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Talk Outline

Topics covered in Lecture on SAT Solvers

[ Motivation for SAT/SMT solvers in software engineering
* Software engineering (SE) problems reduced to logic problems
* Automation, engineering, usability of SE tools through solvers

fZHigh-IeveI description of the SAT/SMT problem & logics

* Rich logics close to program semantics
* Demonstrably easy to solve in many practical cases

[/ Modern SAT solver architecture & techniques
* DPLL search, shortcomings
* Modern CDCL SAT solver: propagate (BCP), decide (VSIDS), conflict analysis, clause learn, backjump,
* Termination, correctness
* Big lesson: learning from mistakes

Topics covered in Lecture on SMT Solvers

e Modern SMT solver architecture & techniques
* Rich logics closer to program semantics
* DPLL(T), Combinations of solvers, Over/under approximations

e My own contributions: STP & HAMPI

* Abstraction-refinement for solving
* Bounded logics

e SAT/SMT-based applications

e Future of SAT/SMT solvers
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Modern SMT Solvers
Are SAT Solvers Enough?

What is SMT

* Satisfiability Modulo Theories. Just a fancy name for a mathematical theory

Motivations: why we need SMT?

* A satisfiability solver for rich logics/natural theories (Many natural complexity classes have
corresponding SATisfiability problems)

* Easier to encode program semantics in these theories

* Easier to exploit rich logic structure, greater opportunity for optimizations

SMT Logics

* Bit-vectors, arrays, functions, linear integer/real arithmetic, strings, non-linear arithmetic
e Datatypes, quantifiers, non-linear arithmetic, floating point
* Extensible, programmable

SAT & SMT is an explosive combo: incredible impact
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What is Logic!?
Formal Languages and Valid Reasoning

What is Logic

* A formal language for constructing mathematical formulas with an associated proof system
* Modern logic starts with the works of Boole, De Morgan, Frege, Cantor, Russell.

What is a formal language in the context of logic

* Well-defined rules for constructing formulas

* Formulas are defined inductively

e Universe of constant and variables

* Terms are constructed out of constants, variables and functions
* Atomic formulas are predicates applied to terms

* Formulas are Boolean combination of atomic formulas

* Appropriate quantification over variables

Vijay Ganesh
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First-order Logic
A Language for Mathematics (most of it)

First-order logic

* Functions and predicates are uninterpreted
* FOL has equality
* Quantification only over variables (higher-order logics quantify over functions, predicates)

Soundness and completeness of first-order logic (Godel, 1930)

* Equivalence between provability and validity

e Axioms HA < Axioms EA

Undecidability of first-order logic (Turing, Church 1936)

 Hilbert’s 23rd problem

* No fully automatic proof system for first-order logic

Vijay Ganesh
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Mathematical Theories
Peano Arithmetic and Incompleteness

Mathematical Theories

* Functions and predicates are interpreted (and appropriate axioms are added to FOL)
* Peano arithmetic (PA): +,-*,/ are the functions. = and < the predicates.
* It is believed to be powerful enough to axiomatize number theory

Incompleteness theorem (Godel 1931)

* There are true statements that are not provable in a system as powerful as Peano arithmetic,
assuming consistency of PA

* For the first time, this result distinguished truth from proof
* Huge impact on logic and computability
* Arithematization of syntax, Encode proofs as numbers, Diagonalize

* G: G is not provable in this Theory T
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Mathematical Theories
The SMT Problem

Mathematical Theories

* Peano arithmetic, Presburger, theories of strings, modular arithmetic, quantified Boolean logic

* Different complexity classes: From undecidable, doubly-exponential, all the way down to NP-
complete

SMT problem refers to the satisfiability problems for such rich theories

* Satisfiability modulo-theories

* How do we solve the SAT problem for rich theories efficiently and practically

* Given the difficulty of solving these problems in general, what kind of heuristics are efficient
* Can we play with soundness and completeness in a controlled fashion?

* How do we combine such SATisfiability solvers into a solver for the combined theory

e Quantifiers

* How do we connect these solvers to practical software engineering applications

Vijay Ganesh
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Standard-issue SMT Solver Architecture
Combination of theories & DPLL(T)

Input SMTE

| Core Solver | »| Output: SAT -

DPLL(T)
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Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

Problem Statement

* Combine theory solvers to obtain a solver for a union theory

Motivation

* Software engineering constraints over many natural theories
* Natural theories well understood

* Modularity

How

* Setup communication between individual theory solvers
e Communication over shared signature

* Soundness, completeness and termination

Vijay Ganesh 9
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Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)— f(y)) =a
f(0) = a+2

X=Yy

IDEA: Pcomb & (P11 A EQ) A (P12 A EQ)

e First Step: purify each literal so that it belongs to a single theory
e Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)
* The solvers have to agree on equalities/disequalities between shared vars

UF R

f(e;) =a €2-€e3=¢]
f(x) =ez ea=10

f(y) =es3 es=a+?2
f(es) = es

X=Yy
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Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)— f(y)) =a
f(0) = a+2
X = Y

IDEA: Pcomb & (P11 A EQ) A (P12 A EQ)

* First Step: purify each literal so that it belongs to a single theory
* Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)

* The solvers have to agree on equalities/disequalities between shared vars

UF R

f(e;) = a €2 - €3 =¢€]
f(x) =e2 es=0

f(y) =es3 es=a+ 2
f(e4) =65 €2 =¢€3
X=Yy
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Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)— f(y)) =a
f(0) = a+2
X = Y

IDEA: Pcomb & (P11 A EQ) A (P12 A EQ)

e First Step: purify each literal so that it belongs to a single theory
e Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)
* The solvers have to agree on equalities/disequalities between shared vars

UF R

f(er) = a €2 -€3=¢]
f(x) =ez ea=0

f(y) =es3 es=a+2
f(e4) = &5 C2=2¢€3
X=Yy

C1 =¢C4
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Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)— f(y)) =a
f(0) = a+2

X=Yy

IDEA: Pcomb & (P11 A EQ) A (P12 A EQ)

* First Step: purify each literal so that it belongs to a single theory

* Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)
* The solvers have to agree on equalities/disequalities between shared vars

e UF says SAT, R says UNSAT. Combination returns UNSAT.

UF R

f(e;) = a €2 - €3 =¢€]
f(x) =e2 es=0

f(y) =es3 es=a+2
f(es) = es e = €3
X=y es=a

€1 =e4
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Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

IDEA chomb = ((DT1 A EQ) AN ((DT2 AN EQ)

* Does NOT always work, i.e., does not always give a complete solver

* Example: Cannot combine T+ with only finite models, and T2 with infinite models

* Impose conditions on Ty and T>
e Stably Infinite: If a T-formula has a model it has an infinite model
* Examples: Functions, Arithmetic
» Extensions proved to be artificial or difficult

* Deep model-theoretic implications (Ghilardi 2006, G. 2007)

Vijay Ganesh | 4
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Standard-issue SMT Solver Architecture
Combination of theories & DPLL(T)

Input SMTE

| Core Solver | »| Output: SAT -

DPLL(T)
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Standard-issue SMT Solver Architecture

DPLL(T)

Problem Statement

e Efficiently handle the Boolean structure of the input formula

Basic Idea

* Use a SAT solver for the Boolean structure &
check assignment consistency against a I-solver

* T-solver only supports conjunction of T-literals

Improvements

* Check partial assignments against T-solver
* Do theory propagation (similar to SAT solvers)

* Conflict analysis guided by T-solver &
generate conflict clauses (similar to SAT solvers)

* Backjump (similar to SAT solvers)

Vijay Ganesh
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Standard-issue SMT Solver Architecture

DPLL(T)

Uninterpreted Functions formula

() (8(2) = ¢) A
(72v3) (f(g(a)) # f(c) v (g(a) = d)) A
(—4) (c #d)

Theory and Unit Propagation Steps by DPLL(T)

(Unit Propagate) (1)
(Unit Propagate) (—4)
(Theory Propagate) (2)
(Theory Propagate) (3)
UNSAT

Vijay Ganesh

|7

Wednesday, 16 Januar y, 13



History of SMT Solvers

Category Research Project

NuPRL

Boyer-Moore Theorem Prover
ACL2

PVS Proof Checker

Theorem Proving
(very early roots of decision
procedures)

DPLL

GRASP (Clause learning and backjumping)
Chaff & zChaff

MiniSAT

SAT Solvers

Simplify
Shostak
ICS

SVC, CVC, CVC-Lite, CVC3 ...
Non-disjoint theories

Combinations

DPLL(T) ‘ Barcelogic and Tinelli group

L UCLID
Z3

CvC4

OpenSMT
Widely-used SMT Solvers Yices
MathSAT
STP
UCLID

Researcher/Institution/Time Period

Robert Constable / Cornell / 1970’s-present
Boyer & Moore / UT Austin / 1970’s-present
Moore, Kauffmann et al. / UT Austin / 1980’s - present
Natarajan Shankar / SRI International / 1990’s-present

Davis, Putnam, Logemann & Loveland / 1962
Marques-Silva & Sakallah / U. Michigan / 1996-2000
Zhang, Malik et al. / Princeton / 1997-2002

Een & Sorensson / 2005 - present

Nelson & Oppen / DEC and Compaq / late 1980s
Shostak / SRI International / late 1980’s

Ruess & Shankar / SRI International / late 1990’s
Barrett & Dill / Stanford U. / late 1990’s

Tinelli, Ghilardi,..., 7 2000 - 2008

Oliveras, Nieuwenhuis & Tinelli / UPC and lowa /7 2006 ‘

Seshia & Bryant / CMU / 2004 - present
Ganesh & Dill / Stanford / 2005 - present

DeMoura & Bjorner / Microsoft / 2006 - present
Barrett & Tinelli / NYU and lowa / early 2000’s - present
Bruttomesso / US| Lugano / 2008 - present

Deuterre / SRI International / 2005 - present

Cimatti et al. / Trento / 2005 - present

Ganesh / Stanford & MIT / 2005 - present

Vijay Ganesh
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Talk Outline

Topics covered in Lecture |

[ Motivation for SAT/SMT solvers in software engineering
* Software engineering (SE) problems reduced to logic problems
* Automation, engineering, usability of SE tools through solvers

[/ High-level description of the SAT/SMT problem & logics
* Rich logics close to program semantics
* Demonstrably easy to solve in many practical cases

[7[Modern SAT solver architecture & techniques

* DPLL search, shortcomings

* Modern CDCL SAT solver: propagate (BCP), decide (VSIDS), conflict analysis, clause learn, backjump,
* Termination, correctness
* Big lesson: learning from mistakes

Topics covered in Lecture 2

[ Modern SMT solver architecture & techniques
* Rich logics closer to program semantics
* DPLL(T), Combinations of solvers, Over/under approximations

e My own contributions: STP & HAMPI
* STP: Abstraction-refinement for solving

* Applications to dynamic symbolic testing (aka concolic testing)
* HAMPI: Bounded logics

e SAT/SMT-based applications

e Future of SAT/SMT solvers

Vijay Ganesh
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STP Bit-vector & Array Solver

Program SAT
Expressions = STP Solver <
UNSAT

(x =z+2 OR

* Bit-vector or machine arithmetic
* Arrays for memory

o C/C++/Java expressions

* NP-complete

Vijay Ganesh 20
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1,000,000 Constraints

The History of STP

* Solver-based languages (Alloy team)
* Solver-based debuggers

* Solver-based type systems

* Solver-based concurrency bugfinding

* HAMPI: String Solvers
* Ardilla by Ernst et al.
* Kudzu & Kaluza by Song et al.
* Klee by Engler et al.

* George Candea’s Cloud 9 tester
o STP + HAMPI exceed 100+ projects

e STP
* Enabled Concolic Testing
e EXE by Engler et al

* BAP/BitBlaze by Song et
* Model checking by Dill e

al.

100,000 Constraints

2005 2009 Today

Vijay Ganesh
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Vijay Ganesh

Programs Reasoning & STP
Why Bit-vectors and Arrays

* STP logic tailored for software reliability applications

* Support symbolic execution/program analysis

C/C++/)Java/...

Bit-vectors and Arrays

Int Var
Char Var

32 bit variable
8 bit variable

Arithmetic operation
(x+y, x-y, Xy, x/y,...)

Arithmetic function
(X+y,x-y,x*y,x/y,...)

if(cond) x = expr! else x = expr?

assignments equality
X = expr; X = expr;
if conditional if-then-else construct

x = if(cond) expr! else expr?

inequality

inequality predicate

Memory read/write
X = *ptr + i;

Array read/write
ptr[]; x = Read(ptri);

Structure/Class

Serialized bit-vector expressions

Function

Symbolic execution

Loops

Bounding

22
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How to Automatically Crash Programs!?
Concolic Execution & STP

Problem: Automatically generate crashing tests given only the code

Program .
Automatic Tester

4 N
Formulas

Symbolic Execution 1

Engine
with
Implicit Spec

SAT/UNSAT

Crashing Tests

Vijay Ganesh 23
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How to Automate Testing?
Concolic Execution & STP

Structured input processing code:
PDF Reader, Movie Player,...

Buggy C Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
I/'1.Integer overflow causing NULL deref
/2. Buffer overflow
*(ptr+i) = process_data(*(data_field+i));
}
}

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh
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How to Automate Testing?
Concolic Execution & STP

Structured input processing code: Equivalent Logic Formula derived using
PDF Reader, Movie Player,... symbolic execution

. : data field, mem ptr: ARRAY;
Buggy C Program(int* data_field, int len_field) { len field :BITVE_CIZDTOR(32)°//symboIic

int * ptr = malloc(len_field*sizeof(int)); b plpdr RENASURINERR H neelle

int i; //uninitialized

mem_ ptr[ptr+i] = process_data(data_field[i]);

while (i++ < process(len_field)) { mem_ptr[ptr+i+1] = process_data(data_field[i+1]);

/l'l.Integer overflow causing NULL deref
/2. Buffer overflow
*(ptr+i) = process_data(*(data_field+i));
}
}

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh
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How to Automate Testing?
Concolic Execution & STP

Structured input processing code: Equivalent Logic Formula derived using
PDF Reader, Movie Player,... symbolic execution

. : data field, mem ptr: ARRAY;
Buggy C Program(int* data_field, int len_field) { len field :BITVE_CIZDTOR(32)°//symboIic

int * ptr = malloc(len_field*sizeof(int)); b plpdr RENASURINERR H neelle

int i; //uninitialized

<> mem_ ptr[ptr+i] = process_data(data_field[i]);

while (i++ < process(len_field)) { mem_ptr[ptr+i+1] = process_data(data_field[i+1]);

/l'l.Integer overflow causing NULL deref
/2. Buffer overflow
*(ptr+i) = process_data(*(data_field+i));
}
}

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh 24
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How to Automate Testing?
Concolic Execution & STP

Structured input processing code: Equivalent Logic Formula derived using
PDF Reader, Movie Player,... symbolic execution

. : data field, mem ptr: ARRAY;
Buggy C Program(int* data_field, int len_field) { len field :BITVE_CIZDTOR(32)°//symboIic

int * ptr = malloc(len_ field*sizeof(int)); b o[PS MBS UGIRER R el

int i; //uninitialized

<> mem_ ptr[ptr+i] = process_data(data_field[i]);

ile (i++ <
while (i++ < process(len_field)) { mem_ptr[ptr+i+|] = process_data(data_field[i+1]);

I/'1.Integer overflow causing NULL deref
/2. Buffer overflow

*(ptr+i) = process_data(*(data_field+i)); '
} [[INTEGER OVERFLOW QUERY

\ 0 <= j <= process(len_field);
ptr +i+j=0?

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh
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How STP Works
Bird’s Eye View: Translate to SAT

STP
Bit-vector
&
Array Formula TranslateTo Boolean SAT
—> —> <
(x =z+2 OR SAT SAT Solver UNSAT
mem[i] +y <=01)

Why Translate to SAT?
* Both theories NP-complete
* Non SAT approaches didn’t work
* Translation to SAT leverages solid engineering

Vijay Ganesh 25
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How STP VWVorks
Rich Theories cause MEM Blow-up

A
Bit-vector }/ \{
&

Array Formula = Formula = Boolean <SAT
(x =z+2 OR SAT Solver UNSAT

mem[i] +y <= 0I)

STP

v/ \

* Making information explicit
* Space cost
* Time cost

Vijay Ganesh 26
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Explicit Information causes Blow-up

Array Memory Read Problem

Logic Formula derived using
symbolic execution

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j,ptr :BITVECTOR(32);//symbolic

mem_ ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+|] = process_data(data_field[i+1]);

if(ptr+i = ptr+j) then mem_ptr[ptr+i] = mem_ptr[ptr+j);

IINTEGER OVERFLOW QUERY
0 <=j <= process(len_field);
ptr +i+ | < ptr?

* Array Aliasing is implicit
* Need to make information explicit during solving

e Cannot be avoided
Vijay Ganesh
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How STP Works
Array-read MEM Blow-up Problem

* Problem: O(n?) axioms added, n is number of read indices
* Lethal, if n is large, say, n = 100,000; # of axioms is 10 Billion

Read(Mem,io) = expro
Read(Mem;i|) = expr

Read(Mem,iz) = expr <

Vijay Ganesh

=N

Formula Growth
4 )

Vo = eXpro
VI = expri

Vn = eXprn

do=11)=> (Vo =VI)
(0 = 12) => (V0 = V2)

28
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How STP Works
The Array-read Solution

e Key Observation

* Most indices don’t alias in practice
* Exploit locality of memory access in typical programs
* Need only a fraction of array axioms for equivalence

(" )
Read(Mem,io) = expro
Read(Mem,i|) = expr
Read(Mem,i2) = expr2

Vijay Ganesh

<

Vo = e€Xpro
VI = expri

Vn = eXprn

(io = il) => (Vo = VI)
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STP Key Conceptual Contribution
Abstraction-refinement Principle

Input Formula

- Abstra

Abstracted
Formula

Boolean

\/
Correct

Vijay Ganesh 30




How STP Works
What to Abstract & How to Refine!

Abstraction

|. Less essential parts |. Guided
2. Causes MEM blow-up 2. Must remember

Abstraction manages Refinement manages

formula growth hardness search-space hardness

Vijay Ganesh
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How STP Works

Abstraction-refinement for Array-reads

Input
Read(A,i;)=0
Read(A,i;)=1 l
Read(A,i,)=10,000 Substitutions l
© (io’il) *
Simplifications l
v
Linear Solving l
v
Array Abstractio.
4
I »  Conversion to SAT l
Refinement L00|. v
A Boolean SAT Solverl

—>» Result

Vijay Ganesh
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How STP Works

Abstraction-refinement for Array-reads

!

Substitutions l
Read(A,iy)=0 . .* _
Read(A,i;)=1 Simplifications l
¥
Read(A,i,)=10,000 Linear Solving |
O’ (ig,iq) )*
i0o =i Array Abstractio.
v
- »  Conversion to SAT l
Refinement L00|I v
A Boolean SAT Solverl
|
Vijay Ganesh

—>» Result
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Abstraction-refinement for Array-reads

How STP Works

Abstracted Input

!

Substitutions l

v

Input Array Axioms Dropped
Read(A,i;)=0 Vofcl)
Read(A,i;)=1 V=
Read(A,i )=10,000 v,=10,000
O (igsiy) O’ (ipsiy)
I
Refinement L00|.
A
Vijay Ganesh

Simplifications l

v

Linear Solving l

v

Array Abstractio.

Y

Conversion to SAT

v

Boolean SAT Solverl

—> Result
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Abstraction-refinement for Array-reads

How STP Works

Abstracted Input

v

Substitutions l

Input Array Axioms Dropped
Read(A,i;)=0 Vofcl)
Read(A,i;)=1 V=
Read(A,i )=10,000 v,=10,000
O (igsiy) O’ (ipsiy)

v
Simplifications l

/
Linear Solving l

v
Array Abstractio.

Y

Refinement L00|.

Input
Formula false
in
Assignment

Vijay Ganesh

Conversion to SAT

v

| 1,=0,i,=0
- vp=0, v;=1

Boolean SAT Solverl

—> Result

35

Wednesday, 16 January, 13



How STP Works

Abstraction-refinement for Array-reads

v

| t Abstracted Input Substitutions .
npu Array Axioms Dropped v
Read(A,i,)=0 Vy=0 Simplifications .
107~ —
Read(A,i,)=1 v, =1 v
Read(A,i;)=10,000 V;=10,000 Hnean e .
OCiory) 0" (i) Y
Array Abstractio.
(i9=11)PVo=V,y K
A Conversion to SAT
Refinement Loo. ¥
il —0.i.=0 Boolean SAT Solver.
_ 0=V '1™
Add AXIOm tha Vo=07 v1=1 D — ReSUIt
Is Falsifie

Vijay Ganesh
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How STP Works

Abstraction-refinement for Array-reads

Input
Read(A,i;)=0
Read(A,i;)=1 l
Read(A,i,)=10,000 Substitutions l
© (io’il) *
Simplifications l
v
Linear Solving l
v
Array Abstractio.
4
I »  Conversion to SAT l
Refinement L00|. v
A Boolean SAT Solverl

—> UNSAT

Vijay Ganesh
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STP vs. Other Solvers

Testcase (Formula Size) | Result Yices |S1Llg
(sec) (sec) ec)

610dd9c  (~15K)
Grep65  (~60K)

Grep84  (~69K)
Grepl06  (~69K)

Blaster4  (~262K)

SA TlmeOut MemOut 37

e | oo 8
ST | 176 Timeou]__18

SAT 130/ TimeOut| 227

UNSAT | Memou| Memou 10

43

‘TestcaseZ | (~1.2M)

* All experiments on 3.2 GHz, 512 Kb cache

SAT ‘ MemOut‘ MemOut‘

* MemOut: 3.2 GB (Memory used by STP much smaller), TimeOut: 1800 seconds
* Examples obtained from Dawn Song at Berkeley, David Molnar at Berkeley and Dawson Engler at Stanford

* Experiments conducted in 2007
Vijay Ganesh
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STP vs. Other Leading Solvers

0 STP vs. Boolector & MathSAT on 615 SMTCOMP 2007 - 2010 examples
4000

3000
} I I
0

Boolector MSAT

Time in Seconds
N
o
o
o

* All experiments on 2.4 GHz, | GB RAM
*Timeout: 500 seconds/example

Vijay Ganesh
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Impact of STP

* Enabled existing SE technologies to scale

* Bounded model checkers, e.g., Chang and Dill

* Easier to engineer SE technologies
* Formal tools (ACL2+STP) for verifying Crypto, Smith & Dill

* Enabled new SE technologies

e Concolic testing (EXE,Klee,...) by Engler et al., Binary Analysis by Song et al.

Vijay Ganesh
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Impact of STP: Notable Projects

* Enabled Concolic Testing
e |00+ reliability and security projects

Category Research Project Project Leader/Institution

ACL2 Theorem Prover + STP Eric Smith & David Dill/Stanford
Formal Methods Verification-aware Design Checker |Jacob Chang & David Dill/Stanford
Java PathFinder Model Checker Mehlitz & Pasareanu/NASA

BitBlaze & WebBlaze Dawn Song et al./Berkeley

Program Analysis BAP David Brumley/CMU

Klee, EXE Engler & Cadar/Stanford
SmartFuzz Molnar & VWagner/Berkeley
Kudzu Saxena & Song/Berkeley

Hardware Bounded Blue-spec BMC Katelman & Dave/MIT
Model-cheking (BMC) |BMC Haimed/NVIDIA

Vijay Ganesh
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Impact of STP
http://www.metafuzz.com

Lines of | Number of
Bugs Found

Program Name

David Molnar/Berkeley & Microsoft

~900,000 |Hundreds
Research

David Molnar/Berkeley & Microsoft

Evince Hundreds Research

Unix Utilities Dozens Dawson Engler et al./Stanford

Crypto Hash

. |000s Verified Eric Smith & David Dill/Stanford
Implementations

Vijay Ganesh
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http://www.metafuzz.com
http://www.metafuzz.com

Rest of the Talk

* HAMPI String Solver

* Why Strings?

* How does HAMPI scale: Boundin

* Impact: String-based program analysis
* Experimental Results

* Future Work

* Multicore SAT
* SAT-based Languages

Vijay Ganesh
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HAMPI String Solver

- SAT
Expr;rs‘iins —| HAMPI Solver <
UNSAT

e X = concat(“SELECT...”,v) AND (X € SQL_grammar)

* JavaScript and PHP Expressions
* Web applications, SQL queries
* NP-complete

Vijay Ganesh
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Theory of Strings

The Hampi Language

PHP/JavaScript/C++...

HAMPI: Theory of Strings

Notes

Var a;
$a = ‘name’

Var a: |1..20;
a = ‘name’

Bounded String Variables
String Constants

string_expr.” is ”’

concat(string_expr,* is *);

Concat Function

substr(string_expr, 1,3)

string_expr[1:3]

Extract Function

assignments/strcmp
a = string_expr,;
a /= string_expr;

equality
a = string_expr,
a /= string_expr;

Equality Predicate

Sanity check in regular expression RE
Sanity check in context-free grammar CFG

string_expr in RE
string_expr in SQL
string_expr NOT in SQL

Membership Predicate

string_expr contains a sub_str
string_expr does not contain a sub_str

string_expr contains sub_str
string_expr NOT?contains sub_str

Contains Predicate
(Substring Predicate)

Vijay Ganesh
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Theory of Strings
The Hampi Language

e X =concat("SELECT msg FROM msgs WHERE topicid = ”,v)
AND
(X € SQL_Grammar)

° input € RegExp([0-9]+)
. X = concat (str_terml, str_term?2,“c”)[1:42]
AND

X contains “abc”

Vijay Ganesh
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HAMPI Solver Motivating Example

SQL Injection Vulnerabilities

Buggy Malicious SQL Query
Script N A

>

X 1 A\ Database Results DataBase

cccccccccccccccccccccccc




HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Web Vulnerabilities by Class

Q1-Q2 2009

1T
[
/ Jl sQt injection
8% I Cross-Site Scripting C°d9 Injection
‘ _~ il Authentication & [ Information Leak/Disclosure
Authorization [ Cross-Site Request Forgery

[:] Buffer Errors D Web Server

— g% [l Path (Directory)
Traversal
- - Web Browser
17% \
, 12%

25%

AN

Source: IBM Internet Security Systems, 2009
Source: Fatbardh Veseli, Gjovik University College, Norway

14%
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Buggy Script

if (input in regexp(“[0-9]+"))
query :=“SELECT m FROM messages WHERE id=*"" + input + “’)

* input passes validation (regular expression check)
e query is syntactically-valid SQL

* query can potentially contain an attack substring
(e.g., " OR‘I" =°I)

Vijay Ganesh 49
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Should be: “A[O@ Buggy Script
if (input in regexp(“[0-9]+” B

query :=“SELECT m FROM messages WHERE id=*"" + input + “’)

* input passes validation (regular expression check)
e query is syntactically-valid SQL

* query can potentially contain an attack substring
(e.g., " OR‘I" =°I)

Vijay Ganesh 49
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HAMPI Solver Motivating Example

SQL Injection Vulnerabilities

if (mput in regexp( ‘10-91+))

Specification

! !

- N
String Formulas
v
- N
Program Reasoning Tool HAMPI
\ | J
—‘ SATTONGAT
Generate Tests/

Report Vulnerability
Vijay Ganesh
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Rest of the Talk

e How HAMPI works

e Experimental Results

e Related Work: Theory and Practice
e HAMPI 2.0

e SMTization: Future of Strings

Vijay Ganesh
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Expressing the Problem in HAMPI
SQL Injection Vulnerabilities

Input String [>Var v @12

cfg Sq/Small .= "SELECT ” [a-z]+ " FROM " [a-z]+ " WHERE " Cond,

SQL

$ cfg Cond := Val"=" Val | Cond" OR " Cond,
Grammar

cfg Val:=[a-z]+ | " [a-z0-9]* ™ | [0-9]+;

SQL Query $va| g := concat("SELECT msg FROM messages WHERE topicid=", v, "");

assert v in [0-9]+; 2 “q is a valid SQL query”’
assert g in Sg/Small;

SQLI attack
conditions assert g contains "OR ' = ‘“/q contains an attack vector”’

Vijay Ganesh 52
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Hampi Key Conceptual Idea

Bounding, expressiveness and efficiency

| Complexity of
L, =L n.nL Current Solvers
Context-free Undecidable n/a
Quantified
Regular PSPACE-complete Boolean Logic
Bounded NP-complete A

rcenc i prace

Vijay Ganesh
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Hampi Key |ldea: Bounded Logics
Testing,Vulnerability Detection,...

*Bounding is sufficient

Vijay Ganesh 54
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Hampi Key |ldea: Bounded Logics
Bounding vs. Completeness

* Bounding leads to incompleteness

* Testing (Bounded MC) vs.Verification (MC)

* Bounding allows trade-off (Scalability vs. Completeness)

* Completeness (also, soundness) as resources

Vijay Ganesh
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Input String [>Var v o112,

cfg Sq/Small .= "SELECT " [a-z]+ " FROM " [a-z]+ " WHERE " Cond,

SQL

$ cfg Cond := Val"=" Val | Cond" OR" Cond,
Grammar

cfg Val:=[a-z]+ | """ [a-zO-9]* ™ | [0-9]+;

SQL Query $va| g := concat("SELECT msg FROM messages WHERE topicid=", v, "");

assert v in [0-9]+; “q is a valid SQL query”’
assert g in Sg/Small;
SQLI attack
conditions assert q contains "OR ‘1'=*1";=— ‘“‘/q contains an attack vector”
Vijay Ganesh 56
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How Hampi VVorks

Bird’s Eye View: Strings into Bit-vectors

var v : 4; H am P|
Cfg E := “()” | E E | “(“ E “)”;
\ 4

val q := concat(“(“,v,”)”); | Normalizer |
assert q in E;

assert q contains “()()”; l
Bit-vector
| STP Encoder | Constraints R

STP

<
STP Decoder Bit-vector ~——
Solution

Find a 4-char string v: |
*(v)isinE l

* (v) contains ()()

String Solution

v =)0(

Vijay Ganesh 57
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How Hampi Works
Unroll Bounded CFGs into Regular Exp.

var v :4;

Hampi

Cfg E := “()” | E E |“(“ E“)”;

Y ([00 + (O)]) +

val = concat("(",v)’); . Bound(E6) > (0() + (0)] +
ssertin . S 00 + ()0
assert q contains “()()”;

Bit-vector
| STP Encoder | Constraints )f )

STP

STP Decoder Bit-vector ™ g
Solution

'

String Solution

v=)0(
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How Hampi Works
Unroll Bounded CFGs into Regular Exp.

var v :4; H am p| Bound Auto-derived
cfg E:=*“()" | EE |“(“ E“);

= o) : 0100 + (01 +
val q := conca Vv )7); . Bound(E,6) —> + +
ssertin . S 00 + ()0
assert q contains “()()”;

Bit-vector

| STP Encoder | Constraints )f )

STP

STP Decoder Bit-vector ™ g
Solution

'

String Solution

v=)0(

Vijay Ganesh
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How Hampi VVorks

Bird’s Eye View: Strings into Bit-vectors

var v : 4; H am P|
Cfg E := “()” | E E | “(“ E “)”;
\ 4

val q := concat(“(“,v,”)”); | Normalizer |
assert q in E;

assert q contains “()()”; l
Bit-vector
| STP Encoder | Constraints R

STP

<
STP Decoder Bit-vector ~——
Solution

Find a 4-char string v: |
*(v)isinE l

* (v) contains ()()

String Solution

v =)0(
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Unroll Bounded CFGs into Regular Exp.

Step |:

Step 2:

Vijay Ganesh

How Hampi VVorks

varv :4;
Cfg E := “()” | E E | “(“ E“)”;
val q := concat(“(*,v,”)”);

assert q in E;
assert q contains “()()”;

(" )

Auto-derive
lower/upper bounds

— > [6,6]

Cfg E := “()” | E E |“(“ E“)”

[L.B]
on CFG
\ Y,
4 p
Look for
minimal length
string
\ J

> ()"
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How Hampi VVorks

Unroll Bounded CFGs into Regular Exp.

Step 3:

Step 4:

Vijay Ganesh

Length: 6

Cfg E := ‘(()” | E E |“(“ E“)”

>

Min. length constant: ”()”

Length: 6

Cfg E := “()” | E E |“((‘ E(‘)”

Min. length constant: ”’()”

[4,2]
[2,4]

- N
Recursively
expand
non-terminals:
Construct Partitions
\_ Y,
r N
Recursively
expand
non-terminals:
Construct RE
\_ Y,

, B3t
-
=T
[1,4,1]

(0)0

> 0(0)
((0))

6l
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Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up

r ™
. Recursivel
Length: 6 > Y
expan (0)0
cfgE:=()" |EE|“(“ E*)” < non-terminals: - 28;;
Construct RE
Min. length constant: ”()” >
- y,

*Dynamic programming style

* Works well in practice

Vijay Ganesh
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Unroll Bounded CFGs into Regular Exp.

Managing Exponential Blow-up

Length: 6

4 p
> Recursively

expand (0)0

< non-terminals: S ()(())

Cfg E := “()” | E E |“(“ E“)”

Min. length constant: ”’()”

((0))

Construct RE

>

Bound(E,6) —>

Vijay Ganesh

- J

([00 + (0)]) +
0L00 + (0)] +
[00 + (010
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How Hampi VVorks
Converting Regular Exp. into Bit-vectors

Encode regular expressions recursively
« Alphabet{(,)}—=0, 1

e constant — bit-vector constant

* union + — disjunction V

e concatenation — conjunction A

« Kleene star * — conjunction A

« Membership, equality = equality

(v)Ye O[OO + ]I +TOO + MIO + (OO + M

ﬂ ﬂ l

Formula ®; V Formula ®, V Formula @,

B[0]=0AB[11=1A {B[21=0AB[3]=1 AB[4]=0AB[5]=1 V..

Vijay Ganesh

64

Wednesday, 16 January, 13



How Hampi VVorks
Converting Regular Exp. into Bit-vectors

(v)e OLOO + M + Lo+ MIO + (OO + (OO

| | |

Formula ®; V Formula ®, V Formula &,

B[0]1=0 A B[1]=1 A {B[2]=0AB[3]=1AB[4]=0AB[5]=1 V...

e Constraint Templates

e Encode once, and reuse

e On-demand formula generation

Vijay Ganesh
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How Hampi VVorks

Decoder converts Bit-vectors to Strings

var v : 4; H am P|
Cfg E := “()” | E E | “(“ E “)”;
\ 4

val q := concat(“(“,v,”)”); | Normalizer |
assert q in E;

assert q contains “()()”; l
Bit-vector
| STP Encoder | Constraints R

STP

<
STP Decoder Bit-vector ~——
Solution

Find a 4-char string v: |
*(v)isinE l

* (v) contains ()()

String Solution

v =)0(
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Rest of the Talk

e Experimental Results

e Related Work: Theory and Practice
e HAMPI 2.0

e SMTization: Future of Strings

Vijay Ganesh
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HAMPI: Result |
Static SQL Injection Analysis

1000

100

o
10 éi
Q
’ 3 1 %
» ‘ & »
"o 0.1 =
‘0 . ()
. %Y 8
|—

0.01

1 10 100 1000 10000 100000

Grammar Size (# of productions)

e | 367 string constraints from VWasserman & Su [PLDI'07]
 Hampi scales to large grammars

e Hampi solved 99.7% of constraints in < |sec

* All solvable constraints had short solutions

Vijay Ganesh
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HAMPI: Result 2
Security Testing and XSS

e Attackers inject client-side script into web pages

* Somehow circumvent same-origin policy in websites

e echo “Thank you $my_poster for using the message board”;
e Unsanitized $my_poster

e Can be JavaScript

e Execution can be bad

Vijay Ganesh
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HAMPI: Result 2

Security Testing

 Hampi used to build Ardilla security tester [Kiezun et al., ICSE’'09]

* 60 new vulnerabilities on 5 PHP applications (300+ kLOC)

e 23 SQL injection
e 37 cross-site scripting (XSS) «

5 added to
US National Vulnerability DB

* 467 of constraints solved in < | second per constraint

e |00% of constraints solved in <|0 seconds per constraint

Vijay Ganesh

70

Wednesday, 16 Januar y, 13



HAMPI: Result 3
Comparison with Competing Tools

25

1 20

[—Y
92}

=
o
average time (sec.)

CFGAnalyzer

(&)

o
u®
O\
\
CCCC
*
lllllll
.
llll
o®

.
un®
---------
-------------------------------

string size (characters)

* HAMPI vs. CFGAnalyzer (U. Munich): HAMPI ~7x faster for strings of size 50+
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HAMPI: Result 3
Comparison with Competing Tools

RE intersection problems

* HAMPI 100x faster than Rex (MSR)

e HAMPI 1000x faster than DPRLE (U.Virginia)

* Pieter Hooimeijer 2010 paper titled ‘Solving String Constraints Lazily’

Vijay Ganesh
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How to Automatically Crash Programs!?
KLEE: Concolic Execution-based Tester

Problem: Automatically generate crashing tests given only the code

Program .
Automatic Tester

4 )

. . Formulas
Symbolic Execution 1

Engine
with
Implicit Spec

SAT/UNSAT

Crashing Tests

Vijay Ganesh, Dagstuhl,Aug 8-12,201 | 73
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How to Automatically Crash Programs!?

KLEE: Concolic Execution-based Tester

Structured input processing code:
PDF Reader, Movie Player,...

Buggy C Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
I/'1.Integer overflow causing NULL deref
/2. Buffer overflow
*(ptr+i) = process_data(*(data_field+i));
}
}

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |
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How to Automatically Crash Programs!?
KLEE: Concolic Execution-based Tester

Structured input processing code: Equivalent Logic Formula derived using
PDF Reader, Movie Player,... symbolic execution

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j,ptr :BITVECTOR(32);//symbolic

Buggy C Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

mem_ ptr[ptr+i] = process_data(data_field[i]);

while (i++ < process(len_field)) { mem_ptr[ptr+i+1] = process_data(data_field[i+1]);

/l'l.Integer overflow causing NULL deref
/2. Buffer overflow
*(ptr+i) = process_data(*(data_field+i));
}
}

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |
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How to Automatically Crash Programs!?
KLEE: Concolic Execution-based Tester

Structured input processing code: Equivalent Logic Formula derived using
PDF Reader, Movie Player,... symbolic execution

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j,ptr :BITVECTOR(32);//symbolic

Buggy C Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

<> mem_ ptr[ptr+i] = process_data(data_field[i]);

while (i++ < process(len_field)) { mem_ptr[ptr+i+1] = process_data(data_field[i+1]);

/l'l.Integer overflow causing NULL deref
/2. Buffer overflow
*(ptr+i) = process_data(*(data_field+i));
}
}

* Formula captures computation
* Tester attaches formula to capture spec
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How to Automatically Crash Programs!?
KLEE: Concolic Execution-based Tester

Structured input processing code: Equivalent Logic Formula derived using
PDF Reader, Movie Player,... symbolic execution

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j,ptr :BITVECTOR(32);//symbolic

Buggy C Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

<> mem_ ptr[ptr+i] = process_data(data_field[i]);

while (i++ < process(len_field)) { mem_ptr[ptr+i+1] = process_data(data_field[i+1]);

I/'1.Integer overflow causing NULL deref
/2. Buffer overflow
*(ptr+i) = process_data(*(data_field+i)); '
) [INTEGER OVERFLOW QUERY
} 0 <=j <= process(len_field);
ptr +i+j=0!

* Formula captures computation
* Tester attaches formula to capture spec
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HAMPI: Result 4
Helping KLEE Pierce Parsers

Mark |
Sar< nput
ymbolic *

Semantic Core

4 )

, , Formulas
Symbolic Execution 1

Engine
with
Implicit Spec

SAT/UNSAT

Crashing Tests
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HAMPI: Result 4
Helping KLEE Pierce Parsers

Generate Input
Using HAMPI;

Semantic Core

(" )
, . Formulas
Symbolic Execution 1

Engine
with
Implicit Spec

SAT/UNSAT

Crashing Tests

Vijay Ganesh
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HAMPI: Result 4
Helping KLEE Pierce Parsers

» Klee provides API to place constraints on symbolic inputs

* Manually writing constraints is hard

e Specify grammar using HAMPI, compile to C code

* Particularly useful for programs with highly-structured inputs

e 2-5X improvement in line coverage

Vijay Ganesh
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Impact of Hampi: Notable Projects

Category Research Project Project Leader/Institution

Static Analysis SQL-injection vulnerabilities Wasserman & Su/UC, Davis

Ardilla for PHP (SQL injections,

. . Kiezun & Ernst/MIT
cross-site scripting)

Security Testing

Concolic Testin Klee Engler & Cadar/Stanford
5 Kudzu Saxena & Song/Berkeley
NoTamper Bisht & Venkatakrishnan/U Chicago

New Solvers Kaluza Saxena & Song/Berkeley

Vijay Ganesh 78
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Impact of Hampi: Notable Projects

Tool Name Description

Project Leader/
Institution

Saxena
Akhawe
Hanna

Mao
McCamant
Song/Berkeley

JavaScript Bug Finder & Vulnerability Detector

Bisht

Hinrichs/U of Chicago
NoTam per Parameter Tamper Detection Skrupsky

Bobrowicz

Vekatakrishnan/ U. of lllinois,

Chicago
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Impact of Hampi: Notable Projects

No lamper

sca0022 www.fotosearch.com

* Client-side checks (C), no server checks

* Find solutions S},S,,... to C, and solutions E|,E»,... to ~C by calling HAMPI
* E|,Ey,... are candidate exploits

e Submit (S1, El),... to server

* If server response same, ignore

* If server response differ, report error

Vijay Ganesh
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Related Work (Practice)

Project Leader/
Institution

Tool Name

Comparison with HAMPI |

e HAMPI
Bjorner, Tillman,Vornkov et al. + Length+Replace(si,s2,53)

(Microsoft Research, Redmond) - CFG
* Translation to int. linear arith. (Z3)

e Can encode HAMPI & Rex
Mona Karlund et al. (U. of Aarhus) e User work

e Automata-based

* Non-elementary

Hooimeijer (U. of Virginia) * Regular expression constraints

Vijay Ganesh 8l
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Related VWork (Theory)
T

Undecidability of Quantified
Word Equations

Quine (1946) Multiplication reduced to concat

Undecidability of Quantified
Word Equations with single Durnev (1996), G. (201 )
alternation

Decidability (PSPACE) of QF Makanin (1977) Makanin result very difficult
Theory of Word Equations Plandowski (1996,2002/06) | Simplified by Plandowski

2-counter machines reduced to
words with single quantifier alter.

Decidability (PSPACE-
complete) of QF Theory of Schultz (1992) RE membership predicate
Word Equations + RE

QF word equations + Length() : . Unsolved
Matiyasevich (1971) Reduction to Diophantine
QF word equations in solved :

Vijay Ganesh 82
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Future of HAMPI & STP

e HAMPI will be combined with STP

* Bit-vectors and Arrays

* Integer/Real Linear Arithmetic
* Uninterpreted Functions

* Strings

* Floating Point

* Non-linear

* Additional features planned in STP
e UNSAT Core
e Quantifiers
* Incremental
e DPLL(T)
e Parallel STP
e MAXSMT?

* Extensibility and hackability by non-expert

Vijay Ganesh
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Future of Strings

e Strings SMTization effort started

* Nikolaj Bjorner, G.
* Andrei Voronkov, Ruzica Piskac, Ting Zhang
e Cesare Tinelli, Clark Barrett, Dawn Song, Prateek Saxena, Pieter Hooimeijer, Tim Hinrichs

e SMT Theory of Strings

 Alphabet (UTF, Unicode,...)

e String Constants and String Vars (parameterized by length)
e Concat, Extract, Replace, Length Functions

* Regular Expressions, CFGs (Extended BNF)

* Equality, Membership Predicate, Contains Predicate

* Applications
e Static/Dynamic Analysis for Vulnerability Detection
* Security Testing using Concolic Idea
* Formal Methods
e Synthesis

Vijay Ganesh
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Conclusions & Take Away

* SMT solvers essential for testing, analysis, verification,...

e Core SMT ideas

e Combinations

e DPLL(T)

* Over/Under approximations (CEGAR,...)
e SAT solvers

e Future of SMT solvers

e SMT + Languages
e SMT + Synthesis
* Parallel SAT/SMT

e Demand for even richer theories

* Attribute grammars
e String theories with length

Vijay Ganesh
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Modern SMT Solver References

These websites and handbook have all the references you will need

|. Armin Bierre, Marijn Heule, Hans van Maaren, and Toby Walsh (Editors). Handbook of Satisfiability. 2009.10S Press. http://
www.st.ewi.tudelft.nl/sat/handbook/

2. SAT Live: http://www.satlive.org/

3. SMT LIB: http://www.smtlib.org/

4. SAT/SMT summer school: http://people.csail.mit.edu/vganesh/summerschool/

Vijay Ganesh
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Topics Covered

Topics covered in Lecture |

[/ Motivation for SAT/SMT solvers in software engineering
* Software engineering (SE) problems reduced to logic problems
* Automation, engineering, usability of SE tools through solvers

[ High-level description of the SAT/SMT problem & logics
* Rich logics close to program semantics
* Demonstrably easy to solve in many practical cases

gModern SAT solver architecture & techniques
* DPLL search, shortcomings
* Modern CDCL SAT solver: propagate (BCP), decide (VSIDS), conflict analysis, clause learn, backjump,
* Termination, correctness
* Big lesson: learning from mistakes

Topics covered in Lecture 2

lZModern SMT solver architecture & techniques
* Rich logics closer to program semantics
* DPLL(T), Combinations of solvers, Over/under approximations

[/ My own contributions: STP & HAMPI

* Abstraction-refinement for solving
* Bounded logics

[ SAT/SMT-based applications

* Dynamic systematic testing
* Static, dynamic analysis for vulnerability detection

KZ Future of SAT/SMT solvers

Vijay Ganesh
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Key Contributions
http://people.csail.mit.edu/vganesh

STP Abstraction-refinement | Concolic CAV 2007
Bit-vector & Array Solver!2 for Solvin Testin S5 200
4 & & TISSEC 2008

3
HAMPI App-driven Bounding for |Analysis of ISSTA 2009
String Solver! Solvin Web Apps TOSEM 2011
& 8 PP (CAV 201 1)
Taint-based Fuzzing Information flow is Scales better
: : ICSE 2009
cheaper than concolic than concolic

Acceptability Envelope:

Automatic Input Fix the input, not the

New way of
approaching SE | Submission

Rectification

program

|. 100+ research projects use STP and HAMPI

2. STP won the SMTCOMP 2006 and 2010 competitions for bit-vector solvers
3. HAMPI: ACM Best Paper Award 2009

4. Retargetable Compiler (DATE 1999)

5. Proof-producing decision procedures (TACAS 2003)

6. Error-finding in ARBAC policies (CCS 201 1)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |
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