from S for more than 1 minute
I B cannot hunger close to S for more than 2 minutes

Timed automata by example
Back to the hungry bird:

hungry,far full,far

hungry,near full,near

chf

chf
cn, chn

cf

chn

cn

cf = 3;

cn ≥ 1;

cf = 3;

cn ≥ 1

chf ≤ 1

chn ≤ 2

cf ≤ 3

cf ≤ 3

Transitions are marked with clock constraints (called guards) which
must be satisfied when the transition is being executed

The constraints above mean that:
I 3 minutes since the last meal is the only time when B is able

to become hungry
I To be able to fly away from B, S must wait for at least 1

minute after B flew by

When an automaton is complemented with clocks and marked with
resets, invariants, and guards, it becomes a timed automaton

Timed automata

N0 is the set of all nonnegative integers

C hereafter denotes a finite set of clocks

Atomic clock constraints (over C) are the following expressions:
true, x < k , x ≤ k , x − y < k , x − y ≤ k ,

where x , y ∈ C and k ∈ N0

ACC (C) is the set of all atomic clock constraints over C

Clock constraints (over C) are defined by the following BNF:
g ::= (acc) | (g & g) | (¬g),

where g is a clock constraint, and acc ∈ ACC (C)

Parentheses are omitted according to usual operator precedence

CC (C) is the set of all clock constraints over C

Timed automata

R≥0 is the set of all nonnegative real numbers

A clock valuation over C is a function
ν : C → R≥0

A clock constraint cc is satisfied by a clock valuation ν (ν |= cc)
in the following cases: (≺∈ {<,≤})

I ν |= true

I ν |= x ≺ k ⇔ ν(x) ≺ k

I ν |= x − y ≺ k ⇔ ν(x)− ν(y) ≺ k

I ν |= cc1 & cc2 ⇔ ν |= cc1 and ν |= cc2
I ν |= ¬cc1 ⇔ ν 6|= cc1

A timed constraint is called an invariant iff it does not contain
differences (“x − y ”) and negations (“¬”)

IC (C) is the set of all invariants over C

Timed automata

Other relations and operations which can be used in
(non-invariant) clock constraints:

false ≡ ¬true
g1 ∨ g2 ≡ ¬(g1 & g2)
g1 → g2 ≡ ¬g1 ∨ g2
x ≥ k ≡ ¬(x < k)

x − y ≥ k ≡ ¬(x − y < k)
x > k ≡ ¬(x ≤ k)

x − y > k ≡ ¬(x − y ≤ k)
x = k ≡ (x ≤ k) &(x ≥ k)

x − y = k ≡ (x − y ≤ k) &(x − y ≥ k)
x 6= k ≡ ¬(x = k)

x − y 6= k ≡ ¬(x − y = k)

Timed automata

A timed automaton (TA) over a set of atomic propositions AP
is a tuple (L, `0, ξ, C, I ,T), where:

I L is a finite set of states
I `0 is an initial state, `0 ∈ L

I ξ : L→ 2AP is a labeling function which has the same meaning
as for Kripke structures

I C is a finite set of clocks
I I : L→ IC (C) is an invariant mapping
I T ⊆ L× TC (C)× 2C × L is a transition relation

I (l1, g ,X , l2) is a transition from l1 to l2 guarded by g which
resets clocks of the set X

I graph-related representation: l1
g ,X−−→ l2

Timed automata

Note that right-hand side of atomic clock constraints (x ≺ n;
x − y ≺ n) is a nonnegative integer

In particular, “x <
√

2” and “x < 2
3 ” are not atomic clock

constraints

The usual implicit assumption states that non-integer numbers in
right-hand sides are excessive:

I Any real number can be approximated with a rational one with
any given accuracy

I Denominators of any finite set of rational numbers can be
made equal

I To eliminate a common denominator n of all rational numbers
of TA, it is sufficient to divide a time unit duration by n

Timed automata

An execution configuration of a TA A = (L, `0, ξ, C, I ,T) is a pair
(`, ν), where ` ∈ L, and ν : C → R≥0

For clarity, sometimes TA clocks are assumed to be linearly ordered:
C = (x1, . . . , xm) — and a clock valuation ν is denoted by a tuple
(ν(x1), . . . , ν(xm))

An initial configuration of A is (`0, 0, 0, . . . , 0)

For brief definition of a TA execution step, the following
denotations are needed: (ν is a clock valuation; d ∈ R≥0; X ⊆ C)

I ν + d is the clock valuation defined by the identity
(ν + d)(x) = ν(x) + d

I ν[X] is the following clock valuation:
I ν[X](x) = 0, if x ∈ X
I ν[X](y) = ν(y), if y /∈ X

Timed automata

A few more denotations: (σ = (`, ν) is a configuration; d ∈ R≥0;
X ⊆ C; `′ is a TA state)

I σ + d = (`, ν + d)

I σ[X] = (`, ν[X])

I σ[`/`′] = (`′, ν)

Execution steps of a TA belong to one of two classes:
1. Transition steps (σ ↪→ σ′)
2. Delay steps (σ 7→ σ′)

An execution step relation → of a TA A is a union of 7→ and ↪→

Hereafter, R>0 is the set of all positive real numbers

Timed automata

Let A = (L, `0, ξ, C, I ,T) be a TA, and c = (`, ν) a configuration

Delay step

σ
d7−→ σ′ iff: (d ∈ R>0)
I σ′ = σ + d

I ν + d |= I (`)

σ 7→ σ′ iff there exists d , d ∈ R>0, such that σ d7−→ σ′

Transition step

σ
`

g,X−−→`′
↪−−−−−→ σ′ iff: (`

g ,X−−→ `′ ∈ T)
I σ′ = σ[X][`/`′]

I ν |= g

I ν[X] |= I (`′)

c ↪→ c ′ iff A contains a transition t such that c
t
↪−→ c ′

Timed automata

A trace of a TA from a configuration σ (in short, a σ-trace) is a
sequence of configurations of the form

σ → σ1 → σ2 → . . . ,

A partial run of a TA is a trace from its initial configuration

A configuration σ is a deadlock iff
there does not exist a configuration σ′ such that σ → σ′

A trace of a TA is called complete iff it is infinite or its last state is
a deadlock

A run of a TA is a complete partial run

Note that these notions slightly differ
from what was introduced in the first lectures for Kripke structures

Timed automata

HF FF

HN FN

chf

chf
cn, chn

cf

chn

cn

cf = 3;

cn ≥ 1;

cf = 3;

cn ≥ 1

chf ≤ 1

chn ≤ 2

cf ≤ 3

cf ≤ 3

Example: a partial run of the TA above
(the clocks in order: cf , cn, chf , chn)

(HF , 0 , 0 , 0 , 0) 7→(HF , π
6 , π

6 , π
6 , π6)

↪→(HN, π
6 , 0 , π

6 , 0) 7→(HN, π+6
6 , 1 ,π+6

6 , 1)
7→(HN,π+12

6 , 2 ,π+12
6 , 2) ↪→(HF ,π+12

6 , 2 , 0 , 2)
↪→(HN,π+12

6 , 0 , 0 , 0) ↪→(FN , 0 , 0 , 0 , 0)

7→(FN ,
√

2 ,
√

2 ,
√

2 ,
√

2) ↪→(FF ,
√

2 ,
√

2 ,
√

2 ,
√

2)

↪→(FN ,
√

2 , 0 ,
√

2 ,
√

2) 7→(FN , 3 ,3−
√

2, 3 , 3)

↪→(HN, 3 ,3−
√

2, 3 , 0) ↪→(HF , 3 ,3−
√

2, 0 , 0)

Infeasible runs of timed automata

A duration delay(σ → σ′) of an execution step σ → σ′ is a number

I d , if σ d7−→ σ′

I 0, if σ ↪→ σ′

A duration of a trace σ1 → σ2 → σ3 → . . . is

I the sum
k∑

i=1
delay(σi → σi+1), if the length of the trace is

finite and equals (k + 1)

I the limit of the series
∞∑
i=1

delay(σi → σi+1), if the trace is

infinite

Infeasible runs of timed automata

A trace is called convergent iff its duration is finite, and divergent
otherwise

A zeno trace is a convergent trace which contains infinitely many
transition steps

Examples

Divergent runs:
(`, 0) 7→ (`, 1) 7→ (`, 2) 7→ . . . 7→ (`, n) 7→ . . .

(`1, 0) 7→ (`1, 1) ↪→ (`2, 0) 7→ (`2, 1) ↪→ . . . 7→ (`n, 1) ↪→ (`n, 0) 7→ . . .

Convergent nonzeno runs:
(`1, 0) 7→ (`1, 1) ↪→ (`2, 0) 7→ (`2, 2) — deadlock
(`, 0) 7→ (`, 1

2
) 7→ (`, 2

3
) 7→ . . . 7→ (`, n−1

n
) 7→ . . .

Zeno runs:
(`1, 0) 7→ (`1,

1
2
) ↪→ (`2, 0) 7→ (`2,

1
4
) ↪→ . . . ↪→ (`n, 0) 7→ (`n,

1
2n
) ↪→ . . .

Infeasible runs of timed automata

A “real” RTS executes in potentially unbounded increasing time,
which means that all convergent runs should be considered
infeasible: not corresponding to any “realistic” runs of the RTS

Unfortunately, for any TA there exists at least one convergent run,
and for any nontrivial TA — infinitely many convergent runs

Some of the convergent runs are excluded by semantics of a
specification language, but some should be excluded before such
language is picked

A TA is sound iff the following conditions are met:
I All its runs are nonzeno
I Any its partial run can be extended to a divergent run

Timed computational tree logic (TCTL): syntax

Timed computation tree logic (Timed CTL; TCTL) is a real-time
analogue of CTL

A minimal syntax of tctl-formulas over sets of atomic propositions
AP and clocks C is defined by the following BNF:
ϕ ::= p | (acc) | (ϕ&ϕ) | (¬ϕ) | (E(ϕUϕ)) | (A(ϕUϕ)),
where ϕ is a tctl-formula, p ∈ AP , and acc ∈ ACC (C)

Informally, the letters E, A, and U
have a meaning similar to the same letters in CTL,
but adapted to real time execution specifics:

I EΦ: there exists a divergent run for which Φ is true
I AΦ: for any divergent run Φ is true
I ϕUψ: in real-time future ψ eventually becomes true,

and until that time ϕ is true

TCTL: implicit trace configurations
Consider the following sound TA A with clocks x , y ,
and tctl-formula ϕ:

x ≥ 1; x A(trueU(y = 1))

According to the informal meaning, ϕ should be true for an RTS
modelled by A:
“observing any divergent run of the RTS, we eventually
(after exactly 1 second) see that y = 1”

The latter means that the following divergent run of the RTS
should satisfy the formula “(trueU(y = 1))”:

(`, 0, 0) 7→ (`, 2, 2)→ . . .

According to the run, between the first two explicitly stated
configurations the TA implicitly visits every configuration of the
form (`, d , d), where 0 < d < 2 (continuously waiting for 2
minutes)

TCTL semantics should take into account such implicitly visited
configurations

TCTL: implicit trace configurations

Consider a trace τ (of some TA):
σ0 → σ1 → σ2 → . . .

A configuration σ is generated at i-th step of τ (i ≥ 1) iff
I σ = σi , or

I σi−1
d7−→ σi , σi−1

d ′7−→ σ and d ′ < d

A configuration σ is generated by the trace τ iff either σ = σ0, or σ
is generated at any step of τ

TCTL: semantics
Consider a TA A = (L, `0, ξ, C, I ,T) over AP , its configuration
σ = (`, ν), and a tctl-formula ϕ over AP and C

The formula ϕ is sarisfied by a configuration σ of A (A, σ |= ϕ) in
the following cases:

I A, σ |= a, where a ∈ AP ⇔ a ∈ ξ(`)

I A, σ |= acc , where acc ∈ ACC (C) ⇔ ν |= acc

I A, σ |= ψ&χ ⇔ A, σ |= ψ and A, σ |= χ

I A, σ |= ¬ψ ⇔ A, σ 6|= ψ

I A, σ |= EΦ ⇔ there exists a divergent σ-trace τ of A
such that A, τ |= Φ

I A, σ |= AΦ ⇔ for any divergent σ-trace τ of A if holds
A, τ |= Φ

TCTL: semantics
Consider a TA A = (L, `0, ξ, C, I ,T) over AP , its configuration
σ = (`, ν), and a tctl-formula ϕ over AP and C

The formula ϕ is sarisfied by a configuration σ of A (A, σ |= ϕ) in
the following cases:

I A, τ |= ψUχ,
where τ = (σ0 → σ1 → . . .) is a divergent trace ⇔

I A, σ0 |= χ, or
I there exists a number k , k ≥ 1, and a configuration σ

generated at k-th step of τ such that
I A, σ |= χ, and
I for any configuration δ generated by
σ0 → σ1 → · · · → σk → σ it holds A, δ |= ψ ∨ χ

The formula ϕ is satisfied by the TA A (A |= ϕ) iff it is satisfied by
the initial configuration of A

TCTL: “Until”
A, τ |= ψUχ ⇔ ... for any configuration δ generated by τ it holds A, δ |= ψ ∨ χ

Consider the following TA A with clocks x , y and formula ϕ:
x ≥ 1; x A((y ≤ 1)U(y > 1))

The following holds: A, (`, 0, 0) |= ϕ —
and it complies with the informal meaning of ϕ:
“there exists a divergent run of the RTS
such that its duration will eventually exceed 1,
and until that time the duration will be not greater than 1”

Note the formula “ψ ∨ χ” in the definition of “U” for TCTL: in the
corresponding place of the CTL* definition “ψ” is written instead

This difference is
I insignificant: ψUχ ≡ (ψ ∨ χ)Uχ in CTL*
I necessary: if “ψ ∨ χ” is replaced with “ψ”,

then A, (`, 0, 0) 6|= ϕ, which would be inadequate

TCTL: other operations

Other familiar boolean connectives and temporal operations are
usually included in TCTL:

ϕ ∨ ψ ≡ ¬(¬ϕ&¬ψ) ϕ→ ψ ≡ ¬ϕ ∨ ψ
E(ϕRψ) ≡ ¬E(¬ϕU¬ψ) A(ϕRψ) ≡ ¬A(¬ϕU¬ψ)

EFϕ ≡ E(trueUϕ) AFϕ ≡ A(trueUϕ)
AGϕ ≡ ¬EF¬ϕ EGϕ ≡ ¬AF¬ϕ

Informally, F, G, and R in TCTL differ from the same letters in CTL
in the same way as the letter U:

I Fϕ: in real-time future ϕ eventually becomes true
I Gϕ: in real-time future ϕ is always true
I ϕRψ: ... (try it yourself)

TCTL: other operations
full

near near , full

chf

chf
cn, chn

cf

chn

cn

cf = 3;

cn ≥ 1;

cf = 3;

cn ≥ 1

chf ≤ 1

chn ≤ 2

cf ≤ 3

cf ≤ 3

A few more tctl-properties:
I No matter what happens, if B is hungry, then it has a chance

to eat
AG(¬full → EFfull)

I B cannot fly hungry and afar from S for more than a minute
¬EF(¬full &¬near & chf > 1)

I In 2 minutes after B finds itself hungry and near S it is
decided whether the hunt is successfull or not

AG(chn = 0→ AF(chn ≤ 2 &(far ∨ full)))

Model checking problem for TCTL

Given a sound timed automaton A
and a tctl-formula ϕ,

check whether the relation A |= ϕ holds

