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Topics covered in Lecture on SAT Solvers

Motivation for SAT/SMT solvers in software engineering
• Software engineering (SE) problems reduced to logic problems
• Automation, engineering, usability of SE tools through solvers

High-level description of the SAT/SMT problem & logics
• Rich logics close to program semantics
• Demonstrably easy to solve in many practical cases

Modern SAT solver architecture & techniques
• DPLL search, shortcomings 
• Modern CDCL SAT solver: propagate (BCP), decide (VSIDS), conflict analysis, clause learn, backJump, 
• Termination, correctness
• Big lesson: learning from mistakes

Topics covered in Lecture on SMT Solvers

• Modern SMT solver architecture & techniques
• Rich logics closer to program semantics
• DPLL(T), Combinations of solvers, Over/under approximations

• My own contributions: STP & HAMPI
• Abstraction-refinement for solving
• Bounded logics

• SAT/SMT-based applications

• Future of SAT/SMT solvers
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Modern SMT Solvers
Are SAT Solvers Enough?
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What is SMT

• Satisfiability Modulo Theories. Just a fancy name for a mathematical theory

Motivations: why we need SMT?

• A satisfiability solver for rich logics/natural theories  (Many natural complexity classes have 
corresponding SATisfiability problems)

• Easier to encode program semantics in these theories

• Easier to exploit rich logic structure, greater opportunity for optimizations

SMT Logics

• Bit-vectors, arrays, functions, linear integer/real arithmetic, strings, non-linear arithmetic

• Datatypes, quantifiers, non-linear arithmetic, floating point

• Extensible, programmable

SAT & SMT is an explosive combo: incredible impact
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What is Logic?
Formal Languages and Valid Reasoning
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What is Logic

• A formal language for constructing mathematical formulas with an associated proof system

• Modern logic starts with the works of Boole, De Morgan, Frege, Cantor, Russell.

What is a formal language in the context of logic

• Well-defined rules for constructing formulas

• Formulas are defined inductively

• Universe of constant and variables

• Terms are constructed out of constants, variables and functions

• Atomic formulas are predicates applied to terms

• Formulas are Boolean combination of atomic formulas

• Appropriate quantification over variables
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First-order Logic
A Language for Mathematics (most of it)
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First-order logic

• Functions and predicates are uninterpreted

• FOL has equality

• Quantification only over variables (higher-order logics quantify over functions, predicates)

Soundness and completeness of first-order logic (Godel, 1930)

• Equivalence between provability and validity

• Axioms ⊢A ⟺ Axioms ⊨ A

Undecidability of first-order logic (Turing, Church 1936)

• Hilbert’s 23rd problem

• No fully automatic proof system for first-order logic
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Mathematical Theories
Peano Arithmetic and Incompleteness
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Mathematical Theories

• Functions and predicates are interpreted (and appropriate axioms are added to FOL)

• Peano arithmetic (PA): +,-,*,/ are the functions. = and < the predicates. 

• It is believed to be powerful enough to axiomatize number theory

Incompleteness theorem (Godel 1931)

• There are true statements that are not provable in a system as powerful as Peano arithmetic, 
assuming consistency of PA

• For the first time, this result distinguished truth from proof

• Huge impact on logic and computability

• Arithematization of syntax, Encode proofs as numbers, Diagonalize 

• G: G is not provable in this Theory T
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Mathematical Theories
The SMT Problem
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Mathematical Theories

• Peano arithmetic, Presburger, theories of strings, modular arithmetic, quantified Boolean logic

• Different complexity classes: From undecidable, doubly-exponential, all the way down to NP-
complete

SMT problem refers to the satisfiability problems for such rich theories

• Satisfiability modulo-theories

• How do we solve the SAT problem for rich theories efficiently and practically

• Given the difficulty of solving these problems in general, what kind of heuristics are efficient

• Can we play with soundness and completeness in a controlled fashion?

• How do we combine such SATisfiability solvers into a solver for the combined theory
 

• Quantifiers

• How do we connect these solvers to practical software engineering applications
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Standard-issue SMT Solver Architecture
Combination of theories & DPLL(T)
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Input SMT Instance

Core Solver
(Detects Equivalent Terms)

DPLL(T)
(Handles 

Boolean Structure)

Theory 1 Theory n...

Purify

Output: SAT or UNSAT
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Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen
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Problem Statement

• Combine theory solvers to obtain a solver for a union theory

Motivation

• Software engineering constraints over many natural theories

• Natural theories well understood

• Modularity

How

• Setup communication between individual theory solvers

• Communication over shared signature

• Soundness, completeness and termination
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Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen
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Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)− f(y)) = a
f(0) = a+2

x = y

IDEA: Φcomb ⇔ (ΦT1 ∧ EQ) ∧ (ΦT2 ∧ EQ)

• First Step: purify each literal so that it belongs to a single theory
• Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)
• The solvers have to agree on equalities/disequalities between shared vars

R
e2 - e3 = e1

e4 = 0
e5 = a + 2

UF
f(e1) = a
f(x)  = e2

f(y)  = e3

f(e4) = e5

x = y
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R
e2 - e3 = e1

e4 = 0
e5 = a + 2
e2 = e3

UF
f(e1) = a
f(x)  = e2

f(y)  = e3

f(e4) = e5

x = y
e1 = e4

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)− f(y)) = a
f(0) = a+2

x = y

IDEA: Φcomb ⇔ (ΦT1 ∧ EQ) ∧ (ΦT2 ∧ EQ)
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Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen
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R
e2 - e3 = e1

e4 = 0
e5 = a + 2
e2 = e3

e5 = a

UF
f(e1) = a
f(x)  = e2

f(y)  = e3

f(e4) = e5

x = y
e1 = e4

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)− f(y)) = a
f(0) = a+2

x = y

IDEA: Φcomb ⇔ (ΦT1 ∧ EQ) ∧ (ΦT2 ∧ EQ)

• First Step: purify each literal so that it belongs to a single theory
• Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)
• The solvers have to agree on equalities/disequalities between shared vars
• UF says SAT, R says UNSAT. Combination returns UNSAT.
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Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen
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IDEA: Φcomb ⇔ (ΦT1 ∧ EQ) ∧ (ΦT2 ∧ EQ)

• Does NOT always work, i.e., does not always give a complete solver

• Example: Cannot combine T1 with only finite models, and T2 with infinite models

• Impose conditions on T1 and T2

• Stably Infinite: If a T-formula has a model it has an infinite model

• Examples: Functions, Arithmetic

• Extensions proved to be artificial or difficult

• Deep model-theoretic implications (Ghilardi 2006, G. 2007)
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Standard-issue SMT Solver Architecture
Combination of theories & DPLL(T)
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Input SMT Instance

Core Solver
(Detects Equivalent Terms)

DPLL(T)
(Handles 

Boolean Structure)

Theory 1 Theory n...

Purify

Output: SAT or UNSAT

Wednesday, 16 January, 13



Vijay Ganesh

Standard-issue SMT Solver Architecture
DPLL(T)
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Problem Statement

• Efficiently handle the Boolean structure of the input formula

Basic Idea

• Use a SAT solver for the Boolean structure &
  check assignment consistency against a T-solver

• T-solver only supports conjunction of T-literals

Improvements

• Check partial assignments against T-solver

• Do theory propagation (similar to SAT solvers)

• Conflict analysis guided by T-solver & 
  generate conflict clauses (similar to SAT solvers)

• BackJump (similar to SAT solvers)
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Standard-issue SMT Solver Architecture
DPLL(T)
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Uninterpreted Functions formula

(1)          (g(a) = c) ∧
(¬2∨3)  (f(g(a)) ≠ f(c) ∨ (g(a) = d)) ∧ 
(¬4)          (c ≠d)

Theory and Unit Propagation Steps by DPLL(T)

(Unit Propagate)     (1)
(Unit Propagate)     (¬4)
(Theory Propagate) (2)
(Theory Propagate) (3)
UNSAT
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History of SMT Solvers
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Category Research Project Researcher/Institution/Time Period

Theorem Proving 
(very early roots of decision 
procedures)

NuPRL
Boyer-Moore Theorem Prover
ACL2
PVS Proof Checker

Robert Constable / Cornell / 1970’s-present
Boyer & Moore / UT Austin / 1970’s-present
Moore, Kauffmann et al. / UT Austin / 1980’s - present
Natarajan Shankar / SRI International / 1990’s-present

SAT Solvers 

DPLL
GRASP (Clause learning and backjumping)
Chaff & zChaff
MiniSAT

Davis, Putnam, Logemann & Loveland / 1962
Marques-Silva & Sakallah / U. Michigan / 1996-2000
Zhang, Malik et al. / Princeton / 1997-2002
Een & Sorensson / 2005 - present

Combinations

Simplify
Shostak
ICS
SVC, CVC, CVC-Lite, CVC3 ...
Non-disjoint theories

Nelson & Oppen / DEC and Compaq / late 1980s
Shostak / SRI International / late 1980’s
Ruess & Shankar / SRI International / late 1990’s
Barrett & Dill / Stanford U. / late 1990’s
Tinelli, Ghilardi,...,  / 2000 - 2008

DPLL(T) Barcelogic and Tinelli group Oliveras, Nieuwenhuis & Tinelli / UPC and Iowa / 2006

Under/Over Approximations
UCLID
STP

Seshia & Bryant / CMU / 2004 - present
Ganesh & Dill / Stanford / 2005 - present

Widely-used SMT Solvers

Z3
CVC4
OpenSMT
Yices
MathSAT
STP
UCLID

DeMoura & Bjorner / Microsoft / 2006 - present
Barrett & Tinelli / NYU and Iowa / early 2000’s - present
Bruttomesso / USI Lugano / 2008 - present
Deuterre / SRI International / 2005 - present
Cimatti et al. / Trento / 2005 - present
Ganesh / Stanford & MIT / 2005 - present
Seshia / CMU & Berkeley / 2004 - present
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Topics covered in Lecture 1

Motivation for SAT/SMT solvers in software engineering
• Software engineering (SE) problems reduced to logic problems
• Automation, engineering, usability of SE tools through solvers

High-level description of the SAT/SMT problem & logics
• Rich logics close to program semantics
• Demonstrably easy to solve in many practical cases

Modern SAT solver architecture & techniques
• DPLL search, shortcomings 
• Modern CDCL SAT solver: propagate (BCP), decide (VSIDS), conflict analysis, clause learn, backJump, 
• Termination, correctness
• Big lesson: learning from mistakes

Topics covered in Lecture 2

 Modern SMT solver architecture & techniques
• Rich logics closer to program semantics
• DPLL(T), Combinations of solvers, Over/under approximations

• My own contributions: STP & HAMPI
• STP: Abstraction-refinement for solving
• Applications to dynamic symbolic testing (aka concolic testing)
• HAMPI: Bounded logics

• SAT/SMT-based applications

• Future of SAT/SMT solvers
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STP Bit-vector & Array Solver
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STP Solver
Program

Expressions
(x = z+2 OR

mem[i] + y <= 01)

UNSAT

SAT

• Bit-vector or machine arithmetic
•  Arrays for memory
• C/C++/Java expressions
• NP-complete
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• STP
• Enabled Concolic Testing
• EXE by Engler et al
• BAP/BitBlaze by Song et al.
• Model checking by Dill et al.

• Solver-based languages (Alloy team)
• Solver-based debuggers
• Solver-based type systems 
• Solver-based concurrency bugfinding

100,000 Constraints

1,000,000 Constraints

2005 2009 Today

• HAMPI: String Solvers
• Ardilla by Ernst et al.
• Kudzu & Kaluza by Song et al.
• Klee by Engler et al.
• George Candea’s Cloud 9 tester
• STP + HAMPI exceed 100+ projects

The History of STP

21
Wednesday, 16 January, 13
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Programs Reasoning & STP
Why Bit-vectors and Arrays

• STP logic tailored for software reliability applications

• Support symbolic execution/program analysis

22

C/C++/Java/... Bit-vectors and Arrays

Int Var
Char Var

32 bit variable
8 bit variable

Arithmetic operation
(x+y, x-y, x*y, x/y,...)

Arithmetic function
(x+y,x-y,x*y,x/y,...)

assignments
x = expr;

equality
x = expr;

if conditional
if(cond) x = expr1 else x = expr2

if-then-else construct
x = if(cond) expr1 else expr2

inequality inequality predicate

Memory read/write
x = *ptr + i;

Array read/write
ptr[]; x = Read(ptr,i);

Structure/Class Serialized bit-vector expressions

Function Symbolic execution

Loops Bounding
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How to Automatically Crash Programs?
Concolic Execution & STP
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Problem:  Automatically generate crashing tests given only the code

Symbolic Execution
Engine
with

Implicit Spec

Program

Crashing Tests

STP

Formulas

SAT/UNSAT

Automatic Tester
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How to Automate Testing?
Concolic Execution & STP

24

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
  //1. Integer overflow causing NULL deref
  //2. Buffer overflow
  *(ptr+i) = process_data(*(data_field+i));
}

}

Structured input processing code: 
PDF Reader, Movie Player,...

• Formula captures computation
• Tester attaches formula to capture spec

Wednesday, 16 January, 13
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How to Automate Testing?
Concolic Execution & STP
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Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
  //1. Integer overflow causing NULL deref
  //2. Buffer overflow
  *(ptr+i) = process_data(*(data_field+i));
}

}

Structured input processing code: 
PDF Reader, Movie Player,...

data_field, mem_ptr :  ARRAY;
len_field : BITVECTOR(32); //symbolic
i,  j, ptr    : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.

Equivalent Logic Formula derived using
symbolic execution

• Formula captures computation
• Tester attaches formula to capture spec
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Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
  //1. Integer overflow causing NULL deref
  //2. Buffer overflow
  *(ptr+i) = process_data(*(data_field+i));
}

}

Structured input processing code: 
PDF Reader, Movie Player,...

data_field, mem_ptr :  ARRAY;
len_field : BITVECTOR(32); //symbolic
i,  j, ptr    : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.
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• Formula captures computation
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Concolic Execution & STP
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Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
  //1. Integer overflow causing NULL deref
  //2. Buffer overflow
  *(ptr+i) = process_data(*(data_field+i));
}

}

Structured input processing code: 
PDF Reader, Movie Player,...

data_field, mem_ptr :  ARRAY;
len_field : BITVECTOR(32); //symbolic
i,  j, ptr    : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.

Equivalent Logic Formula derived using
symbolic execution

• Formula captures computation
• Tester attaches formula to capture spec

//INTEGER OVERFLOW QUERY
0 <= j <= process(len_field);
ptr + i + j = 0?
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How STP Works
Bird’s Eye View: Translate to SAT
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SAT
UNSAT

Bit-vector
&

Array Formula

(x = z+2 OR
mem[i] + y <= 01)

...

TranslateTo
SAT

Boolean 
SAT Solver

STP

Why Translate to SAT? 
• Both theories NP-complete
• Non SAT approaches didn’t work
• Translation to SAT leverages solid engineering
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How STP Works
Rich Theories cause MEM Blow-up

26

SAT
UNSAT

Bit-vector
&

Array Formula

(x = z+2 OR
mem[i] + y <= 01)

...

Translate
To

SAT

Boolean 
SAT Solver

STP

Formula 
Growth

• Making information explicit
• Space cost
• Time cost
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Explicit Information causes Blow-up
Array Memory Read Problem
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• Array Aliasing is implicit
• Need to make information explicit during solving 
• Cannot be avoided

data_field, mem_ptr :  ARRAY;
len_field : BITVECTOR(32); //symbolic
i,  j, ptr    : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.
if(ptr+i = ptr+j) then mem_ptr[ptr+i] = mem_ptr[ptr+j);

Logic Formula derived using
symbolic execution

//INTEGER OVERFLOW QUERY
0 <= j <= process(len_field);
ptr + i + j < ptr?
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How STP Works
Array-read MEM Blow-up Problem
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• Problem: O(n2) axioms added, n is number of read indices
• Lethal, if n is large, say, n = 100,000; # of axioms is 10 Billion

Read(Mem,i0) = expr0

Read(Mem,i1) = expr1 
Read(Mem,i2) = expr2 

.

.

.
Read(Mem,in) = exprn 

v0 = expr0

v1 = expr1

.

.

.

vn = exprn

(i0 = i1) => (v0 = v1)

(i0 = i2) => (v0 = v2)

...

(i1 = i2) => (v1 = v2)

...

Formula Growth
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How STP Works
The Array-read Solution
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• Key Observation 
• Most indices don’t alias in practice
• Exploit locality of memory access in typical programs
• Need only a fraction of array axioms for equivalence

Read(Mem,i0) = expr0

Read(Mem,i1) = expr1 
Read(Mem,i2) = expr2 

.

.

.
Read(Mem,in) = exprn 

v0 = expr0

v1 = expr1

.

.

.

vn = exprn

(i0 = i1) => (v0 = v1)
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STP Key Conceptual Contribution
Abstraction-refinement Principle
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Abstraction Step

Input Formula

Boolean SAT Solver

Abstracted
 Formula

Check Answer
Correct 
Answer

Refinement
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How STP Works
What to Abstract & How to Refine?

31

Abstraction Refinement

1. Less essential parts
2. Causes MEM blow-up

1. Guided
2. Must remember

Abstraction manages 
formula growth hardness

Refinement manages 
search-space hardness
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How STP Works
Abstraction-refinement for Array-reads
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Substitutions

Simplifications

Linear Solving

Array Abstraction

Conversion to SAT

Boolean SAT Solver

Refinement Loop

Result

Read(A,i0)=0 
Read(A,i1)=1 
… 
Read(A,in)=10,000 
�(i0,i1) 

Input 
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How STP Works
Abstraction-refinement for Array-reads
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Substitutions

Simplifications

Linear Solving

Array Abstraction

Conversion to SAT

Boolean SAT Solver

Refinement Loop

Result

Read(A,i0)=0 
Read(A,i1)=1 
… 
Read(A,in)=10,000 
�’(i0,i1) 

i0 = i1
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How STP Works
Abstraction-refinement for Array-reads
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Substitutions

Simplifications

Linear Solving

Array Abstraction

Conversion to SAT

Boolean SAT Solver

Refinement Loop

Result

Abstracted Input 
Array Axioms Dropped 

v0=0 
v1=1 
… 
vn=10,000 
�’ (i0,i1) 
 

Read(A,i0)=0 
Read(A,i1)=1 
… 
Read(A,in)=10,000 
�(i0,i1) 

Input 
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How STP Works
Abstraction-refinement for Array-reads
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Substitutions

Simplifications

Linear Solving

Array Abstraction

Conversion to SAT

Boolean SAT Solver

Refinement Loop

Result

Abstracted Input 
Array Axioms Dropped 

v0=0 
v1=1 
… 
vn=10,000 
�’ (i0,i1) 
 

Read(A,i0)=0 
Read(A,i1)=1 
… 
Read(A,in)=10,000 
�(i0,i1) 

Input 

i0=0,i1=0 
v0=0, v1=1 

… 

Input 
Formula false 

in 
Assignment 
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How STP Works
Abstraction-refinement for Array-reads
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Substitutions

Simplifications

Linear Solving

Array Abstraction

Conversion to SAT

Boolean SAT Solver

Refinement Loop

Result

Abstracted Input 
Array Axioms Dropped 

v0=0 
v1=1 
… 
vn=10,000 
�’ (i0,i1) 
 

Read(A,i0)=0 
Read(A,i1)=1 
… 
Read(A,in)=10,000 
�(i0,i1) 

Input 

i0=0,i1=0 
v0=0, v1=1 

… 
Add Axiom that 

is Falsified 

(i0=i1)!v0=v1 
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How STP Works
Abstraction-refinement for Array-reads
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Substitutions

Simplifications

Linear Solving

Array Abstraction

Conversion to SAT

Boolean SAT Solver

Refinement Loop

UNSAT

Read(A,i0)=0 
Read(A,i1)=1 
… 
Read(A,in)=10,000 
�(i0,i1) 

Input 
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STP vs. Other Solvers
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Testcase (Formula Size) Result Z3 
(sec)

Yices 
(sec)

STP(s
ec)

610dd9c     (~15K) SAT TimeOut MemOut 37

Grep65      (~60K) UNSAT 0.3 TimeOut 4

Grep84      (~69K) SAT 176 TimeOut 18

Grep106    (~69K) SAT 130 TimeOut 227

Blaster4     (~262K) UNSAT MemOut MemOut 10

Testcase20 (~1.2M) SAT MemOut MemOut 56

Testcase21 (~1.2M) SAT MemOut MemOut 43
* All experiments on 3.2 GHz, 512 Kb cache
* MemOut: 3.2 GB (Memory used by STP much smaller), TimeOut: 1800 seconds
* Examples obtained from Dawn Song at Berkeley, David Molnar at Berkeley and Dawson Engler at Stanford
* Experiments conducted in 2007
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STP vs. Other Leading Solvers
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* All experiments on 2.4 GHz, 1 GB RAM
* Timeout: 500 seconds/example

0

1000

2000

3000

4000

Boolector MSAT STP

T
im

e 
in

 S
ec

on
ds

STP vs. Boolector & MathSAT on 615 SMTCOMP 2007 - 2010 examples
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Impact of STP
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• Enabled existing SE technologies to scale 
• Bounded model checkers, e.g., Chang and Dill

• Easier to engineer SE technologies 
• Formal tools (ACL2+STP) for verifying Crypto, Smith & Dill

• Enabled new SE technologies 
• Concolic testing (EXE,Klee,...) by Engler et al., Binary Analysis by Song et al.
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Impact of STP: Notable Projects
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Category Research Project Project Leader/Institution

Formal Methods
ACL2 Theorem Prover + STP
Verification-aware Design Checker
Java PathFinder Model Checker

Eric Smith & David Dill/Stanford
Jacob Chang & David Dill/Stanford
Mehlitz & Pasareanu/NASA

Program Analysis
BitBlaze & WebBlaze
BAP

Dawn Song et al./Berkeley
David Brumley/CMU

Automatic Testing
Security

Klee, EXE
SmartFuzz
Kudzu

Engler & Cadar/Stanford
Molnar & Wagner/Berkeley
Saxena & Song/Berkeley

Hardware Bounded 
Model-cheking (BMC)

Blue-spec BMC
BMC

Katelman & Dave/MIT
Haimed/NVIDIA

• Enabled Concolic Testing
• 100+ reliability and security projects
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Impact of STP
http://www.metafuzz.com

42

Program Name
Lines of 
Code

Number of 
Bugs Found

Team

Mplayer ~900,000 Hundreds
David Molnar/Berkeley & Microsoft 
Research

Evince ~90,000 Hundreds
David Molnar/Berkeley & Microsoft 
Research

Unix Utilities 1000s Dozens Dawson Engler et al./Stanford

Crypto Hash 
Implementations

1000s Verified Eric Smith & David Dill/Stanford
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Rest of the Talk

• STP Bit-vector and Array Solver
• Why Bit-vectors and Arrays?
• How does STP scale: Abstraction-refinement
• Impact: Concolic testing
• Experimental Results

• HAMPI String Solver
• Why Strings?
• How does HAMPI scale: Bounding
• Impact: String-based program analysis
• Experimental Results

• Future Work
• Multicore SAT
• SAT-based Languages

43
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HAMPI String Solver

44

HAMPI Solver
String

Expressions
UNSAT

SAT

• X = concat(“SELECT...”,v) AND (X  ∈ SQL_grammar)
• JavaScript and PHP Expressions
• Web applications, SQL queries  
• NP-complete
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Theory of Strings
The Hampi Language

45

PHP/JavaScript/C++... HAMPI: Theory of Strings Notes

Var a;
$a = ‘name’

Var a : 1...20; 
a = ‘name’

 Bounded String Variables
 String Constants

string_expr.” is ” concat(string_expr, “ is “);  Concat Function

substr(string_expr,1,3) string_expr[1:3]  Extract Function

assignments/strcmp
a = string_expr;
a /= string_expr;

equality
a = string_expr;
a /= string_expr;

 Equality Predicate

Sanity check in regular expression RE
Sanity check in context-free grammar CFG

string_expr in RE 
string_expr in SQL
string_expr NOT in SQL

 Membership Predicate

string_expr contains a sub_str
string_expr does not contain a sub_str

string_expr contains sub_str
string_expr NOT?contains sub_str

 Contains Predicate
 (Substring Predicate)
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Theory of Strings
The Hampi Language

46

•  X = concat(“SELECT msg FROM msgs WHERE topicid = ”,v)
 AND 

(X  ∈ SQL_Grammar)

• input  ∈ RegExp([0-9]+)

• X = concat (str_term1, str_term2, “c”)[1:42]
AND

X contains “abc”
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

47

Backend
DataBase

Malicious SQL Query

Unauthorized 
Database Results

Buggy
Script

SELECT m FROM messages WHERE id=’1’ OR 1 = 1

Wednesday, 16 January, 13



Vijay Ganesh

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

48

Source: IBM Internet Security Systems, 2009
Source: Fatbardh Veseli, Gjovik University College, Norway
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

49

if (input in regexp(“[0-9]+”))
   query := “SELECT m FROM messages WHERE id=‘ ” + input +  “ ’ “)

Buggy Script

• input passes validation (regular expression check)

• query is syntactically-valid SQL

• query can potentially contain an attack substring
   (e.g., 1’ OR ‘1’ = ‘1)
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

49

if (input in regexp(“[0-9]+”))
   query := “SELECT m FROM messages WHERE id=‘ ” + input +  “ ’ “)

Buggy Script

• input passes validation (regular expression check)

• query is syntactically-valid SQL

• query can potentially contain an attack substring
   (e.g., 1’ OR ‘1’ = ‘1)

Should be:  “^[0-9]+$”
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

50

if (input in regexp(“[0-9]+”))
   query := “SELECT m FROM messages WHERE id=‘ ” + input +  “ ’ “)

Program Reasoning Tool

Specification

Generate Tests/
Report Vulnerability

HAMPI

String Formulas

SAT/UNSAT
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Rest of the Talk

• HAMPI Logic: A Theory of Strings

• Motivating Example: HAMPI-based Vulnerability Detection App

• How HAMPI works

• Experimental Results

• Related Work: Theory and Practice

• HAMPI 2.0

• SMTization: Future of Strings

51
Wednesday, 16 January, 13



Vijay Ganesh

Expressing the Problem in HAMPI
SQL Injection Vulnerabilities

52

Var v : 12; 

 

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond; 

cfg Cond := Val "=" Val | Cond " OR " Cond; 

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+; 

 

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'"); 

 

assert q in SqlSmall;     

assert q contains "OR ‘1'=‘1'"; 

  

SQL 
Grammar 

SQL Query 

Input String 

SQLI attack 
conditions 

“q is a valid SQL query” 

“q contains an attack vector” 

assert v in [0-9]+;
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Hampi Key Conceptual Idea
Bounding, expressiveness and efficiency

53

Li
Complexity of
∅ = L1 ∩ ... ∩ Ln

Current Solvers

Context-free Undecidable n/a

Regular PSPACE-complete Quantified 
Boolean Logic

Bounded NP-complete SAT
Efficient in practice
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Hampi Key Idea: Bounded Logics
Testing, Vulnerability Detection,...

54

•Finding SAT assignment is key

•Short assignments are sufficient

•Bounding is sufficient

•Bounded logics easier to decide
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Hampi Key Idea: Bounded Logics
Bounding vs. Completeness

55

• Bounding leads to incompleteness

• Testing (Bounded MC) vs. Verification (MC)

• Bounding allows trade-off (Scalability vs. Completeness)

• Completeness (also, soundness) as resources 
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

56

Var v : 12; 

 

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond; 

cfg Cond := Val "=" Val | Cond " OR " Cond; 

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+; 

 

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'"); 

 

assert q in SqlSmall;     

assert q contains "OR ‘1'=‘1'"; 

  

SQL 
Grammar 

SQL Query 

Input String 

SQLI attack 
conditions 

“q is a valid SQL query” 

“q contains an attack vector” 

assert v in [0-9]+;
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How Hampi Works
Bird’s Eye View: Strings into Bit-vectors

57

Hampi

Find a 4-char string v:
• (v) is in E
• (v) contains ()()

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer
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How Hampi Works
Unroll Bounded CFGs into Regular Exp.

58

Bound(E,6)  
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

Hampivar v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer
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How Hampi Works
Unroll Bounded CFGs into Regular Exp.

58

Bound(E,6)  
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

Hampivar v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer

Bound Auto-derived
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How Hampi Works
Bird’s Eye View: Strings into Bit-vectors

59

Hampi

Find a 4-char string v:
• (v) is in E
• (v) contains ()()

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer
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How Hampi Works
Unroll Bounded CFGs into Regular Exp.
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var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

Auto-derive 
lower/upper bounds 

[L,B]
on CFG

[6,6]

cfg E := “()” | E E | “(“ E “)”

Look for 
minimal length 

string
“()”

Step 1:

Step 2:
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How Hampi Works
Unroll Bounded CFGs into Regular Exp.

61

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct Partitions

[4,2]
[2,4]
[3,3]
[5,1]
[1,5]

[1,4,1]

Step 3:

Length: 6

Min. length constant: ”()”

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

Step 4:

Length: 6

Min. length constant: ”()”
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Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up

62

•Dynamic programming style

• Works well in practice

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

...

Length: 6

Min. length constant: ”()”
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Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up

63

Bound(E,6)  
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

...

Length: 6

Min. length constant: ”()”
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How Hampi Works
Converting Regular Exp. into Bit-vectors

64

 ( v ) � ()[()() + (())] + [()() + (())]() + ([()() + (())]) 

Formula �1   
  Formula �2   
  Formula �3 

Encode regular expressions recursively

•  Alphabet { (, ) }  0, 1

•  constant            bit-vector constant

•  union +            disjunction  


•  concatenation  conjunction �

•  Kleene star *   conjunction ��
• �Membership, equality equality�

B[0]=0��	�
�����	�
����	�
����	�
����	�
���
…  
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How Hampi Works
Converting Regular Exp. into Bit-vectors
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 ( v ) � ()[()() + (())] + [()() + (())]() + ([()() + (())]) 

Formula �1   �  Formula �2   �  Formula �3 

• Constraint Templates

• Encode once, and reuse

• On-demand formula generation

B[0]=0 ∧ B[1]=1 ∧ {B[2]=0∧B[3]=1∧B[4]=0∧B[5]=1 ∨… 
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How Hampi Works
Decoder converts Bit-vectors to Strings 

66

Hampi

Find a 4-char string v:
• (v) is in E
• (v) contains ()()

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer
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Rest of the Talk

• HAMPI Logic: A Theory of Strings

• Motivating Example: HAMPI-based Vulnerability Detection App

• How HAMPI works

• Experimental Results

• Related Work: Theory and Practice

• HAMPI 2.0

• SMTization: Future of Strings

67
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HAMPI: Result 1
Static SQL Injection Analysis

68
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Grammar Size (# of productions) 

• 1367 string constraints from Wasserman & Su [PLDI’07]  
• Hampi scales to large grammars
• Hampi solved 99.7% of constraints in < 1sec
• All solvable constraints had short solutions
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HAMPI: Result 2
Security Testing and XSS

69

• Attackers inject client-side script into web pages

• Somehow circumvent same-origin policy in websites

• echo “Thank you $my_poster for using the message board”;

• Unsanitized $my_poster

• Can be JavaScript

• Execution can be bad
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HAMPI: Result 2
Security Testing

70

• Hampi used to build Ardilla security tester [Kiezun et al., ICSE’09]

• 60 new vulnerabilities on 5 PHP applications (300+ kLOC)
• 23 SQL injection
• 37 cross-site scripting (XSS) 5 added to 

US National Vulnerability DB

• 46% of constraints solved in < 1 second per constraint

• 100% of constraints solved in <10 seconds per constraint
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HAMPI: Result 3
Comparison with Competing Tools

71
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string size (characters)


• HAMPI vs. CFGAnalyzer (U. Munich): HAMPI ~7x faster for strings of size 50+

Wednesday, 16 January, 13



Vijay Ganesh

HAMPI: Result 3
Comparison with Competing Tools

72

RE intersection problems

• HAMPI 100x faster than Rex (MSR)

• HAMPI 1000x faster than DPRLE (U. Virginia)

• Pieter Hooimeijer 2010 paper titled ‘Solving String Constraints Lazily’
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How to Automatically Crash Programs?
KLEE: Concolic Execution-based Tester
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Problem:  Automatically generate crashing tests given only the code

Symbolic Execution
Engine
with

Implicit Spec

Program

Crashing Tests

STP

Formulas

SAT/UNSAT

Automatic Tester
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How to Automatically Crash Programs?
KLEE: Concolic Execution-based Tester

74

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
  //1. Integer overflow causing NULL deref
  //2. Buffer overflow
  *(ptr+i) = process_data(*(data_field+i));
}

}

Structured input processing code: 
PDF Reader, Movie Player,...

• Formula captures computation
• Tester attaches formula to capture spec
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How to Automatically Crash Programs?
KLEE: Concolic Execution-based Tester

74

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
  //1. Integer overflow causing NULL deref
  //2. Buffer overflow
  *(ptr+i) = process_data(*(data_field+i));
}

}

Structured input processing code: 
PDF Reader, Movie Player,...

data_field, mem_ptr :  ARRAY;
len_field : BITVECTOR(32); //symbolic
i,  j, ptr    : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.

Equivalent Logic Formula derived using
symbolic execution

• Formula captures computation
• Tester attaches formula to capture spec
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How to Automatically Crash Programs?
KLEE: Concolic Execution-based Tester

74

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
  //1. Integer overflow causing NULL deref
  //2. Buffer overflow
  *(ptr+i) = process_data(*(data_field+i));
}

}

Structured input processing code: 
PDF Reader, Movie Player,...

data_field, mem_ptr :  ARRAY;
len_field : BITVECTOR(32); //symbolic
i,  j, ptr    : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.

Equivalent Logic Formula derived using
symbolic execution

• Formula captures computation
• Tester attaches formula to capture spec
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How to Automatically Crash Programs?
KLEE: Concolic Execution-based Tester

74

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
  //1. Integer overflow causing NULL deref
  //2. Buffer overflow
  *(ptr+i) = process_data(*(data_field+i));
}

}

Structured input processing code: 
PDF Reader, Movie Player,...

data_field, mem_ptr :  ARRAY;
len_field : BITVECTOR(32); //symbolic
i,  j, ptr    : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.

Equivalent Logic Formula derived using
symbolic execution

• Formula captures computation
• Tester attaches formula to capture spec

//INTEGER OVERFLOW QUERY
0 <= j <= process(len_field);
ptr + i + j = 0?
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HAMPI: Result 4
Helping KLEE Pierce Parsers
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Symbolic Execution
Engine
with

Implicit Spec

Crashing Tests

STP

Formulas

SAT/UNSAT

KLEE

Parser

Semantic Core

Mark Input
Symbolic

Wednesday, 16 January, 13



Vijay Ganesh

HAMPI: Result 4
Helping KLEE Pierce Parsers

76

Symbolic Execution
Engine
with

Implicit Spec

Crashing Tests

STP

Formulas

SAT/UNSAT

KLEE

Parser

Semantic Core

Generate Input
Using HAMPI;

Mark Partially Symbolic
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HAMPI: Result 4
Helping KLEE Pierce Parsers

77

• Klee provides API to place constraints on symbolic inputs

• Manually writing constraints is hard

• Specify grammar using HAMPI, compile to C code

• Particularly useful for programs with highly-structured inputs

• 2-5X improvement in line coverage
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Impact of Hampi: Notable Projects
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Category Research Project Project Leader/Institution

Static Analysis SQL-injection vulnerabilities Wasserman & Su/UC, Davis

Security Testing
Ardilla for PHP (SQL injections, 
cross-site scripting)

Kiezun & Ernst/MIT

Concolic Testing
Klee
Kudzu
NoTamper

Engler & Cadar/Stanford
Saxena & Song/Berkeley
Bisht & Venkatakrishnan/U Chicago

New Solvers Kaluza Saxena & Song/Berkeley
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Impact of Hampi: Notable Projects

79

Tool Name Description
Project Leader/
Institution

Kudzu JavaScript Bug Finder & Vulnerability Detector

Saxena
Akhawe  
Hanna
Mao
McCamant
Song/Berkeley

NoTamper Parameter Tamper Detection

Bisht
Hinrichs/U of Chicago
Skrupsky
Bobrowicz
Vekatakrishnan/ U. of Illinois, 
Chicago

Wednesday, 16 January, 13



Vijay Ganesh

Impact of Hampi: Notable Projects
NoTamper

80

Server

• Client-side checks (C), no server checks

• Find solutions S1,S2,... to C, and solutions E1,E2,... to ~C by calling HAMPI

• E1,E2,... are candidate exploits

• Submit (S1, E1),... to server

• If server response same, ignore

• If server response differ, report error

Wednesday, 16 January, 13



Vijay Ganesh

Related Work (Practice)

81

Tool Name
Project Leader/
Institution

Comparison with HAMPI

Rex
Bjorner, Tillman, Vornkov et al. 
(Microsoft Research, Redmond)

• HAMPI 
   + Length+Replace(s1,s2,s3)
    - CFG
• Translation to int. linear arith. (Z3)

Mona Karlund et al. (U. of Aarhus)
• Can encode HAMPI & Rex
• User work
• Automata-based
• Non-elementary

DPRLE  Hooimeijer (U. of Virginia) • Regular expression constraints
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Related Work (Theory)
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Result Person (Year) Notes

Undecidability of Quantified 
Word Equations

Quine (1946) Multiplication reduced to concat

Undecidability of Quantified 
Word Equations with single 
alternation

Durnev (1996), G. (2011)
2-counter machines reduced to 
words with single quantifier alter.

Decidability (PSPACE) of QF 
Theory of Word Equations

Makanin (1977)
Plandowski (1996, 2002/06)

Makanin result very difficult
Simplified by Plandowski

Decidability (PSPACE-
complete) of QF Theory of 
Word Equations + RE

Schultz (1992) RE membership predicate

QF word equations + Length() 
(?)

Matiyasevich (1971)
Unsolved
Reduction to Diophantine

QF word equations in solved 
form + Length() + RE

G. (2011) Practical
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Future of HAMPI & STP
• HAMPI will be combined with STP

• Bit-vectors and Arrays
• Integer/Real Linear Arithmetic
• Uninterpreted Functions
• Strings
• Floating Point
• Non-linear

• Additional features planned in STP
• UNSAT Core
• Quantifiers
• Incremental
• DPLL(T)
• Parallel STP
• MAXSMT?

• Extensibility and hackability by non-expert

83
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Future of Strings
• Strings SMTization effort started

• Nikolaj Bjorner, G.
• Andrei Voronkov, Ruzica Piskac, Ting Zhang
• Cesare Tinelli, Clark Barrett, Dawn Song, Prateek Saxena, Pieter Hooimeijer, Tim Hinrichs

• SMT Theory of Strings
• Alphabet (UTF, Unicode,...)
• String Constants and String Vars (parameterized by length)
• Concat, Extract, Replace, Length Functions
• Regular Expressions, CFGs (Extended BNF)
• Equality, Membership Predicate, Contains Predicate

• Applications
• Static/Dynamic Analysis for Vulnerability Detection
• Security Testing using Concolic Idea
• Formal Methods
• Synthesis

84
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Conclusions & Take Away
• SMT solvers essential for testing, analysis, verification,...

• Core SMT ideas

• Combinations
• DPLL(T)
• Over/Under approximations (CEGAR,...)
• SAT solvers

• Future of SMT solvers

• SMT + Languages
• SMT + Synthesis
• Parallel SAT/SMT

 

• Demand for even richer theories
• Attribute grammars
• String theories with length

85
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These websites and handbook have all the references you will need

1. Armin Bierre, Marijn Heule, Hans van Maaren, and Toby Walsh (Editors). Handbook of Satisfiability.  2009. IOS Press. http://
www.st.ewi.tudelft.nl/sat/handbook/

2. SAT Live: http://www.satlive.org/

3. SMT LIB: http://www.smtlib.org/

4. SAT/SMT summer school: http://people.csail.mit.edu/vganesh/summerschool/
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Topics Covered
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Topics covered in Lecture 1

Motivation for SAT/SMT solvers in software engineering
• Software engineering (SE) problems reduced to logic problems
• Automation, engineering, usability of SE tools through solvers

High-level description of the SAT/SMT problem & logics
• Rich logics close to program semantics
• Demonstrably easy to solve in many practical cases

Modern SAT solver architecture & techniques
• DPLL search, shortcomings 
• Modern CDCL SAT solver: propagate (BCP), decide (VSIDS), conflict analysis, clause learn, backJump, 
• Termination, correctness
• Big lesson: learning from mistakes

Topics covered in Lecture 2

Modern SMT solver architecture & techniques 
• Rich logics closer to program semantics
• DPLL(T), Combinations of solvers, Over/under approximations

My own contributions: STP & HAMPI
• Abstraction-refinement for solving
• Bounded logics

 SAT/SMT-based applications
• Dynamic systematic testing
• Static, dynamic analysis for vulnerability detection

 Future of SAT/SMT solvers
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Key Contributions
http://people.csail.mit.edu/vganesh

Name Key Concept Impact Pubs

STP 
Bit-vector & Array Solver1,2

Abstraction-refinement 
for Solving 

Concolic 
Testing

CAV 2007
CCS 2006
TISSEC 2008

HAMPI 
String Solver1

App-driven Bounding for 
Solving

Analysis of 
Web Apps

ISSTA 20093

TOSEM 2011
(CAV 2011)

Taint-based Fuzzing Information flow is 
cheaper than concolic

Scales better 
than concolic

ICSE 2009

Automatic Input 
Rectification

Acceptability Envelope:
Fix the input, not the 
program

New way of 
approaching SE

Under 
Submission
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1. 100+ research projects use STP and HAMPI
2. STP won the SMTCOMP 2006 and 2010 competitions for bit-vector solvers
3. HAMPI: ACM Best Paper Award 2009
4. Retargetable Compiler (DATE 1999)
5. Proof-producing decision procedures (TACAS 2003)
6. Error-finding in ARBAC policies (CCS 2011)
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