SMT Solvers
and

Applications

Vijay Ganesh
University of Waterloo
Winter 2013

Talk Outline

Topics covered in Lecture on SAT Solvers

[Motivation for SAT/SMT solvers in software engineering
* Software engineering (SE) problems reduced to logic problems
* Automation, engineering, usability of SE tools through solvers

fZHigh-IeveI description of the SAT/SMT problem & logics

* Rich logics close to program semantics
* Demonstrably easy to solve in many practical cases

[/ Modern SAT solver architecture & techniques
* DPLL search, shortcomings
* Modern CDCL SAT solver: propagate (BCP), decide (VSIDS), conflict analysis, clause learn, backjump,
* Termination, correctness
* Big lesson: learning from mistakes

Topics covered in Lecture on SMT Solvers

e Modern SMT solver architecture & techniques
* Rich logics closer to program semantics
* DPLL(T), Combinations of solvers, Over/under approximations

e My own contributions: STP & HAMPI

* Abstraction-refinement for solving
* Bounded logics

e SAT/SMT-based applications

e Future of SAT/SMT solvers

Vijay Ganesh

Wednesday, 16 January, 13

Modern SMT Solvers
Are SAT Solvers Enough?

What is SMT

* Satisfiability Modulo Theories. Just a fancy name for a mathematical theory

Motivations: why we need SMT?

* A satisfiability solver for rich logics/natural theories (Many natural complexity classes have
corresponding SATisfiability problems)

* Easier to encode program semantics in these theories

* Easier to exploit rich logic structure, greater opportunity for optimizations

SMT Logics

* Bit-vectors, arrays, functions, linear integer/real arithmetic, strings, non-linear arithmetic
e Datatypes, quantifiers, non-linear arithmetic, floating point
* Extensible, programmable

SAT & SMT is an explosive combo: incredible impact

Vijay Ganesh

Wednesday, 16 January, 13

What is Logic!?
Formal Languages and Valid Reasoning

What is Logic

* A formal language for constructing mathematical formulas with an associated proof system
* Modern logic starts with the works of Boole, De Morgan, Frege, Cantor, Russell.

What is a formal language in the context of logic

* Well-defined rules for constructing formulas

* Formulas are defined inductively

e Universe of constant and variables

* Terms are constructed out of constants, variables and functions
* Atomic formulas are predicates applied to terms

* Formulas are Boolean combination of atomic formulas

* Appropriate quantification over variables

Vijay Ganesh

Wednesday, 16 January, 13

First-order Logic
A Language for Mathematics (most of it)

First-order logic

* Functions and predicates are uninterpreted
* FOL has equality
* Quantification only over variables (higher-order logics quantify over functions, predicates)

Soundness and completeness of first-order logic (Godel, 1930)

* Equivalence between provability and validity

e Axioms HA < Axioms EA

Undecidability of first-order logic (Turing, Church 1936)

 Hilbert’s 23rd problem

* No fully automatic proof system for first-order logic

Vijay Ganesh

Wednesday, 16 January, 13

Mathematical Theories
Peano Arithmetic and Incompleteness

Mathematical Theories

* Functions and predicates are interpreted (and appropriate axioms are added to FOL)
* Peano arithmetic (PA): +,-*,/ are the functions. = and < the predicates.
* It is believed to be powerful enough to axiomatize number theory

Incompleteness theorem (Godel 1931)

* There are true statements that are not provable in a system as powerful as Peano arithmetic,
assuming consistency of PA

* For the first time, this result distinguished truth from proof
* Huge impact on logic and computability
* Arithematization of syntax, Encode proofs as numbers, Diagonalize

* G: G is not provable in this Theory T

Vijay Ganesh

Wednesday, 16 January, 13

Mathematical Theories
The SMT Problem

Mathematical Theories

* Peano arithmetic, Presburger, theories of strings, modular arithmetic, quantified Boolean logic

* Different complexity classes: From undecidable, doubly-exponential, all the way down to NP-
complete

SMT problem refers to the satisfiability problems for such rich theories

* Satisfiability modulo-theories

* How do we solve the SAT problem for rich theories efficiently and practically

* Given the difficulty of solving these problems in general, what kind of heuristics are efficient
* Can we play with soundness and completeness in a controlled fashion?

* How do we combine such SATisfiability solvers into a solver for the combined theory

e Quantifiers

* How do we connect these solvers to practical software engineering applications

Vijay Ganesh

Wednesday, 16 January, 13

Standard-issue SMT Solver Architecture
Combination of theories & DPLL(T)

Input SMTE

| Core Solver | »| Output: SAT -

DPLL(T)

Vijay Ganesh

Wednesday, 16 January, 13

Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

Problem Statement

* Combine theory solvers to obtain a solver for a union theory

Motivation

* Software engineering constraints over many natural theories
* Natural theories well understood

* Modularity

How

* Setup communication between individual theory solvers
e Communication over shared signature

* Soundness, completeness and termination

Vijay Ganesh 9

Wednesday, 16 January, 13

Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)— f(y)) =a
f(0) = a+2

X=Yy

IDEA: Pcomb & (P11 A EQ) A (P12 A EQ)

e First Step: purify each literal so that it belongs to a single theory
e Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)
* The solvers have to agree on equalities/disequalities between shared vars

UF R

f(e;) =a €2-€e3=¢]
f(x) =ez ea=10

f(y) =es3 es=a+?2
f(es) = es

X=Yy

Vijay Ganesh

Wednesday, 16 January, 13

Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)— f(y)) =a
f(0) = a+2
X = Y

IDEA: Pcomb & (P11 A EQ) A (P12 A EQ)

* First Step: purify each literal so that it belongs to a single theory
* Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)

* The solvers have to agree on equalities/disequalities between shared vars

UF R

f(e;) = a €2 - €3 =¢€]
f(x) =e2 es=0

f(y) =es3 es=a+ 2
f(e4) =65 €2 =¢€3
X=Yy

Vijay Ganesh

Wednesday, 16 January, 13

Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)— f(y)) =a
f(0) = a+2
X = Y

IDEA: Pcomb & (P11 A EQ) A (P12 A EQ)

e First Step: purify each literal so that it belongs to a single theory
e Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)
* The solvers have to agree on equalities/disequalities between shared vars

UF R

f(er) = a €2 -€3=¢]
f(x) =ez ea=0

f(y) =es3 es=a+2
f(e4) = &5 C2=2¢€3
X=Yy

C1 =¢C4

Vijay Ganesh

Wednesday, 16 January, 13

Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

Example Constraint over Linear Reals (R) and Uninterpreted Functions (UF)

f(f(x)— f(y)) =a
f(0) = a+2

X=Yy

IDEA: Pcomb & (P11 A EQ) A (P12 A EQ)

* First Step: purify each literal so that it belongs to a single theory

* Second Step: check satisfiability and exchange entailed equalities over shared vars (EQ)
* The solvers have to agree on equalities/disequalities between shared vars

e UF says SAT, R says UNSAT. Combination returns UNSAT.

UF R

f(e;) = a €2 - €3 =¢€]
f(x) =e2 es=0

f(y) =es3 es=a+2
f(es) = es e = €3
X=y es=a

€1 =e4

Vijay Ganesh

Wednesday, 16 January, 13

Standard-issue SMT Solver Architecture
Combination of theories: Nelson-Oppen

IDEA chomb = ((DT1 A EQ) AN ((DT2 AN EQ)

* Does NOT always work, i.e., does not always give a complete solver

* Example: Cannot combine T+ with only finite models, and T2 with infinite models

* Impose conditions on Ty and T>
e Stably Infinite: If a T-formula has a model it has an infinite model
* Examples: Functions, Arithmetic
» Extensions proved to be artificial or difficult

* Deep model-theoretic implications (Ghilardi 2006, G. 2007)

Vijay Ganesh | 4

Wednesday, 16 January, 13

Standard-issue SMT Solver Architecture
Combination of theories & DPLL(T)

Input SMTE

| Core Solver | »| Output: SAT -

DPLL(T)

Vijay Ganesh

Wednesday, 16 January, 13

Standard-issue SMT Solver Architecture

DPLL(T)

Problem Statement

e Efficiently handle the Boolean structure of the input formula

Basic Idea

* Use a SAT solver for the Boolean structure &
check assignment consistency against a I-solver

* T-solver only supports conjunction of T-literals

Improvements

* Check partial assignments against T-solver
* Do theory propagation (similar to SAT solvers)

* Conflict analysis guided by T-solver &
generate conflict clauses (similar to SAT solvers)

* Backjump (similar to SAT solvers)

Vijay Ganesh

|6

Wednesday, 16 January, 13

Standard-issue SMT Solver Architecture

DPLL(T)

Uninterpreted Functions formula

() (8(2) = ¢) A
(72v3) (f(g(a)) # f(c) v (g(a) = d)) A
(—4) (c #d)

Theory and Unit Propagation Steps by DPLL(T)

(Unit Propagate) (1)
(Unit Propagate) (—4)
(Theory Propagate) (2)
(Theory Propagate) (3)
UNSAT

Vijay Ganesh

|7

Wednesday, 16 Januar y, 13

History of SMT Solvers

Category Research Project

NuPRL

Boyer-Moore Theorem Prover
ACL2

PVS Proof Checker

Theorem Proving
(very early roots of decision
procedures)

DPLL

GRASP (Clause learning and backjumping)
Chaff & zChaff

MiniSAT

SAT Solvers

Simplify
Shostak
ICS

SVC, CVC, CVC-Lite, CVC3 ...
Non-disjoint theories

Combinations

DPLL(T) ‘ Barcelogic and Tinelli group

L UCLID
Z3

CvC4

OpenSMT
Widely-used SMT Solvers Yices
MathSAT
STP
UCLID

Researcher/Institution/Time Period

Robert Constable / Cornell / 1970’s-present
Boyer & Moore / UT Austin / 1970’s-present
Moore, Kauffmann et al. / UT Austin / 1980’s - present
Natarajan Shankar / SRI International / 1990’s-present

Davis, Putnam, Logemann & Loveland / 1962
Marques-Silva & Sakallah / U. Michigan / 1996-2000
Zhang, Malik et al. / Princeton / 1997-2002

Een & Sorensson / 2005 - present

Nelson & Oppen / DEC and Compaq / late 1980s
Shostak / SRI International / late 1980’s

Ruess & Shankar / SRI International / late 1990’s
Barrett & Dill / Stanford U. / late 1990’s

Tinelli, Ghilardi,..., 7 2000 - 2008

Oliveras, Nieuwenhuis & Tinelli / UPC and lowa /7 2006 ‘

Seshia & Bryant / CMU / 2004 - present
Ganesh & Dill / Stanford / 2005 - present

DeMoura & Bjorner / Microsoft / 2006 - present
Barrett & Tinelli / NYU and lowa / early 2000’s - present
Bruttomesso / US| Lugano / 2008 - present

Deuterre / SRI International / 2005 - present

Cimatti et al. / Trento / 2005 - present

Ganesh / Stanford & MIT / 2005 - present

Vijay Ganesh

Seshia / CMU & Berkeley / 2004 - present

18

Wednesday, 16 January, 13

Talk Outline

Topics covered in Lecture |

[Motivation for SAT/SMT solvers in software engineering
* Software engineering (SE) problems reduced to logic problems
* Automation, engineering, usability of SE tools through solvers

[/ High-level description of the SAT/SMT problem & logics
* Rich logics close to program semantics
* Demonstrably easy to solve in many practical cases

[7[Modern SAT solver architecture & techniques

* DPLL search, shortcomings

* Modern CDCL SAT solver: propagate (BCP), decide (VSIDS), conflict analysis, clause learn, backjump,
* Termination, correctness
* Big lesson: learning from mistakes

Topics covered in Lecture 2

[Modern SMT solver architecture & techniques
* Rich logics closer to program semantics
* DPLL(T), Combinations of solvers, Over/under approximations

e My own contributions: STP & HAMPI
* STP: Abstraction-refinement for solving

* Applications to dynamic symbolic testing (aka concolic testing)
* HAMPI: Bounded logics

e SAT/SMT-based applications

e Future of SAT/SMT solvers

Vijay Ganesh

19

Wednesday, 16 January, 13

STP Bit-vector & Array Solver

Program SAT
Expressions = STP Solver <
UNSAT

(x =z+2 OR

* Bit-vector or machine arithmetic
* Arrays for memory

o C/C++/Java expressions

* NP-complete

Vijay Ganesh 20

Wednesday, 16 Januar y, 13

1,000,000 Constraints

The History of STP

* Solver-based languages (Alloy team)
* Solver-based debuggers

* Solver-based type systems

* Solver-based concurrency bugfinding

* HAMPI: String Solvers
* Ardilla by Ernst et al.
* Kudzu & Kaluza by Song et al.
* Klee by Engler et al.

* George Candea’s Cloud 9 tester
o STP + HAMPI exceed 100+ projects

e STP
* Enabled Concolic Testing
e EXE by Engler et al

* BAP/BitBlaze by Song et
* Model checking by Dill e

al.

100,000 Constraints

2005 2009 Today

Vijay Ganesh

21

Wednesday, 16 January, 13

Vijay Ganesh

Programs Reasoning & STP
Why Bit-vectors and Arrays

* STP logic tailored for software reliability applications

* Support symbolic execution/program analysis

C/C++/)Java/...

Bit-vectors and Arrays

Int Var
Char Var

32 bit variable
8 bit variable

Arithmetic operation
(x+y, x-y, Xy, x/y,...)

Arithmetic function
(X+y,x-y,x*y,x/y,...)

if(cond) x = expr! else x = expr?

assignments equality
X = expr; X = expr;
if conditional if-then-else construct

x = if(cond) expr! else expr?

inequality

inequality predicate

Memory read/write
X = *ptr + i;

Array read/write
ptr[]; x = Read(ptri);

Structure/Class

Serialized bit-vector expressions

Function

Symbolic execution

Loops

Bounding

22

Wednesday, 16 January, 13

How to Automatically Crash Programs!?
Concolic Execution & STP

Problem: Automatically generate crashing tests given only the code

Program .
Automatic Tester

4 N
Formulas

Symbolic Execution 1

Engine
with
Implicit Spec

SAT/UNSAT

Crashing Tests

Vijay Ganesh 23

Wednesday, 16 January, 13

How to Automate Testing?
Concolic Execution & STP

Structured input processing code:
PDF Reader, Movie Player,...

Buggy C Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
I/'1.Integer overflow causing NULL deref
/2. Buffer overflow
(ptr+i) = process_data((data_field+i));
}
}

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh

24

Wednesday, 16 January, 13

How to Automate Testing?
Concolic Execution & STP

Structured input processing code: Equivalent Logic Formula derived using
PDF Reader, Movie Player,... symbolic execution

. : data field, mem ptr: ARRAY;
Buggy C Program(int* data_field, int len_field) { len field :BITVE_CIZDTOR(32)°//symboIic

int * ptr = malloc(len_field*sizeof(int)); b plpdr RENASURINERR H neelle

int i; //uninitialized

mem_ ptr[ptr+i] = process_data(data_field[i]);

while (i++ < process(len_field)) { mem_ptr[ptr+i+1] = process_data(data_field[i+1]);

/l'l.Integer overflow causing NULL deref
/2. Buffer overflow
(ptr+i) = process_data((data_field+i));
}
}

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh

Wednesday, 16 January, 13

How to Automate Testing?
Concolic Execution & STP

Structured input processing code: Equivalent Logic Formula derived using
PDF Reader, Movie Player,... symbolic execution

. : data field, mem ptr: ARRAY;
Buggy C Program(int* data_field, int len_field) { len field :BITVE_CIZDTOR(32)°//symboIic

int * ptr = malloc(len_field*sizeof(int)); b plpdr RENASURINERR H neelle

int i; //uninitialized

<> mem_ ptr[ptr+i] = process_data(data_field[i]);

while (i++ < process(len_field)) { mem_ptr[ptr+i+1] = process_data(data_field[i+1]);

/l'l.Integer overflow causing NULL deref
/2. Buffer overflow
(ptr+i) = process_data((data_field+i));
}
}

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh 24

Wednesday, 16 January, 13

How to Automate Testing?
Concolic Execution & STP

Structured input processing code: Equivalent Logic Formula derived using
PDF Reader, Movie Player,... symbolic execution

. : data field, mem ptr: ARRAY;
Buggy C Program(int* data_field, int len_field) { len field :BITVE_CIZDTOR(32)°//symboIic

int * ptr = malloc(len_ field*sizeof(int)); b o[PS MBS UGIRER R el

int i; //uninitialized

<> mem_ ptr[ptr+i] = process_data(data_field[i]);

ile (i++ <
while (i++ < process(len_field)) { mem_ptr[ptr+i+|] = process_data(data_field[i+1]);

I/'1.Integer overflow causing NULL deref
/2. Buffer overflow

(ptr+i) = process_data((data_field+i)); '
} [[INTEGER OVERFLOW QUERY

\ 0 <= j <= process(len_field);
ptr +i+j=0?

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh

Wednesday, 16 January, 13

How STP Works
Bird’s Eye View: Translate to SAT

STP
Bit-vector
&
Array Formula TranslateTo Boolean SAT
—> —> <
(x =z+2 OR SAT SAT Solver UNSAT
mem[i] +y <=01)

Why Translate to SAT?
* Both theories NP-complete
* Non SAT approaches didn’t work
* Translation to SAT leverages solid engineering

Vijay Ganesh 25

Wednesday, 16 Januar y, 13

How STP VWVorks
Rich Theories cause MEM Blow-up

A
Bit-vector }/ \{
&

Array Formula = Formula = Boolean <SAT
(x =z+2 OR SAT Solver UNSAT

mem[i] +y <= 0I)

STP

v/ \

* Making information explicit
* Space cost
* Time cost

Vijay Ganesh 26

Wednesday, 16 January, 13

Explicit Information causes Blow-up

Array Memory Read Problem

Logic Formula derived using
symbolic execution

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j,ptr :BITVECTOR(32);//symbolic

mem_ ptr[ptr+i] = process_data(data_field[i]);
mem_ptr[ptr+i+|] = process_data(data_field[i+1]);

if(ptr+i = ptr+j) then mem_ptr[ptr+i] = mem_ptr[ptr+j);

IINTEGER OVERFLOW QUERY
0 <=j <= process(len_field);
ptr +i+ | < ptr?

* Array Aliasing is implicit
* Need to make information explicit during solving

e Cannot be avoided
Vijay Ganesh

27

Wednesday, 16 January, 13

How STP Works
Array-read MEM Blow-up Problem

* Problem: O(n?) axioms added, n is number of read indices
* Lethal, if n is large, say, n = 100,000; # of axioms is 10 Billion

Read(Mem,io) = expro
Read(Mem;i|) = expr

Read(Mem,iz) = expr <

Vijay Ganesh

=N

Formula Growth
4)

Vo = eXpro
VI = expri

Vn = eXprn

do=11)=> (Vo =VI)
(0 = 12) => (V0 = V2)

28

Wednesday, 16 Januar y, 13

How STP Works
The Array-read Solution

e Key Observation

* Most indices don’t alias in practice
* Exploit locality of memory access in typical programs
* Need only a fraction of array axioms for equivalence

(")
Read(Mem,io) = expro
Read(Mem,i|) = expr
Read(Mem,i2) = expr2

Vijay Ganesh

<

Vo = e€Xpro
VI = expri

Vn = eXprn

(io = il) => (Vo = VI)

29

Wednesday, 16 January, 13

STP Key Conceptual Contribution
Abstraction-refinement Principle

Input Formula

- Abstra

Abstracted
Formula

Boolean

\/
Correct

Vijay Ganesh 30

How STP Works
What to Abstract & How to Refine!

Abstraction

|. Less essential parts |. Guided
2. Causes MEM blow-up 2. Must remember

Abstraction manages Refinement manages

formula growth hardness search-space hardness

Vijay Ganesh

31

Wednesday, 16 January, 13

How STP Works

Abstraction-refinement for Array-reads

Input
Read(A,i;)=0
Read(A,i;)=1 l
Read(A,i,)=10,000 Substitutions l
© (io’il) *
Simplifications l
v
Linear Solving l
v
Array Abstractio.
4
I » Conversion to SAT l
Refinement L00|. v
A Boolean SAT Solverl

—>» Result

Vijay Ganesh

Wednesday, 16 January, 13

How STP Works

Abstraction-refinement for Array-reads

!

Substitutions l
Read(A,iy)=0 . .* _
Read(A,i;)=1 Simplifications l
¥
Read(A,i,)=10,000 Linear Solving |
O’ (ig,iq))*
i0o =i Array Abstractio.
v
- » Conversion to SAT l
Refinement L00|I v
A Boolean SAT Solverl
|
Vijay Ganesh

—>» Result

33

Wednesday, 16 January, 13

Abstraction-refinement for Array-reads

How STP Works

Abstracted Input

!

Substitutions l

v

Input Array Axioms Dropped
Read(A,i;)=0 Vofcl)
Read(A,i;)=1 V=
Read(A,i)=10,000 v,=10,000
O (igsiy) O’ (ipsiy)
I
Refinement L00|.
A
Vijay Ganesh

Simplifications l

v

Linear Solving l

v

Array Abstractio.

Y

Conversion to SAT

v

Boolean SAT Solverl

—> Result

34

Wednesday, 16 January, 13

Abstraction-refinement for Array-reads

How STP Works

Abstracted Input

v

Substitutions l

Input Array Axioms Dropped
Read(A,i;)=0 Vofcl)
Read(A,i;)=1 V=
Read(A,i)=10,000 v,=10,000
O (igsiy) O’ (ipsiy)

v
Simplifications l

/
Linear Solving l

v
Array Abstractio.

Y

Refinement L00|.

Input
Formula false
in
Assignment

Vijay Ganesh

Conversion to SAT

v

| 1,=0,i,=0
- vp=0, v;=1

Boolean SAT Solverl

—> Result

35

Wednesday, 16 January, 13

How STP Works

Abstraction-refinement for Array-reads

v

| t Abstracted Input Substitutions .
npu Array Axioms Dropped v
Read(A,i,)=0 Vy=0 Simplifications .
107~ —
Read(A,i,)=1 v, =1 v
Read(A,i;)=10,000 V;=10,000 Hnean e .
OCiory) 0" (i) Y
Array Abstractio.
(i9=11)PVo=V,y K
A Conversion to SAT
Refinement Loo. ¥
il —0.i.=0 Boolean SAT Solver.
_ 0=V '1™
Add AXIOm tha Vo=07 v1=1 D — ReSUIt
Is Falsifie

Vijay Ganesh

Wednesday, 16 January, 13

How STP Works

Abstraction-refinement for Array-reads

Input
Read(A,i;)=0
Read(A,i;)=1 l
Read(A,i,)=10,000 Substitutions l
© (io’il) *
Simplifications l
v
Linear Solving l
v
Array Abstractio.
4
I » Conversion to SAT l
Refinement L00|. v
A Boolean SAT Solverl

—> UNSAT

Vijay Ganesh

Wednesday, 16 January, 13

STP vs. Other Solvers

Testcase (Formula Size) | Result Yices |S1Llg
(sec) (sec) ec)

610dd9c (~15K)
Grep65 (~60K)

Grep84 (~69K)
Grepl06 (~69K)

Blaster4 (~262K)

SA TlmeOut MemOut 37

e | oo 8
ST | 176 Timeou]__18

SAT 130/ TimeOut| 227

UNSAT | Memou| Memou 10

43

‘TestcaseZ | (~1.2M)

* All experiments on 3.2 GHz, 512 Kb cache

SAT ‘ MemOut‘ MemOut‘

* MemOut: 3.2 GB (Memory used by STP much smaller), TimeOut: 1800 seconds
* Examples obtained from Dawn Song at Berkeley, David Molnar at Berkeley and Dawson Engler at Stanford

* Experiments conducted in 2007
Vijay Ganesh

38

Wednesday, 16 January, 13

STP vs. Other Leading Solvers

0 STP vs. Boolector & MathSAT on 615 SMTCOMP 2007 - 2010 examples
4000

3000
} I I
0

Boolector MSAT

Time in Seconds
N
o
o
o

* All experiments on 2.4 GHz, | GB RAM
*Timeout: 500 seconds/example

Vijay Ganesh

Wednesday, 16 January, 13

Impact of STP

* Enabled existing SE technologies to scale

* Bounded model checkers, e.g., Chang and Dill

* Easier to engineer SE technologies
* Formal tools (ACL2+STP) for verifying Crypto, Smith & Dill

* Enabled new SE technologies

e Concolic testing (EXE,Klee,...) by Engler et al., Binary Analysis by Song et al.

Vijay Ganesh

40

Wednesday, 16 January, 13

Impact of STP: Notable Projects

* Enabled Concolic Testing
e |00+ reliability and security projects

Category Research Project Project Leader/Institution

ACL2 Theorem Prover + STP Eric Smith & David Dill/Stanford
Formal Methods Verification-aware Design Checker |Jacob Chang & David Dill/Stanford
Java PathFinder Model Checker Mehlitz & Pasareanu/NASA

BitBlaze & WebBlaze Dawn Song et al./Berkeley

Program Analysis BAP David Brumley/CMU

Klee, EXE Engler & Cadar/Stanford
SmartFuzz Molnar & VWagner/Berkeley
Kudzu Saxena & Song/Berkeley

Hardware Bounded Blue-spec BMC Katelman & Dave/MIT
Model-cheking (BMC) |BMC Haimed/NVIDIA

Vijay Ganesh

Automatic Testing
Security

4]

Wednesday, 16 January, 13

Impact of STP
http://www.metafuzz.com

Lines of | Number of
Bugs Found

Program Name

David Molnar/Berkeley & Microsoft

~900,000 |Hundreds
Research

David Molnar/Berkeley & Microsoft

Evince Hundreds Research

Unix Utilities Dozens Dawson Engler et al./Stanford

Crypto Hash

. |000s Verified Eric Smith & David Dill/Stanford
Implementations

Vijay Ganesh

42

Wednesday, 16 January, 13

http://www.metafuzz.com
http://www.metafuzz.com

Rest of the Talk

* HAMPI String Solver

* Why Strings?

* How does HAMPI scale: Boundin

* Impact: String-based program analysis
* Experimental Results

* Future Work

* Multicore SAT
* SAT-based Languages

Vijay Ganesh

43

Wednesday, 16 January, 13

HAMPI String Solver

- SAT
Expr;rs‘iins —| HAMPI Solver <
UNSAT

e X = concat(“SELECT...”,v) AND (X € SQL_grammar)

* JavaScript and PHP Expressions
* Web applications, SQL queries
* NP-complete

Vijay Ganesh

Wednesday, 16 Januar y, 13

Theory of Strings

The Hampi Language

PHP/JavaScript/C++...

HAMPI: Theory of Strings

Notes

Var a;
$a = ‘name’

Var a: |1..20;
a = ‘name’

Bounded String Variables
String Constants

string_expr.” is ”’

concat(string_expr,* is *);

Concat Function

substr(string_expr, 1,3)

string_expr[1:3]

Extract Function

assignments/strcmp
a = string_expr,;
a /= string_expr;

equality
a = string_expr,
a /= string_expr;

Equality Predicate

Sanity check in regular expression RE
Sanity check in context-free grammar CFG

string_expr in RE
string_expr in SQL
string_expr NOT in SQL

Membership Predicate

string_expr contains a sub_str
string_expr does not contain a sub_str

string_expr contains sub_str
string_expr NOT?contains sub_str

Contains Predicate
(Substring Predicate)

Vijay Ganesh

45

Wednesday, 16 January, 13

Theory of Strings
The Hampi Language

e X =concat("SELECT msg FROM msgs WHERE topicid = ”,v)
AND
(X € SQL_Grammar)

° input € RegExp([0-9]+)
. X = concat (str_terml, str_term?2,“c”)[1:42]
AND

X contains “abc”

Vijay Ganesh

46

Wednesday, 16 Januar y, 13

HAMPI Solver Motivating Example

SQL Injection Vulnerabilities

Buggy Malicious SQL Query
Script N A

>

X 1 A\ Database Results DataBase

cccccccccccccccccccccccc

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Web Vulnerabilities by Class

Q1-Q2 2009

1T
[
/ Jl sQt injection
8% I Cross-Site Scripting C°d9 Injection
‘ _~ il Authentication & [Information Leak/Disclosure
Authorization [Cross-Site Request Forgery

[:] Buffer Errors D Web Server

— g% [l Path (Directory)
Traversal
- - Web Browser
17% \
, 12%

25%

AN

Source: IBM Internet Security Systems, 2009
Source: Fatbardh Veseli, Gjovik University College, Norway

14%

Vijay Ganesh 48

Wednesday, 16 January, 13

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Buggy Script

if (input in regexp(“[0-9]+"))
query :=“SELECT m FROM messages WHERE id=*"" + input + “’)

* input passes validation (regular expression check)
e query is syntactically-valid SQL

* query can potentially contain an attack substring
(e.g., " OR‘I" =°I)

Vijay Ganesh 49

Wednesday, 16 January, 13

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Should be: “A[O@ Buggy Script
if (input in regexp(“[0-9]+” B

query :=“SELECT m FROM messages WHERE id=*"" + input + “’)

* input passes validation (regular expression check)
e query is syntactically-valid SQL

* query can potentially contain an attack substring
(e.g., " OR‘I" =°I)

Vijay Ganesh 49

Wednesday, 16 January, 13

HAMPI Solver Motivating Example

SQL Injection Vulnerabilities

if (mput in regexp(‘10-91+))

Specification

! !

- N
String Formulas
v
- N
Program Reasoning Tool HAMPI
\ | J
—‘ SATTONGAT
Generate Tests/

Report Vulnerability
Vijay Ganesh

50

Wednesday, 16 January, 13

Rest of the Talk

e How HAMPI works

e Experimental Results

e Related Work: Theory and Practice
e HAMPI 2.0

e SMTization: Future of Strings

Vijay Ganesh

51

Wednesday, 16 Januar y, 13

Expressing the Problem in HAMPI
SQL Injection Vulnerabilities

Input String [>Var v @12

cfg Sq/Small .= "SELECT ” [a-z]+ " FROM " [a-z]+ " WHERE " Cond,

SQL

$ cfg Cond := Val"=" Val | Cond" OR " Cond,
Grammar

cfg Val:=[a-z]+ | " [a-z0-9]* ™ | [0-9]+;

SQL Query $va| g := concat("SELECT msg FROM messages WHERE topicid=", v, "");

assert v in [0-9]+; 2 “q is a valid SQL query”’
assert g in Sg/Small;

SQLI attack
conditions assert g contains "OR ' = ‘“/q contains an attack vector”’

Vijay Ganesh 52

Wednesday, 16 January, 13

Hampi Key Conceptual Idea

Bounding, expressiveness and efficiency

| Complexity of
L, =L n.nL Current Solvers
Context-free Undecidable n/a
Quantified
Regular PSPACE-complete Boolean Logic
Bounded NP-complete A

rcenc i prace

Vijay Ganesh

Wednesday, 16 January, 13

Hampi Key |ldea: Bounded Logics
Testing,Vulnerability Detection,...

*Bounding is sufficient

Vijay Ganesh 54

Wednesday, 16 January, 13

Hampi Key |ldea: Bounded Logics
Bounding vs. Completeness

* Bounding leads to incompleteness

* Testing (Bounded MC) vs.Verification (MC)

* Bounding allows trade-off (Scalability vs. Completeness)

* Completeness (also, soundness) as resources

Vijay Ganesh

Wednesday, 16 January, 13

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

Input String [>Var v o112,

cfg Sq/Small .= "SELECT " [a-z]+ " FROM " [a-z]+ " WHERE " Cond,

SQL

$ cfg Cond := Val"=" Val | Cond" OR" Cond,
Grammar

cfg Val:=[a-z]+ | """ [a-zO-9]* ™ | [0-9]+;

SQL Query $va| g := concat("SELECT msg FROM messages WHERE topicid=", v, "");

assert v in [0-9]+; “q is a valid SQL query”’
assert g in Sg/Small;
SQLI attack
conditions assert q contains "OR ‘1'=*1";=— ‘“‘/q contains an attack vector”
Vijay Ganesh 56

Wednesday, 16 January, 13

How Hampi VVorks

Bird’s Eye View: Strings into Bit-vectors

var v : 4; H am P|
Cfg E := “()” | E E | “(“ E “)”;
\ 4

val q := concat(“(“,v,”)”); | Normalizer |
assert q in E;

assert q contains “()()”; l
Bit-vector
| STP Encoder | Constraints R

STP

<
STP Decoder Bit-vector ~——
Solution

Find a 4-char string v: |
*(v)isinE l

* (v) contains ()()

String Solution

v =)0(

Vijay Ganesh 57

Wednesday, 16 January, 13

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

var v :4;

Hampi

Cfg E := “()” | E E |“(“ E“)”;

Y ([00 + (O)]) +

val = concat("(",v)’); . Bound(E6) > (0() + (0)] +
ssertin . S 00 + ()0
assert q contains “()()”;

Bit-vector
| STP Encoder | Constraints)f)

STP

STP Decoder Bit-vector ™ g
Solution

'

String Solution

v=)0(

Vijay Ganesh 58

Wednesday, 16 Januar y, 13

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

var v :4; H am p| Bound Auto-derived
cfg E:=*“()" | EE |“(“ E“);

= o) : 0100 + (01 +
val q := conca Vv)7); . Bound(E,6) —> + +
ssertin . S 00 + ()0
assert q contains “()()”;

Bit-vector

| STP Encoder | Constraints)f)

STP

STP Decoder Bit-vector ™ g
Solution

'

String Solution

v=)0(

Vijay Ganesh

58

Wednesday, 16 Januar y, 13

How Hampi VVorks

Bird’s Eye View: Strings into Bit-vectors

var v : 4; H am P|
Cfg E := “()” | E E | “(“ E “)”;
\ 4

val q := concat(“(“,v,”)”); | Normalizer |
assert q in E;

assert q contains “()()”; l
Bit-vector
| STP Encoder | Constraints R

STP

<
STP Decoder Bit-vector ~——
Solution

Find a 4-char string v: |
*(v)isinE l

* (v) contains ()()

String Solution

v =)0(

Vijay Ganesh 59

Wednesday, 16 January, 13

Unroll Bounded CFGs into Regular Exp.

Step |:

Step 2:

Vijay Ganesh

How Hampi VVorks

varv :4;
Cfg E := “()” | E E | “(“ E“)”;
val q := concat(“(*,v,”)”);

assert q in E;
assert q contains “()()”;

(")

Auto-derive
lower/upper bounds

— > [6,6]

Cfg E := “()” | E E |“(“ E“)”

[L.B]
on CFG
\ Y,
4 p
Look for
minimal length
string
\ J

> ()"

60

Wednesday, 16 January, 13

How Hampi VVorks

Unroll Bounded CFGs into Regular Exp.

Step 3:

Step 4:

Vijay Ganesh

Length: 6

Cfg E := ‘(()” | E E |“(“ E“)”

>

Min. length constant: ”()”

Length: 6

Cfg E := “()” | E E |“((‘ E(‘)”

Min. length constant: ”’()”

[4,2]
[2,4]

- N
Recursively
expand
non-terminals:
Construct Partitions
_ Y,
r N
Recursively
expand
non-terminals:
Construct RE
_ Y,

, B3t
-
=T
[1,4,1]

(0)0

> 0(0)
((0))

6l

Wednesday, 16 January, 13

Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up

r ™
. Recursivel
Length: 6 > Y
expan (0)0
cfgE:=()" |EE|“(“ E*)” < non-terminals: - 28;;
Construct RE
Min. length constant: ”()” >
- y,

*Dynamic programming style

* Works well in practice

Vijay Ganesh

Wednesday, 16 January, 13

Unroll Bounded CFGs into Regular Exp.

Managing Exponential Blow-up

Length: 6

4 p
> Recursively

expand (0)0

< non-terminals: S ()(())

Cfg E := “()” | E E |“(“ E“)”

Min. length constant: ”’()”

((0))

Construct RE

>

Bound(E,6) —>

Vijay Ganesh

- J

([00 + (0)]) +
0L00 + (0)] +
[00 + (010

63

Wednesday, 16 January, 13

How Hampi VVorks
Converting Regular Exp. into Bit-vectors

Encode regular expressions recursively
« Alphabet{(,)}—=0, 1

e constant — bit-vector constant

* union + — disjunction V

e concatenation — conjunction A

« Kleene star * — conjunction A

« Membership, equality = equality

(v)Ye O[OO +]I +TOO + MIO + (OO + M

ﬂ ﬂ l

Formula ®; V Formula ®, V Formula @,

B[0]=0AB[11=1A {B[21=0AB[3]=1 AB[4]=0AB[5]=1 V..

Vijay Ganesh

64

Wednesday, 16 January, 13

How Hampi VVorks
Converting Regular Exp. into Bit-vectors

(v)e OLOO + M + Lo+ MIO + (OO + (OO

| | |

Formula ®; V Formula ®, V Formula &,

B[0]1=0 A B[1]=1 A {B[2]=0AB[3]=1AB[4]=0AB[5]=1 V...

e Constraint Templates

e Encode once, and reuse

e On-demand formula generation

Vijay Ganesh

Wednesday, 16 Januar y, 13

How Hampi VVorks

Decoder converts Bit-vectors to Strings

var v : 4; H am P|
Cfg E := “()” | E E | “(“ E “)”;
\ 4

val q := concat(“(“,v,”)”); | Normalizer |
assert q in E;

assert q contains “()()”; l
Bit-vector
| STP Encoder | Constraints R

STP

<
STP Decoder Bit-vector ~——
Solution

Find a 4-char string v: |
*(v)isinE l

* (v) contains ()()

String Solution

v =)0(

Vijay Ganesh 66

Wednesday, 16 Januar y, 13

Rest of the Talk

e Experimental Results

e Related Work: Theory and Practice
e HAMPI 2.0

e SMTization: Future of Strings

Vijay Ganesh

67

Wednesday, 16 Januar y, 13

HAMPI: Result |
Static SQL Injection Analysis

1000

100

o
10 éi
Q
’ 3 1 %
» ‘ & »
"o 0.1 =
‘0 . ()
. %Y 8
|—

0.01

1 10 100 1000 10000 100000

Grammar Size (# of productions)

e | 367 string constraints from VWasserman & Su [PLDI'07]
 Hampi scales to large grammars

e Hampi solved 99.7% of constraints in < |sec

* All solvable constraints had short solutions

Vijay Ganesh

68

Wednesday, 16 January, 13

HAMPI: Result 2
Security Testing and XSS

e Attackers inject client-side script into web pages

* Somehow circumvent same-origin policy in websites

e echo “Thank you $my_poster for using the message board”;
e Unsanitized $my_poster

e Can be JavaScript

e Execution can be bad

Vijay Ganesh

69

Wednesday, 16 Januar y, 13

HAMPI: Result 2

Security Testing

 Hampi used to build Ardilla security tester [Kiezun et al., ICSE’'09]

* 60 new vulnerabilities on 5 PHP applications (300+ kLOC)

e 23 SQL injection
e 37 cross-site scripting (XSS) «

5 added to
US National Vulnerability DB

* 467 of constraints solved in < | second per constraint

e |00% of constraints solved in <|0 seconds per constraint

Vijay Ganesh

70

Wednesday, 16 Januar y, 13

HAMPI: Result 3
Comparison with Competing Tools

25

1 20

[—Y
92}

=
o
average time (sec.)

CFGAnalyzer

(&)

o
u®
O\
\
CCCC
*
lllllll
.
llll
o®

.
un®

string size (characters)

* HAMPI vs. CFGAnalyzer (U. Munich): HAMPI ~7x faster for strings of size 50+

Vijay Ganesh

Wednesday, 16 January, 13

HAMPI: Result 3
Comparison with Competing Tools

RE intersection problems

* HAMPI 100x faster than Rex (MSR)

e HAMPI 1000x faster than DPRLE (U.Virginia)

* Pieter Hooimeijer 2010 paper titled ‘Solving String Constraints Lazily’

Vijay Ganesh

72

Wednesday, 16 January, 13

How to Automatically Crash Programs!?
KLEE: Concolic Execution-based Tester

Problem: Automatically generate crashing tests given only the code

Program .
Automatic Tester

4)

. . Formulas
Symbolic Execution 1

Engine
with
Implicit Spec

SAT/UNSAT

Crashing Tests

Vijay Ganesh, Dagstuhl,Aug 8-12,201 | 73

Wednesday, 16 January, 13

How to Automatically Crash Programs!?

KLEE: Concolic Execution-based Tester

Structured input processing code:
PDF Reader, Movie Player,...

Buggy C Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

while (i++ < process(len_field)) {
I/'1.Integer overflow causing NULL deref
/2. Buffer overflow
(ptr+i) = process_data((data_field+i));
}
}

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

74

Wednesday, 16 January, 13

How to Automatically Crash Programs!?
KLEE: Concolic Execution-based Tester

Structured input processing code: Equivalent Logic Formula derived using
PDF Reader, Movie Player,... symbolic execution

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j,ptr :BITVECTOR(32);//symbolic

Buggy C Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

mem_ ptr[ptr+i] = process_data(data_field[i]);

while (i++ < process(len_field)) { mem_ptr[ptr+i+1] = process_data(data_field[i+1]);

/l'l.Integer overflow causing NULL deref
/2. Buffer overflow
(ptr+i) = process_data((data_field+i));
}
}

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Wednesday, 16 January, 13

How to Automatically Crash Programs!?
KLEE: Concolic Execution-based Tester

Structured input processing code: Equivalent Logic Formula derived using
PDF Reader, Movie Player,... symbolic execution

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j,ptr :BITVECTOR(32);//symbolic

Buggy C Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

<> mem_ ptr[ptr+i] = process_data(data_field[i]);

while (i++ < process(len_field)) { mem_ptr[ptr+i+1] = process_data(data_field[i+1]);

/l'l.Integer overflow causing NULL deref
/2. Buffer overflow
(ptr+i) = process_data((data_field+i));
}
}

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Wednesday, 16 January, 13

How to Automatically Crash Programs!?
KLEE: Concolic Execution-based Tester

Structured input processing code: Equivalent Logic Formula derived using
PDF Reader, Movie Player,... symbolic execution

data_field, mem_ptr : ARRAY;
len_field : BITVECTOR(32); //symbolic
i, j,ptr :BITVECTOR(32);//symbolic

Buggy C Program(int* data_field, int len_field) {

int * ptr = malloc(len_field*sizeof(int));
int i; //uninitialized

<> mem_ ptr[ptr+i] = process_data(data_field[i]);

while (i++ < process(len_field)) { mem_ptr[ptr+i+1] = process_data(data_field[i+1]);

I/'1.Integer overflow causing NULL deref
/2. Buffer overflow
(ptr+i) = process_data((data_field+i)); '
) [INTEGER OVERFLOW QUERY
} 0 <=j <= process(len_field);
ptr +i+j=0!

* Formula captures computation
* Tester attaches formula to capture spec

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

Wednesday, 16 January, 13

HAMPI: Result 4
Helping KLEE Pierce Parsers

Mark |
Sar< nput
ymbolic *

Semantic Core

4)

, , Formulas
Symbolic Execution 1

Engine
with
Implicit Spec

SAT/UNSAT

Crashing Tests

Vijay Ganesh

Wednesday, 16 January, 13

HAMPI: Result 4
Helping KLEE Pierce Parsers

Generate Input
Using HAMPI;

Semantic Core

(")
, . Formulas
Symbolic Execution 1

Engine
with
Implicit Spec

SAT/UNSAT

Crashing Tests

Vijay Ganesh

Wednesday, 16 January, 13

HAMPI: Result 4
Helping KLEE Pierce Parsers

» Klee provides API to place constraints on symbolic inputs

* Manually writing constraints is hard

e Specify grammar using HAMPI, compile to C code

* Particularly useful for programs with highly-structured inputs

e 2-5X improvement in line coverage

Vijay Ganesh

77

Wednesday, 16 January, 13

Impact of Hampi: Notable Projects

Category Research Project Project Leader/Institution

Static Analysis SQL-injection vulnerabilities Wasserman & Su/UC, Davis

Ardilla for PHP (SQL injections,

. . Kiezun & Ernst/MIT
cross-site scripting)

Security Testing

Concolic Testin Klee Engler & Cadar/Stanford
5 Kudzu Saxena & Song/Berkeley
NoTamper Bisht & Venkatakrishnan/U Chicago

New Solvers Kaluza Saxena & Song/Berkeley

Vijay Ganesh 78

Wednesday, 16 January, 13

Impact of Hampi: Notable Projects

Tool Name Description

Project Leader/
Institution

Saxena
Akhawe
Hanna

Mao
McCamant
Song/Berkeley

JavaScript Bug Finder & Vulnerability Detector

Bisht

Hinrichs/U of Chicago
NoTam per Parameter Tamper Detection Skrupsky

Bobrowicz

Vekatakrishnan/ U. of lllinois,

Chicago

Vijay Ganesh 79

Wednesday, 16 January, 13

Impact of Hampi: Notable Projects

No lamper

sca0022 www.fotosearch.com

* Client-side checks (C), no server checks

* Find solutions S},S,,... to C, and solutions E|,E»,... to ~C by calling HAMPI
* E|,Ey,... are candidate exploits

e Submit (S1, El),... to server

* If server response same, ignore

* If server response differ, report error

Vijay Ganesh

80

Wednesday, 16 January, 13

Related Work (Practice)

Project Leader/
Institution

Tool Name

Comparison with HAMPI |

e HAMPI
Bjorner, Tillman,Vornkov et al. + Length+Replace(si,s2,53)

(Microsoft Research, Redmond) - CFG
* Translation to int. linear arith. (Z3)

e Can encode HAMPI & Rex
Mona Karlund et al. (U. of Aarhus) e User work

e Automata-based

* Non-elementary

Hooimeijer (U. of Virginia) * Regular expression constraints

Vijay Ganesh 8l

Wednesday, 16 January, 13

Related VWork (Theory)
T

Undecidability of Quantified
Word Equations

Quine (1946) Multiplication reduced to concat

Undecidability of Quantified
Word Equations with single Durnev (1996), G. (201)
alternation

Decidability (PSPACE) of QF Makanin (1977) Makanin result very difficult
Theory of Word Equations Plandowski (1996,2002/06) | Simplified by Plandowski

2-counter machines reduced to
words with single quantifier alter.

Decidability (PSPACE-
complete) of QF Theory of Schultz (1992) RE membership predicate
Word Equations + RE

QF word equations + Length() : . Unsolved
Matiyasevich (1971) Reduction to Diophantine
QF word equations in solved :

Vijay Ganesh 82

Wednesday, 16 January, 13

Future of HAMPI & STP

e HAMPI will be combined with STP

* Bit-vectors and Arrays

* Integer/Real Linear Arithmetic
* Uninterpreted Functions

* Strings

* Floating Point

* Non-linear

* Additional features planned in STP
e UNSAT Core
e Quantifiers
* Incremental
e DPLL(T)
e Parallel STP
e MAXSMT?

* Extensibility and hackability by non-expert

Vijay Ganesh

83

Wednesday, 16 January, 13

Future of Strings

e Strings SMTization effort started

* Nikolaj Bjorner, G.
* Andrei Voronkov, Ruzica Piskac, Ting Zhang
e Cesare Tinelli, Clark Barrett, Dawn Song, Prateek Saxena, Pieter Hooimeijer, Tim Hinrichs

e SMT Theory of Strings

 Alphabet (UTF, Unicode,...)

e String Constants and String Vars (parameterized by length)
e Concat, Extract, Replace, Length Functions

* Regular Expressions, CFGs (Extended BNF)

* Equality, Membership Predicate, Contains Predicate

* Applications
e Static/Dynamic Analysis for Vulnerability Detection
* Security Testing using Concolic Idea
* Formal Methods
e Synthesis

Vijay Ganesh

84

Wednesday, 16 January, 13

Conclusions & Take Away

* SMT solvers essential for testing, analysis, verification,...

e Core SMT ideas

e Combinations

e DPLL(T)

* Over/Under approximations (CEGAR,...)
e SAT solvers

e Future of SMT solvers

e SMT + Languages
e SMT + Synthesis
* Parallel SAT/SMT

e Demand for even richer theories

* Attribute grammars
e String theories with length

Vijay Ganesh

85

Wednesday, 16 January, 13

Modern SMT Solver References

These websites and handbook have all the references you will need

|. Armin Bierre, Marijn Heule, Hans van Maaren, and Toby Walsh (Editors). Handbook of Satisfiability. 2009.10S Press. http://
www.st.ewi.tudelft.nl/sat/handbook/

2. SAT Live: http://www.satlive.org/

3. SMT LIB: http://www.smtlib.org/

4. SAT/SMT summer school: http://people.csail.mit.edu/vganesh/summerschool/

Vijay Ganesh

86

Wednesday, 16 January, 13

http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.st.ewi.tudelft.nl/sat/handbook/
http://www.satlive.org
http://www.satlive.org
http://people.csail.mit.edu/vganesh/summerschool/
http://people.csail.mit.edu/vganesh/summerschool/

Topics Covered

Topics covered in Lecture |

[/ Motivation for SAT/SMT solvers in software engineering
* Software engineering (SE) problems reduced to logic problems
* Automation, engineering, usability of SE tools through solvers

[High-level description of the SAT/SMT problem & logics
* Rich logics close to program semantics
* Demonstrably easy to solve in many practical cases

gModern SAT solver architecture & techniques
* DPLL search, shortcomings
* Modern CDCL SAT solver: propagate (BCP), decide (VSIDS), conflict analysis, clause learn, backjump,
* Termination, correctness
* Big lesson: learning from mistakes

Topics covered in Lecture 2

lZModern SMT solver architecture & techniques
* Rich logics closer to program semantics
* DPLL(T), Combinations of solvers, Over/under approximations

[/ My own contributions: STP & HAMPI

* Abstraction-refinement for solving
* Bounded logics

[SAT/SMT-based applications

* Dynamic systematic testing
* Static, dynamic analysis for vulnerability detection

KZ Future of SAT/SMT solvers

Vijay Ganesh

87

Wednesday, 16 January, 13

Key Contributions
http://people.csail.mit.edu/vganesh

STP Abstraction-refinement | Concolic CAV 2007
Bit-vector & Array Solver!2 for Solvin Testin S5 200
4 & & TISSEC 2008

3
HAMPI App-driven Bounding for |Analysis of ISSTA 2009
String Solver! Solvin Web Apps TOSEM 2011
& 8 PP (CAV 201 1)
Taint-based Fuzzing Information flow is Scales better
: : ICSE 2009
cheaper than concolic than concolic

Acceptability Envelope:

Automatic Input Fix the input, not the

New way of
approaching SE | Submission

Rectification

program

|. 100+ research projects use STP and HAMPI

2. STP won the SMTCOMP 2006 and 2010 competitions for bit-vector solvers
3. HAMPI: ACM Best Paper Award 2009

4. Retargetable Compiler (DATE 1999)

5. Proof-producing decision procedures (TACAS 2003)

6. Error-finding in ARBAC policies (CCS 201 1)

Vijay Ganesh, Dagstuhl,Aug 8-12,201 |

88

Wednesday, 16 January, 13

http://people.csail.mit.edu/vganesh
http://people.csail.mit.edu/vganesh

