
SMT Solvers
and

Applications

Vijay Ganesh
University of Waterloo

Winter 2013

Wednesday, 16 January, 13

Vijay Ganesh

Talk Outline

2

Topics covered in Lecture on SAT Solvers

Motivation for SAT/SMT solvers in software engineering
• Software engineering (SE) problems reduced to logic problems
• Automation, engineering, usability of SE tools through solvers

High-level description of the SAT/SMT problem & logics
• Rich logics close to program semantics
• Demonstrably easy to solve in many practical cases

Modern SAT solver architecture & techniques
• DPLL search, shortcomings
• Modern CDCL SAT solver: propagate (BCP), decide (VSIDS), conflict analysis, clause learn, backJump,
• Termination, correctness
• Big lesson: learning from mistakes

Topics covered in Lecture on SMT Solvers

• Modern SMT solver architecture & techniques
• Rich logics closer to program semantics
• DPLL(T), Combinations of solvers, Over/under approximations

• My own contributions: STP & HAMPI
• Abstraction-refinement for solving
• Bounded logics

• SAT/SMT-based applications

• Future of SAT/SMT solvers

Wednesday, 16 January, 13

Vijay Ganesh

Modern SMT Solvers
Are SAT Solvers Enough?

3

What is SMT

• Satisfiability Modulo Theories. Just a fancy name for a mathematical theory

Motivations: why we need SMT?

• A satisfiability solver for rich logics/natural theories (Many natural complexity classes have
corresponding SATisfiability problems)

• Easier to encode program semantics in these theories

• Easier to exploit rich logic structure, greater opportunity for optimizations

SMT Logics

• Bit-vectors, arrays, functions, linear integer/real arithmetic, strings, non-linear arithmetic

• Datatypes, quantifiers, non-linear arithmetic, floating point

• Extensible, programmable

SAT & SMT is an explosive combo: incredible impact

Wednesday, 16 January, 13

Vijay Ganesh

What is Logic?
Formal Languages and Valid Reasoning

4

What is Logic

• A formal language for constructing mathematical formulas with an associated proof system

• Modern logic starts with the works of Boole, De Morgan, Frege, Cantor, Russell.

What is a formal language in the context of logic

• Well-defined rules for constructing formulas

• Formulas are defined inductively

• Universe of constant and variables

• Terms are constructed out of constants, variables and functions

• Atomic formulas are predicates applied to terms

• Formulas are Boolean combination of atomic formulas

• Appropriate quantification over variables

Wednesday, 16 January, 13

Vijay Ganesh

First-order Logic
A Language for Mathematics (most of it)

5

First-order logic

• Functions and predicates are uninterpreted

• FOL has equality

• Quantification only over variables (higher-order logics quantify over functions, predicates)

Soundness and completeness of first-order logic (Godel, 1930)

• Equivalence between provability and validity

• Axioms ⊢A ⟺ Axioms ⊨ A

Undecidability of first-order logic (Turing, Church 1936)

• Hilbert’s 23rd problem

• No fully automatic proof system for first-order logic

Wednesday, 16 January, 13

Vijay Ganesh

Mathematical Theories
Peano Arithmetic and Incompleteness

6

Mathematical Theories

• Functions and predicates are interpreted (and appropriate axioms are added to FOL)

• Peano arithmetic (PA): +,-,*,/ are the functions. = and < the predicates.

• It is believed to be powerful enough to axiomatize number theory

Incompleteness theorem (Godel 1931)

• There are true statements that are not provable in a system as powerful as Peano arithmetic,
assuming consistency of PA

• For the first time, this result distinguished truth from proof

• Huge impact on logic and computability

• Arithematization of syntax, Encode proofs as numbers, Diagonalize

• G: G is not provable in this Theory T

Wednesday, 16 January, 13

Vijay Ganesh

Mathematical Theories
The SMT Problem

7

Mathematical Theories

• Peano arithmetic, Presburger, theories of strings, modular arithmetic, quantified Boolean logic

• Different complexity classes: From undecidable, doubly-exponential, all the way down to NP-
complete

SMT problem refers to the satisfiability problems for such rich theories

• Satisfiability modulo-theories

• How do we solve the SAT problem for rich theories efficiently and practically

• Given the difficulty of solving these problems in general, what kind of heuristics are efficient

• Can we play with soundness and completeness in a controlled fashion?

• How do we combine such SATisfiability solvers into a solver for the combined theory

• Quantifiers

• How do we connect these solvers to practical software engineering applications

Wednesday, 16 January, 13

Vijay Ganesh

Standard-issue SMT Solver Architecture
Combination of theories & DPLL(T)

8

Input SMT Instance

Core Solver
(Detects Equivalent Terms)

DPLL(T)
(Handles

Boolean Structure)

Theory 1 Theory n...

Purify

Output: SAT or UNSAT

Wednesday, 16 January, 13

Vijay Ganesh

Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

9

Problem Statement

• Combine theory solvers to obtain a solver for a union theory

Motivation

• Software engineering constraints over many natural theories

• Natural theories well understood

• Modularity

How

• Setup communication between individual theory solvers

• Communication over shared signature

• Soundness, completeness and termination

Wednesday, 16 January, 13

Vijay Ganesh

Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

10

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)− f(y)) = a
f(0) = a+2

x = y

IDEA: Φcomb ⇔ (ΦT1 ∧ EQ) ∧ (ΦT2 ∧ EQ)

• First Step: purify each literal so that it belongs to a single theory
• Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)
• The solvers have to agree on equalities/disequalities between shared vars

R
e2 - e3 = e1

e4 = 0
e5 = a + 2

UF
f(e1) = a
f(x) = e2

f(y) = e3

f(e4) = e5

x = y

Wednesday, 16 January, 13

Vijay Ganesh

Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

11

R
e2 - e3 = e1

e4 = 0
e5 = a + 2
e2 = e3

UF
f(e1) = a
f(x) = e2

f(y) = e3

f(e4) = e5

x = y

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)− f(y)) = a
f(0) = a+2

x = y

IDEA: Φcomb ⇔ (ΦT1 ∧ EQ) ∧ (ΦT2 ∧ EQ)

• First Step: purify each literal so that it belongs to a single theory
• Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)
• The solvers have to agree on equalities/disequalities between shared vars

Wednesday, 16 January, 13

Vijay Ganesh

Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

12

R
e2 - e3 = e1

e4 = 0
e5 = a + 2
e2 = e3

UF
f(e1) = a
f(x) = e2

f(y) = e3

f(e4) = e5

x = y
e1 = e4

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)− f(y)) = a
f(0) = a+2

x = y

IDEA: Φcomb ⇔ (ΦT1 ∧ EQ) ∧ (ΦT2 ∧ EQ)

• First Step: purify each literal so that it belongs to a single theory
• Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)
• The solvers have to agree on equalities/disequalities between shared vars

Wednesday, 16 January, 13

Vijay Ganesh

Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

13

R
e2 - e3 = e1

e4 = 0
e5 = a + 2
e2 = e3

e5 = a

UF
f(e1) = a
f(x) = e2

f(y) = e3

f(e4) = e5

x = y
e1 = e4

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)− f(y)) = a
f(0) = a+2

x = y

IDEA: Φcomb ⇔ (ΦT1 ∧ EQ) ∧ (ΦT2 ∧ EQ)

• First Step: purify each literal so that it belongs to a single theory
• Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)
• The solvers have to agree on equalities/disequalities between shared vars
• UF says SAT, R says UNSAT. Combination returns UNSAT.

Wednesday, 16 January, 13

Vijay Ganesh

Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

14

IDEA: Φcomb ⇔ (ΦT1 ∧ EQ) ∧ (ΦT2 ∧ EQ)

• Does NOT always work, i.e., does not always give a complete solver

• Example: Cannot combine T1 with only finite models, and T2 with infinite models

• Impose conditions on T1 and T2

• Stably Infinite: If a T-formula has a model it has an infinite model

• Examples: Functions, Arithmetic

• Extensions proved to be artificial or difficult

• Deep model-theoretic implications (Ghilardi 2006, G. 2007)

Wednesday, 16 January, 13

Vijay Ganesh

Standard-issue SMT Solver Architecture
Combination of theories & DPLL(T)

15

Input SMT Instance

Core Solver
(Detects Equivalent Terms)

DPLL(T)
(Handles

Boolean Structure)

Theory 1 Theory n...

Purify

Output: SAT or UNSAT

Wednesday, 16 January, 13

Vijay Ganesh

Standard-issue SMT Solver Architecture
DPLL(T)

16

Problem Statement

• Efficiently handle the Boolean structure of the input formula

Basic Idea

• Use a SAT solver for the Boolean structure &
 check assignment consistency against a T-solver

• T-solver only supports conjunction of T-literals

Improvements

• Check partial assignments against T-solver

• Do theory propagation (similar to SAT solvers)

• Conflict analysis guided by T-solver &
 generate conflict clauses (similar to SAT solvers)

• BackJump (similar to SAT solvers)

Wednesday, 16 January, 13

Vijay Ganesh

Standard-issue SMT Solver Architecture
DPLL(T)

17

Uninterpreted Functions formula

(1) (g(a) = c) ∧
(¬2∨3) (f(g(a)) ≠ f(c) ∨ (g(a) = d)) ∧
(¬4) (c ≠d)

Theory and Unit Propagation Steps by DPLL(T)

(Unit Propagate) (1)
(Unit Propagate) (¬4)
(Theory Propagate) (2)
(Theory Propagate) (3)
UNSAT

Wednesday, 16 January, 13

Vijay Ganesh

History of SMT Solvers

18

Category Research Project Researcher/Institution/Time Period

Theorem Proving
(very early roots of decision
procedures)

NuPRL
Boyer-Moore Theorem Prover
ACL2
PVS Proof Checker

Robert Constable / Cornell / 1970’s-present
Boyer & Moore / UT Austin / 1970’s-present
Moore, Kauffmann et al. / UT Austin / 1980’s - present
Natarajan Shankar / SRI International / 1990’s-present

SAT Solvers

DPLL
GRASP (Clause learning and backjumping)
Chaff & zChaff
MiniSAT

Davis, Putnam, Logemann & Loveland / 1962
Marques-Silva & Sakallah / U. Michigan / 1996-2000
Zhang, Malik et al. / Princeton / 1997-2002
Een & Sorensson / 2005 - present

Combinations

Simplify
Shostak
ICS
SVC, CVC, CVC-Lite, CVC3 ...
Non-disjoint theories

Nelson & Oppen / DEC and Compaq / late 1980s
Shostak / SRI International / late 1980’s
Ruess & Shankar / SRI International / late 1990’s
Barrett & Dill / Stanford U. / late 1990’s
Tinelli, Ghilardi,..., / 2000 - 2008

DPLL(T) Barcelogic and Tinelli group Oliveras, Nieuwenhuis & Tinelli / UPC and Iowa / 2006

Under/Over Approximations
UCLID
STP

Seshia & Bryant / CMU / 2004 - present
Ganesh & Dill / Stanford / 2005 - present

Widely-used SMT Solvers

Z3
CVC4
OpenSMT
Yices
MathSAT
STP
UCLID

DeMoura & Bjorner / Microsoft / 2006 - present
Barrett & Tinelli / NYU and Iowa / early 2000’s - present
Bruttomesso / USI Lugano / 2008 - present
Deuterre / SRI International / 2005 - present
Cimatti et al. / Trento / 2005 - present
Ganesh / Stanford & MIT / 2005 - present
Seshia / CMU & Berkeley / 2004 - present

Wednesday, 16 January, 13

Vijay Ganesh

Talk Outline

19

Topics covered in Lecture 1

Motivation for SAT/SMT solvers in software engineering
• Software engineering (SE) problems reduced to logic problems
• Automation, engineering, usability of SE tools through solvers

High-level description of the SAT/SMT problem & logics
• Rich logics close to program semantics
• Demonstrably easy to solve in many practical cases

Modern SAT solver architecture & techniques
• DPLL search, shortcomings
• Modern CDCL SAT solver: propagate (BCP), decide (VSIDS), conflict analysis, clause learn, backJump,
• Termination, correctness
• Big lesson: learning from mistakes

Topics covered in Lecture 2

 Modern SMT solver architecture & techniques
• Rich logics closer to program semantics
• DPLL(T), Combinations of solvers, Over/under approximations

• My own contributions: STP & HAMPI
• STP: Abstraction-refinement for solving
• Applications to dynamic symbolic testing (aka concolic testing)
• HAMPI: Bounded logics

• SAT/SMT-based applications

• Future of SAT/SMT solvers

Wednesday, 16 January, 13

Vijay Ganesh

STP Bit-vector & Array Solver

20

STP Solver
Program

Expressions
(x = z+2 OR

mem[i] + y <= 01)

UNSAT

SAT

• Bit-vector or machine arithmetic
• Arrays for memory
• C/C++/Java expressions
• NP-complete

Wednesday, 16 January, 13

Vijay Ganesh

• STP
• Enabled Concolic Testing
• EXE by Engler et al
• BAP/BitBlaze by Song et al.
• Model checking by Dill et al.

• Solver-based languages (Alloy team)
• Solver-based debuggers
• Solver-based type systems
• Solver-based concurrency bugfinding

100,000 Constraints

1,000,000 Constraints

2005 2009 Today

• HAMPI: String Solvers
• Ardilla by Ernst et al.
• Kudzu & Kaluza by Song et al.
• Klee by Engler et al.
• George Candea’s Cloud 9 tester
• STP + HAMPI exceed 100+ projects

The History of STP

21
Wednesday, 16 January, 13

Vijay Ganesh

Programs Reasoning & STP
Why Bit-vectors and Arrays

• STP logic tailored for software reliability applications

• Support symbolic execution/program analysis

22

C/C++/Java/... Bit-vectors and Arrays

Int Var
Char Var

32 bit variable
8 bit variable

Arithmetic operation
(x+y, x-y, x*y, x/y,...)

Arithmetic function
(x+y,x-y,x*y,x/y,...)

assignments
x = expr;

equality
x = expr;

if conditional
if(cond) x = expr1 else x = expr2

if-then-else construct
x = if(cond) expr1 else expr2

inequality inequality predicate

Memory read/write
x = *ptr + i;

Array read/write
ptr[]; x = Read(ptr,i);

Structure/Class Serialized bit-vector expressions

Function Symbolic execution

Loops Bounding

Wednesday, 16 January, 13

Vijay Ganesh

How to Automatically Crash Programs?
Concolic Execution & STP

23

Problem: Automatically generate crashing tests given only the code

Symbolic Execution
Engine
with

Implicit Spec

Program

Crashing Tests

STP

Formulas

SAT/UNSAT

Automatic Tester

Wednesday, 16 January, 13

Vijay Ganesh

How to Automate Testing?
Concolic Execution & STP

24

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
 //1. Integer overflow causing NULL deref
 //2. Buffer overflow
 (ptr+i) = process_data((data_field+i));
}

}

Structured input processing code:
PDF Reader, Movie Player,...

• Formula captures computation
• Tester attaches formula to capture spec

Wednesday, 16 January, 13

Vijay Ganesh

How to Automate Testing?
Concolic Execution & STP

24

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
 //1. Integer overflow causing NULL deref
 //2. Buffer overflow
 (ptr+i) = process_data((data_field+i));
}

}

Structured input processing code:
PDF Reader, Movie Player,...

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j, ptr : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.

Equivalent Logic Formula derived using
symbolic execution

• Formula captures computation
• Tester attaches formula to capture spec

Wednesday, 16 January, 13

Vijay Ganesh

How to Automate Testing?
Concolic Execution & STP

24

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
 //1. Integer overflow causing NULL deref
 //2. Buffer overflow
 (ptr+i) = process_data((data_field+i));
}

}

Structured input processing code:
PDF Reader, Movie Player,...

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j, ptr : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.

Equivalent Logic Formula derived using
symbolic execution

• Formula captures computation
• Tester attaches formula to capture spec

Wednesday, 16 January, 13

Vijay Ganesh

How to Automate Testing?
Concolic Execution & STP

24

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
 //1. Integer overflow causing NULL deref
 //2. Buffer overflow
 (ptr+i) = process_data((data_field+i));
}

}

Structured input processing code:
PDF Reader, Movie Player,...

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j, ptr : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.

Equivalent Logic Formula derived using
symbolic execution

• Formula captures computation
• Tester attaches formula to capture spec

//INTEGER OVERFLOW QUERY
0 <= j <= process(len_field);
ptr + i + j = 0?

Wednesday, 16 January, 13

Vijay Ganesh

How STP Works
Bird’s Eye View: Translate to SAT

25

SAT
UNSAT

Bit-vector
&

Array Formula

(x = z+2 OR
mem[i] + y <= 01)

...

TranslateTo
SAT

Boolean
SAT Solver

STP

Why Translate to SAT?
• Both theories NP-complete
• Non SAT approaches didn’t work
• Translation to SAT leverages solid engineering

Wednesday, 16 January, 13

Vijay Ganesh

How STP Works
Rich Theories cause MEM Blow-up

26

SAT
UNSAT

Bit-vector
&

Array Formula

(x = z+2 OR
mem[i] + y <= 01)

...

Translate
To

SAT

Boolean
SAT Solver

STP

Formula
Growth

• Making information explicit
• Space cost
• Time cost

Wednesday, 16 January, 13

Vijay Ganesh

Explicit Information causes Blow-up
Array Memory Read Problem

27

• Array Aliasing is implicit
• Need to make information explicit during solving
• Cannot be avoided

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j, ptr : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.
if(ptr+i = ptr+j) then mem_ptr[ptr+i] = mem_ptr[ptr+j);

Logic Formula derived using
symbolic execution

//INTEGER OVERFLOW QUERY
0 <= j <= process(len_field);
ptr + i + j < ptr?

Wednesday, 16 January, 13

Vijay Ganesh

How STP Works
Array-read MEM Blow-up Problem

28

• Problem: O(n2) axioms added, n is number of read indices
• Lethal, if n is large, say, n = 100,000; # of axioms is 10 Billion

Read(Mem,i0) = expr0

Read(Mem,i1) = expr1
Read(Mem,i2) = expr2

.

.

.
Read(Mem,in) = exprn

v0 = expr0

v1 = expr1

.

.

.

vn = exprn

(i0 = i1) => (v0 = v1)

(i0 = i2) => (v0 = v2)

...

(i1 = i2) => (v1 = v2)

...

Formula Growth

Wednesday, 16 January, 13

Vijay Ganesh

How STP Works
The Array-read Solution

29

• Key Observation
• Most indices don’t alias in practice
• Exploit locality of memory access in typical programs
• Need only a fraction of array axioms for equivalence

Read(Mem,i0) = expr0

Read(Mem,i1) = expr1
Read(Mem,i2) = expr2

.

.

.
Read(Mem,in) = exprn

v0 = expr0

v1 = expr1

.

.

.

vn = exprn

(i0 = i1) => (v0 = v1)

Wednesday, 16 January, 13

Vijay Ganesh

STP Key Conceptual Contribution
Abstraction-refinement Principle

30

Abstraction Step

Input Formula

Boolean SAT Solver

Abstracted
 Formula

Check Answer
Correct
Answer

Refinement

Wednesday, 16 January, 13

Vijay Ganesh

How STP Works
What to Abstract & How to Refine?

31

Abstraction Refinement

1. Less essential parts
2. Causes MEM blow-up

1. Guided
2. Must remember

Abstraction manages
formula growth hardness

Refinement manages
search-space hardness

Wednesday, 16 January, 13

Vijay Ganesh

How STP Works
Abstraction-refinement for Array-reads

32

Substitutions

Simplifications

Linear Solving

Array Abstraction

Conversion to SAT

Boolean SAT Solver

Refinement Loop

Result

Read(A,i0)=0
Read(A,i1)=1
…
Read(A,in)=10,000
�(i0,i1)

Input

Wednesday, 16 January, 13

Vijay Ganesh

How STP Works
Abstraction-refinement for Array-reads

33

Substitutions

Simplifications

Linear Solving

Array Abstraction

Conversion to SAT

Boolean SAT Solver

Refinement Loop

Result

Read(A,i0)=0
Read(A,i1)=1
…
Read(A,in)=10,000
�’(i0,i1)

i0 = i1

Wednesday, 16 January, 13

Vijay Ganesh

How STP Works
Abstraction-refinement for Array-reads

34

Substitutions

Simplifications

Linear Solving

Array Abstraction

Conversion to SAT

Boolean SAT Solver

Refinement Loop

Result

Abstracted Input
Array Axioms Dropped

v0=0
v1=1
…
vn=10,000
�’ (i0,i1)

Read(A,i0)=0
Read(A,i1)=1
…
Read(A,in)=10,000
�(i0,i1)

Input

Wednesday, 16 January, 13

Vijay Ganesh

How STP Works
Abstraction-refinement for Array-reads

35

Substitutions

Simplifications

Linear Solving

Array Abstraction

Conversion to SAT

Boolean SAT Solver

Refinement Loop

Result

Abstracted Input
Array Axioms Dropped

v0=0
v1=1
…
vn=10,000
�’ (i0,i1)

Read(A,i0)=0
Read(A,i1)=1
…
Read(A,in)=10,000
�(i0,i1)

Input

i0=0,i1=0
v0=0, v1=1

…

Input
Formula false

in
Assignment

Wednesday, 16 January, 13

Vijay Ganesh

How STP Works
Abstraction-refinement for Array-reads

36

Substitutions

Simplifications

Linear Solving

Array Abstraction

Conversion to SAT

Boolean SAT Solver

Refinement Loop

Result

Abstracted Input
Array Axioms Dropped

v0=0
v1=1
…
vn=10,000
�’ (i0,i1)

Read(A,i0)=0
Read(A,i1)=1
…
Read(A,in)=10,000
�(i0,i1)

Input

i0=0,i1=0
v0=0, v1=1

…
Add Axiom that

is Falsified

(i0=i1)!v0=v1

Wednesday, 16 January, 13

Vijay Ganesh

How STP Works
Abstraction-refinement for Array-reads

37

Substitutions

Simplifications

Linear Solving

Array Abstraction

Conversion to SAT

Boolean SAT Solver

Refinement Loop

UNSAT

Read(A,i0)=0
Read(A,i1)=1
…
Read(A,in)=10,000
�(i0,i1)

Input

Wednesday, 16 January, 13

Vijay Ganesh

STP vs. Other Solvers

38

Testcase (Formula Size) Result Z3
(sec)

Yices
(sec)

STP(s
ec)

610dd9c (~15K) SAT TimeOut MemOut 37

Grep65 (~60K) UNSAT 0.3 TimeOut 4

Grep84 (~69K) SAT 176 TimeOut 18

Grep106 (~69K) SAT 130 TimeOut 227

Blaster4 (~262K) UNSAT MemOut MemOut 10

Testcase20 (~1.2M) SAT MemOut MemOut 56

Testcase21 (~1.2M) SAT MemOut MemOut 43
* All experiments on 3.2 GHz, 512 Kb cache
* MemOut: 3.2 GB (Memory used by STP much smaller), TimeOut: 1800 seconds
* Examples obtained from Dawn Song at Berkeley, David Molnar at Berkeley and Dawson Engler at Stanford
* Experiments conducted in 2007

Wednesday, 16 January, 13

Vijay Ganesh

STP vs. Other Leading Solvers

39

* All experiments on 2.4 GHz, 1 GB RAM
* Timeout: 500 seconds/example

0

1000

2000

3000

4000

Boolector MSAT STP

T
im

e
in

 S
ec

on
ds

STP vs. Boolector & MathSAT on 615 SMTCOMP 2007 - 2010 examples

Wednesday, 16 January, 13

Vijay Ganesh

Impact of STP

40

• Enabled existing SE technologies to scale
• Bounded model checkers, e.g., Chang and Dill

• Easier to engineer SE technologies
• Formal tools (ACL2+STP) for verifying Crypto, Smith & Dill

• Enabled new SE technologies
• Concolic testing (EXE,Klee,...) by Engler et al., Binary Analysis by Song et al.

Wednesday, 16 January, 13

Vijay Ganesh

Impact of STP: Notable Projects

41

Category Research Project Project Leader/Institution

Formal Methods
ACL2 Theorem Prover + STP
Verification-aware Design Checker
Java PathFinder Model Checker

Eric Smith & David Dill/Stanford
Jacob Chang & David Dill/Stanford
Mehlitz & Pasareanu/NASA

Program Analysis
BitBlaze & WebBlaze
BAP

Dawn Song et al./Berkeley
David Brumley/CMU

Automatic Testing
Security

Klee, EXE
SmartFuzz
Kudzu

Engler & Cadar/Stanford
Molnar & Wagner/Berkeley
Saxena & Song/Berkeley

Hardware Bounded
Model-cheking (BMC)

Blue-spec BMC
BMC

Katelman & Dave/MIT
Haimed/NVIDIA

• Enabled Concolic Testing
• 100+ reliability and security projects

Wednesday, 16 January, 13

Vijay Ganesh

Impact of STP
http://www.metafuzz.com

42

Program Name
Lines of
Code

Number of
Bugs Found

Team

Mplayer ~900,000 Hundreds
David Molnar/Berkeley & Microsoft
Research

Evince ~90,000 Hundreds
David Molnar/Berkeley & Microsoft
Research

Unix Utilities 1000s Dozens Dawson Engler et al./Stanford

Crypto Hash
Implementations

1000s Verified Eric Smith & David Dill/Stanford

Wednesday, 16 January, 13

http://www.metafuzz.com
http://www.metafuzz.com

Vijay Ganesh

Rest of the Talk

• STP Bit-vector and Array Solver
• Why Bit-vectors and Arrays?
• How does STP scale: Abstraction-refinement
• Impact: Concolic testing
• Experimental Results

• HAMPI String Solver
• Why Strings?
• How does HAMPI scale: Bounding
• Impact: String-based program analysis
• Experimental Results

• Future Work
• Multicore SAT
• SAT-based Languages

43
Wednesday, 16 January, 13

Vijay Ganesh

HAMPI String Solver

44

HAMPI Solver
String

Expressions
UNSAT

SAT

• X = concat(“SELECT...”,v) AND (X ∈ SQL_grammar)
• JavaScript and PHP Expressions
• Web applications, SQL queries
• NP-complete

Wednesday, 16 January, 13

Vijay Ganesh

Theory of Strings
The Hampi Language

45

PHP/JavaScript/C++... HAMPI: Theory of Strings Notes

Var a;
$a = ‘name’

Var a : 1...20;
a = ‘name’

 Bounded String Variables
 String Constants

string_expr.” is ” concat(string_expr, “ is “); Concat Function

substr(string_expr,1,3) string_expr[1:3] Extract Function

assignments/strcmp
a = string_expr;
a /= string_expr;

equality
a = string_expr;
a /= string_expr;

 Equality Predicate

Sanity check in regular expression RE
Sanity check in context-free grammar CFG

string_expr in RE
string_expr in SQL
string_expr NOT in SQL

 Membership Predicate

string_expr contains a sub_str
string_expr does not contain a sub_str

string_expr contains sub_str
string_expr NOT?contains sub_str

 Contains Predicate
 (Substring Predicate)

Wednesday, 16 January, 13

Vijay Ganesh

Theory of Strings
The Hampi Language

46

• X = concat(“SELECT msg FROM msgs WHERE topicid = ”,v)
 AND

(X ∈ SQL_Grammar)

• input ∈ RegExp([0-9]+)

• X = concat (str_term1, str_term2, “c”)[1:42]
AND

X contains “abc”

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

47

Backend
DataBase

Malicious SQL Query

Unauthorized
Database Results

Buggy
Script

SELECT m FROM messages WHERE id=’1’ OR 1 = 1

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

48

Source: IBM Internet Security Systems, 2009
Source: Fatbardh Veseli, Gjovik University College, Norway

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

49

if (input in regexp(“[0-9]+”))
 query := “SELECT m FROM messages WHERE id=‘ ” + input + “ ’ “)

Buggy Script

• input passes validation (regular expression check)

• query is syntactically-valid SQL

• query can potentially contain an attack substring
 (e.g., 1’ OR ‘1’ = ‘1)

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

49

if (input in regexp(“[0-9]+”))
 query := “SELECT m FROM messages WHERE id=‘ ” + input + “ ’ “)

Buggy Script

• input passes validation (regular expression check)

• query is syntactically-valid SQL

• query can potentially contain an attack substring
 (e.g., 1’ OR ‘1’ = ‘1)

Should be: “^[0-9]+$”

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

50

if (input in regexp(“[0-9]+”))
 query := “SELECT m FROM messages WHERE id=‘ ” + input + “ ’ “)

Program Reasoning Tool

Specification

Generate Tests/
Report Vulnerability

HAMPI

String Formulas

SAT/UNSAT

Wednesday, 16 January, 13

Vijay Ganesh

Rest of the Talk

• HAMPI Logic: A Theory of Strings

• Motivating Example: HAMPI-based Vulnerability Detection App

• How HAMPI works

• Experimental Results

• Related Work: Theory and Practice

• HAMPI 2.0

• SMTization: Future of Strings

51
Wednesday, 16 January, 13

Vijay Ganesh

Expressing the Problem in HAMPI
SQL Injection Vulnerabilities

52

Var v : 12;

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond;

cfg Cond := Val "=" Val | Cond " OR " Cond;

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+;

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'");

assert q in SqlSmall;

assert q contains "OR ‘1'=‘1'";

SQL
Grammar

SQL Query

Input String

SQLI attack
conditions

“q is a valid SQL query”

“q contains an attack vector”

assert v in [0-9]+;

Wednesday, 16 January, 13

Vijay Ganesh

Hampi Key Conceptual Idea
Bounding, expressiveness and efficiency

53

Li
Complexity of
∅ = L1 ∩ ... ∩ Ln

Current Solvers

Context-free Undecidable n/a

Regular PSPACE-complete Quantified
Boolean Logic

Bounded NP-complete SAT
Efficient in practice

Wednesday, 16 January, 13

Vijay Ganesh

Hampi Key Idea: Bounded Logics
Testing, Vulnerability Detection,...

54

•Finding SAT assignment is key

•Short assignments are sufficient

•Bounding is sufficient

•Bounded logics easier to decide

Wednesday, 16 January, 13

Vijay Ganesh

Hampi Key Idea: Bounded Logics
Bounding vs. Completeness

55

• Bounding leads to incompleteness

• Testing (Bounded MC) vs. Verification (MC)

• Bounding allows trade-off (Scalability vs. Completeness)

• Completeness (also, soundness) as resources

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

56

Var v : 12;

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond;

cfg Cond := Val "=" Val | Cond " OR " Cond;

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+;

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'");

assert q in SqlSmall;

assert q contains "OR ‘1'=‘1'";

SQL
Grammar

SQL Query

Input String

SQLI attack
conditions

“q is a valid SQL query”

“q contains an attack vector”

assert v in [0-9]+;

Wednesday, 16 January, 13

Vijay Ganesh

How Hampi Works
Bird’s Eye View: Strings into Bit-vectors

57

Hampi

Find a 4-char string v:
• (v) is in E
• (v) contains ()()

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Wednesday, 16 January, 13

Vijay Ganesh

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

58

Bound(E,6)
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

Hampivar v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Wednesday, 16 January, 13

Vijay Ganesh

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

58

Bound(E,6)
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

Hampivar v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Bound Auto-derived

Wednesday, 16 January, 13

Vijay Ganesh

How Hampi Works
Bird’s Eye View: Strings into Bit-vectors

59

Hampi

Find a 4-char string v:
• (v) is in E
• (v) contains ()()

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Wednesday, 16 January, 13

Vijay Ganesh

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

60

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

Auto-derive
lower/upper bounds

[L,B]
on CFG

[6,6]

cfg E := “()” | E E | “(“ E “)”

Look for
minimal length

string
“()”

Step 1:

Step 2:

Wednesday, 16 January, 13

Vijay Ganesh

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

61

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct Partitions

[4,2]
[2,4]
[3,3]
[5,1]
[1,5]

[1,4,1]

Step 3:

Length: 6

Min. length constant: ”()”

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

Step 4:

Length: 6

Min. length constant: ”()”

Wednesday, 16 January, 13

Vijay Ganesh

Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up

62

•Dynamic programming style

• Works well in practice

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

...

Length: 6

Min. length constant: ”()”

Wednesday, 16 January, 13

Vijay Ganesh

Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up

63

Bound(E,6)
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

...

Length: 6

Min. length constant: ”()”

Wednesday, 16 January, 13

Vijay Ganesh

How Hampi Works
Converting Regular Exp. into Bit-vectors

64

 (v) � ()[()() + (())] + [()() + (())]() + ([()() + (())])

Formula �1
 Formula �2
 Formula �3

Encode regular expressions recursively

•  Alphabet { (,) } 0, 1

•  constant bit-vector constant

•  union + disjunction

•  concatenation conjunction �

•  Kleene star * conjunction ��
• �Membership, equality equality�

B[0]=0��	�
�����	�
����	�
����	�
����	�
���
…

Wednesday, 16 January, 13

Vijay Ganesh

How Hampi Works
Converting Regular Exp. into Bit-vectors

65

 (v) � ()[()() + (())] + [()() + (())]() + ([()() + (())])

Formula �1 � Formula �2 � Formula �3

• Constraint Templates

• Encode once, and reuse

• On-demand formula generation

B[0]=0 ∧ B[1]=1 ∧ {B[2]=0∧B[3]=1∧B[4]=0∧B[5]=1 ∨…

Wednesday, 16 January, 13

Vijay Ganesh

How Hampi Works
Decoder converts Bit-vectors to Strings

66

Hampi

Find a 4-char string v:
• (v) is in E
• (v) contains ()()

var v : 4;

cfg E := “()” | E E | “(“ E “)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Wednesday, 16 January, 13

Vijay Ganesh

Rest of the Talk

• HAMPI Logic: A Theory of Strings

• Motivating Example: HAMPI-based Vulnerability Detection App

• How HAMPI works

• Experimental Results

• Related Work: Theory and Practice

• HAMPI 2.0

• SMTization: Future of Strings

67
Wednesday, 16 January, 13

Vijay Ganesh

HAMPI: Result 1
Static SQL Injection Analysis

68

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000

T
im

e
To

 S
ol

ve
 (

se
c)

Grammar Size (# of productions)

• 1367 string constraints from Wasserman & Su [PLDI’07]
• Hampi scales to large grammars
• Hampi solved 99.7% of constraints in < 1sec
• All solvable constraints had short solutions

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI: Result 2
Security Testing and XSS

69

• Attackers inject client-side script into web pages

• Somehow circumvent same-origin policy in websites

• echo “Thank you $my_poster for using the message board”;

• Unsanitized $my_poster

• Can be JavaScript

• Execution can be bad

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI: Result 2
Security Testing

70

• Hampi used to build Ardilla security tester [Kiezun et al., ICSE’09]

• 60 new vulnerabilities on 5 PHP applications (300+ kLOC)
• 23 SQL injection
• 37 cross-site scripting (XSS) 5 added to

US National Vulnerability DB

• 46% of constraints solved in < 1 second per constraint

• 100% of constraints solved in <10 seconds per constraint

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI: Result 3
Comparison with Competing Tools

71
av

er
ag

e
tim

e
(se

c.)

 0 10 20 30 40 50
 0

 5

 10

 15

 20

 25

Hampi

CFGAnalyzer

string size (characters)

• HAMPI vs. CFGAnalyzer (U. Munich): HAMPI ~7x faster for strings of size 50+

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI: Result 3
Comparison with Competing Tools

72

RE intersection problems

• HAMPI 100x faster than Rex (MSR)

• HAMPI 1000x faster than DPRLE (U. Virginia)

• Pieter Hooimeijer 2010 paper titled ‘Solving String Constraints Lazily’

Wednesday, 16 January, 13

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

How to Automatically Crash Programs?
KLEE: Concolic Execution-based Tester

73

Problem: Automatically generate crashing tests given only the code

Symbolic Execution
Engine
with

Implicit Spec

Program

Crashing Tests

STP

Formulas

SAT/UNSAT

Automatic Tester

Wednesday, 16 January, 13

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

How to Automatically Crash Programs?
KLEE: Concolic Execution-based Tester

74

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
 //1. Integer overflow causing NULL deref
 //2. Buffer overflow
 (ptr+i) = process_data((data_field+i));
}

}

Structured input processing code:
PDF Reader, Movie Player,...

• Formula captures computation
• Tester attaches formula to capture spec

Wednesday, 16 January, 13

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

How to Automatically Crash Programs?
KLEE: Concolic Execution-based Tester

74

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
 //1. Integer overflow causing NULL deref
 //2. Buffer overflow
 (ptr+i) = process_data((data_field+i));
}

}

Structured input processing code:
PDF Reader, Movie Player,...

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j, ptr : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.

Equivalent Logic Formula derived using
symbolic execution

• Formula captures computation
• Tester attaches formula to capture spec

Wednesday, 16 January, 13

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

How to Automatically Crash Programs?
KLEE: Concolic Execution-based Tester

74

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
 //1. Integer overflow causing NULL deref
 //2. Buffer overflow
 (ptr+i) = process_data((data_field+i));
}

}

Structured input processing code:
PDF Reader, Movie Player,...

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j, ptr : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.

Equivalent Logic Formula derived using
symbolic execution

• Formula captures computation
• Tester attaches formula to capture spec

Wednesday, 16 January, 13

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

How to Automatically Crash Programs?
KLEE: Concolic Execution-based Tester

74

Buggy_C_Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
 //1. Integer overflow causing NULL deref
 //2. Buffer overflow
 (ptr+i) = process_data((data_field+i));
}

}

Structured input processing code:
PDF Reader, Movie Player,...

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j, ptr : BITVECTOR(32);//symbolic
.
.
mem_ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+1] = process_data(data_field[i+1]);
.
.

Equivalent Logic Formula derived using
symbolic execution

• Formula captures computation
• Tester attaches formula to capture spec

//INTEGER OVERFLOW QUERY
0 <= j <= process(len_field);
ptr + i + j = 0?

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI: Result 4
Helping KLEE Pierce Parsers

75

Symbolic Execution
Engine
with

Implicit Spec

Crashing Tests

STP

Formulas

SAT/UNSAT

KLEE

Parser

Semantic Core

Mark Input
Symbolic

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI: Result 4
Helping KLEE Pierce Parsers

76

Symbolic Execution
Engine
with

Implicit Spec

Crashing Tests

STP

Formulas

SAT/UNSAT

KLEE

Parser

Semantic Core

Generate Input
Using HAMPI;

Mark Partially Symbolic

Wednesday, 16 January, 13

Vijay Ganesh

HAMPI: Result 4
Helping KLEE Pierce Parsers

77

• Klee provides API to place constraints on symbolic inputs

• Manually writing constraints is hard

• Specify grammar using HAMPI, compile to C code

• Particularly useful for programs with highly-structured inputs

• 2-5X improvement in line coverage

Wednesday, 16 January, 13

Vijay Ganesh

Impact of Hampi: Notable Projects

78

Category Research Project Project Leader/Institution

Static Analysis SQL-injection vulnerabilities Wasserman & Su/UC, Davis

Security Testing
Ardilla for PHP (SQL injections,
cross-site scripting)

Kiezun & Ernst/MIT

Concolic Testing
Klee
Kudzu
NoTamper

Engler & Cadar/Stanford
Saxena & Song/Berkeley
Bisht & Venkatakrishnan/U Chicago

New Solvers Kaluza Saxena & Song/Berkeley

Wednesday, 16 January, 13

Vijay Ganesh

Impact of Hampi: Notable Projects

79

Tool Name Description
Project Leader/
Institution

Kudzu JavaScript Bug Finder & Vulnerability Detector

Saxena
Akhawe
Hanna
Mao
McCamant
Song/Berkeley

NoTamper Parameter Tamper Detection

Bisht
Hinrichs/U of Chicago
Skrupsky
Bobrowicz
Vekatakrishnan/ U. of Illinois,
Chicago

Wednesday, 16 January, 13

Vijay Ganesh

Impact of Hampi: Notable Projects
NoTamper

80

Server

• Client-side checks (C), no server checks

• Find solutions S1,S2,... to C, and solutions E1,E2,... to ~C by calling HAMPI

• E1,E2,... are candidate exploits

• Submit (S1, E1),... to server

• If server response same, ignore

• If server response differ, report error

Wednesday, 16 January, 13

Vijay Ganesh

Related Work (Practice)

81

Tool Name
Project Leader/
Institution

Comparison with HAMPI

Rex
Bjorner, Tillman, Vornkov et al.
(Microsoft Research, Redmond)

• HAMPI
 + Length+Replace(s1,s2,s3)
 - CFG
• Translation to int. linear arith. (Z3)

Mona Karlund et al. (U. of Aarhus)
• Can encode HAMPI & Rex
• User work
• Automata-based
• Non-elementary

DPRLE Hooimeijer (U. of Virginia) • Regular expression constraints

Wednesday, 16 January, 13

Vijay Ganesh

Related Work (Theory)

82

Result Person (Year) Notes

Undecidability of Quantified
Word Equations

Quine (1946) Multiplication reduced to concat

Undecidability of Quantified
Word Equations with single
alternation

Durnev (1996), G. (2011)
2-counter machines reduced to
words with single quantifier alter.

Decidability (PSPACE) of QF
Theory of Word Equations

Makanin (1977)
Plandowski (1996, 2002/06)

Makanin result very difficult
Simplified by Plandowski

Decidability (PSPACE-
complete) of QF Theory of
Word Equations + RE

Schultz (1992) RE membership predicate

QF word equations + Length()
(?)

Matiyasevich (1971)
Unsolved
Reduction to Diophantine

QF word equations in solved
form + Length() + RE

G. (2011) Practical

Wednesday, 16 January, 13

Vijay Ganesh

Future of HAMPI & STP
• HAMPI will be combined with STP

• Bit-vectors and Arrays
• Integer/Real Linear Arithmetic
• Uninterpreted Functions
• Strings
• Floating Point
• Non-linear

• Additional features planned in STP
• UNSAT Core
• Quantifiers
• Incremental
• DPLL(T)
• Parallel STP
• MAXSMT?

• Extensibility and hackability by non-expert

83
Wednesday, 16 January, 13

Vijay Ganesh

Future of Strings
• Strings SMTization effort started

• Nikolaj Bjorner, G.
• Andrei Voronkov, Ruzica Piskac, Ting Zhang
• Cesare Tinelli, Clark Barrett, Dawn Song, Prateek Saxena, Pieter Hooimeijer, Tim Hinrichs

• SMT Theory of Strings
• Alphabet (UTF, Unicode,...)
• String Constants and String Vars (parameterized by length)
• Concat, Extract, Replace, Length Functions
• Regular Expressions, CFGs (Extended BNF)
• Equality, Membership Predicate, Contains Predicate

• Applications
• Static/Dynamic Analysis for Vulnerability Detection
• Security Testing using Concolic Idea
• Formal Methods
• Synthesis

84
Wednesday, 16 January, 13

Vijay Ganesh

Conclusions & Take Away
• SMT solvers essential for testing, analysis, verification,...

• Core SMT ideas

• Combinations
• DPLL(T)
• Over/Under approximations (CEGAR,...)
• SAT solvers

• Future of SMT solvers

• SMT + Languages
• SMT + Synthesis
• Parallel SAT/SMT

• Demand for even richer theories
• Attribute grammars
• String theories with length

85
Wednesday, 16 January, 13

Vijay Ganesh

Modern SMT Solver References

86

These websites and handbook have all the references you will need

1. Armin Bierre, Marijn Heule, Hans van Maaren, and Toby Walsh (Editors). Handbook of Satisfiability. 2009. IOS Press. http://
www.st.ewi.tudelft.nl/sat/handbook/

2. SAT Live: http://www.satlive.org/

3. SMT LIB: http://www.smtlib.org/

4. SAT/SMT summer school: http://people.csail.mit.edu/vganesh/summerschool/

Wednesday, 16 January, 13

http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.satlive.org
http://www.satlive.org
http://people.csail.mit.edu/vganesh/summerschool/
http://people.csail.mit.edu/vganesh/summerschool/

Vijay Ganesh

Topics Covered

87

Topics covered in Lecture 1

Motivation for SAT/SMT solvers in software engineering
• Software engineering (SE) problems reduced to logic problems
• Automation, engineering, usability of SE tools through solvers

High-level description of the SAT/SMT problem & logics
• Rich logics close to program semantics
• Demonstrably easy to solve in many practical cases

Modern SAT solver architecture & techniques
• DPLL search, shortcomings
• Modern CDCL SAT solver: propagate (BCP), decide (VSIDS), conflict analysis, clause learn, backJump,
• Termination, correctness
• Big lesson: learning from mistakes

Topics covered in Lecture 2

Modern SMT solver architecture & techniques
• Rich logics closer to program semantics
• DPLL(T), Combinations of solvers, Over/under approximations

My own contributions: STP & HAMPI
• Abstraction-refinement for solving
• Bounded logics

 SAT/SMT-based applications
• Dynamic systematic testing
• Static, dynamic analysis for vulnerability detection

 Future of SAT/SMT solvers

Wednesday, 16 January, 13

Vijay Ganesh, Dagstuhl, Aug 8-12, 2011

Key Contributions
http://people.csail.mit.edu/vganesh

Name Key Concept Impact Pubs

STP
Bit-vector & Array Solver1,2

Abstraction-refinement
for Solving

Concolic
Testing

CAV 2007
CCS 2006
TISSEC 2008

HAMPI
String Solver1

App-driven Bounding for
Solving

Analysis of
Web Apps

ISSTA 20093

TOSEM 2011
(CAV 2011)

Taint-based Fuzzing Information flow is
cheaper than concolic

Scales better
than concolic

ICSE 2009

Automatic Input
Rectification

Acceptability Envelope:
Fix the input, not the
program

New way of
approaching SE

Under
Submission

88

1. 100+ research projects use STP and HAMPI
2. STP won the SMTCOMP 2006 and 2010 competitions for bit-vector solvers
3. HAMPI: ACM Best Paper Award 2009
4. Retargetable Compiler (DATE 1999)
5. Proof-producing decision procedures (TACAS 2003)
6. Error-finding in ARBAC policies (CCS 2011)

Wednesday, 16 January, 13

http://people.csail.mit.edu/vganesh
http://people.csail.mit.edu/vganesh

