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Основы

Утверждение (линейность математического ожидания).

Пусть 𝑋1, … , 𝑋𝑛 ― случайные величины (не обязательно
независимые) с конечным математическим ожиданием, а
𝑐1, … , 𝑐𝑛 ∈ ℝ ― произвольные постоянные. Тогда случайная
величина 𝑋 = 𝑐1𝑋1 + … + 𝑐𝑛 𝑋𝑛 имеет математическое
ожидание

𝐄[𝑋] = 𝑐1𝐄[𝑋1] + … + 𝑐𝑛 𝐄[𝑋𝑛].
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Основы

Пример. Пусть 𝜎 ― случайная перестановка на множестве
1, … , 𝑛 , выбранная равновероятно. Обозначим через 𝑋 𝜎

количество неподвижных точек перестановки 𝜎.

Чтобы найти 𝐄[𝑋], рассмотрим сумму 𝑋 = 𝑋1 + … + 𝑋𝑛 , где
𝑋𝑖 ― индикатор события 𝜎 𝑖 = 𝑖 (1 ≤ 𝑖 ≤ 𝑛). Тогда при всех 𝑖

𝐄[𝑋𝑖] = Pr[𝜎 𝑖) = 𝑖 =
1

𝑛
,

и

𝐄 𝑋] = 𝐄[𝑋1 + … + 𝐄[𝑋𝑛] =
1

𝑛
+ … +

1

𝑛
= 1.
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Основы

Замечание. В приложениях мы часто пользуемся тем, что
существует точка вероятностного пространства, для которой
𝑋 ≥ 𝐄 𝑋 и точка, для которой 𝑋 ≤ 𝐄 𝑋 . Результаты,
представленные на этой лекции, подобраны так, чтобы
проиллюстрировать эту базовую методологию.
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Количество гамильтоновых путей в турнире

Определение 1. Гамильтоновым путём в графе называется
остовный путь, в котором все вершины попарно различны.

Теорема 1. ([3] Селе, 1943). Существует турнир 𝑇 с 𝑛 игроками и
по меньшей мере с 𝑛! 2−𝑛+1 гамильтоновыми путями.

Доказательство было рассказано на первой лекции.

Замечание. Селе предположил, что максимально возможное
число гамильтоновых путей в турнире из 𝑛 игроков не

превосходит величины
𝑛!

2−𝑜 1
𝑛. Это было доказано в работе

Алона [2] спустя почти 50 лет.
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Разбиение графов

Теорема 2. Пусть 𝐺 = (𝑉, 𝐸) ― 𝑛-вершинный граф с 𝑒 рёбрами.
Тогда 𝐺 содержит двудольный подграф с не менее чем 𝑒/2
рёбрами.

Доказательство. Пусть 𝑇 ⊆ 𝑉 ― случайное подмножество,
заданное распределением Pr 𝑥 ∈ 𝑇 = Τ1 2 , причём элементы
подмножества выбираются независимо друг от друга. Положим
𝐵 = 𝑉 \ 𝑇.

Назовём ребро 𝑥, 𝑦 ∈ 𝐸 соединяющим, если ровно одна из
вершин 𝑥, 𝑦 принадлежит 𝑇. Через 𝑋 обозначим число
соединяющих рёбер.
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Разбиение графов

Доказательство (продолжение). Разложим в сумму

𝑋 = ෍

𝑥,𝑦 ∈𝐸

𝑋𝑥𝑦 ,

где 𝑋𝑥𝑦 ― индикатор того, что ребро {𝑥, 𝑦} является

соединяющим. Тогда

𝐄[𝑋𝑥𝑦] = Τ1 2 ,

так как вероятность того, что результаты двух подбрасываний
«правильной» монеты будут различными, равна Τ1 2 .
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Разбиение графов

Доказательство (окончание). Следовательно,

𝐄 𝑋 = ෍

𝑥,𝑦 ∈𝐸

𝐄[𝑋𝑥𝑦] =
𝑒

2
.

Таким образом, 𝑋 ≥ Τ𝑒 2 для некоторого 𝑇, а двудольный граф
определяется множеством соединяющих рёбер. █

Более тонко построенное вероятностное пространство
позволяет немного улучшить результат:
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Разбиение графов 
(другое вероятностное пространство )

Теорема 3. Если граф содержит 2𝑛 вершин и 𝑒 рёбер, то в нём

найдётся двудольный подграф с не менее чем
𝑒𝑛

2𝑛−1
рёбрами.

Если граф содержит 2𝑛 + 1 вершин и 𝑒 рёбер, то в нём найдётся

двудольный подграф с не менее чем
𝑒(𝑛+1)

2𝑛+1
рёбрами.

Доказательство. Пусть граф 𝐺 имеет 2𝑛 вершин. Выберем 𝑇
случайно из множества всех 𝑛-элементных подмножеств 𝑉.
Каждое ребро {𝑥, 𝑦} является соединяющим с вероятностью

𝑛

2𝑛−1
(поскольку, вне зависимости от того, куда попала вершина

𝑥, для вершины 𝑦 есть ровно 𝑛 возможностей из 2𝑛 − 1, чтобы
ребро {𝑥, 𝑦} стало соединяющим).
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Разбиение графов 
(другое вероятностное пространство )

Доказательство (окончание).

Далее доказательство проводится аналогично предыдущему.

Пусть теперь граф 𝐺 имеет 2𝑛 + 1 вершин. Выберем 𝑇 случайно
среди всех 𝑛 − элементных подмножеств 𝑉. Дальнейшее
доказательство проводится аналогично предыдущему. █
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Монохроматические клики

Теорема 4. Существует рёберная раскраска в два цвета графа
𝐾𝑛, при которой число монохроматических подграфов 𝐾𝑎 не
превосходит

𝑛
𝑎

21−
𝑎
2 .

Доказательство [набросок, проведите рассуждения
самостоятельно].

Рассмотрим некоторую случайную 2-раскраску рёбер.
Обозначим через 𝑋 число монохроматических подграфов 𝐾𝑎, и
найдём 𝐄 𝑋 . Для некоторой раскраски значение 𝑋 не
превосходит значения математического ожидания. █
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Монохроматические клики

Далее в курсе будет показано, как такая раскраска может быть
найдена с помощью детерминированного и эффективного
алгоритма.
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Монохроматические двудольные подграфы

Теорема 5. Существует рёберная раскраска в два цвета графа
𝐾𝑚,𝑛 , при которой число монохроматических подграфов 𝐾𝑎,𝑏

не превосходит
𝑚
𝑎

𝑛
𝑏

21−𝑎𝑏 .

Доказательство [набросок, проведите рассуждения
самостоятельно].

Рассмотрим некоторую случайную 2-раскраску рёбер.
Обозначим через 𝑋 число монохроматических подграфов 𝐾𝑎,𝑏 ,

и найдём 𝐄 𝑋 . Для некоторой раскраски значение 𝑋 не
превосходит значения математического ожидания. █
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Балансировка векторов

Обозначим через |𝑣| обычную евклидову норму вектора 𝑣.

Теорема 6. Пусть векторы 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑛 таковы, что все |𝑣𝑖| = 1.
Тогда существует набор 𝜀1, … , 𝜀𝑛 = ±1, такой, что

| 𝜀1𝑣1+ … + 𝜀𝑛𝑣𝑛 | ≤ 𝑛.

Кроме того, существует набор 𝜀1, … , 𝜀𝑛 = ±1, такой, что

| 𝜀1𝑣1+ … + 𝜀𝑛𝑣𝑛 | ≥ 𝑛.
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Балансировка векторов

Доказательство. Выберем элементы набора 𝜀1, … , 𝜀𝑛

равновероятно и независимо из множества {-1, 1} . Положим

𝑋 = | 𝜀1𝑣1+ … + 𝜀𝑛𝑣𝑛 | 2.

Тогда

𝑋 = ෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝜀𝑖𝜀𝑗 𝑣𝑖 ⋅ 𝑣𝑗 .

Следовательно,

𝐄[𝑋] = ෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑣𝑖 ⋅ 𝑣𝑗 𝐄[𝜀𝑖𝜀𝑗].
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Балансировка векторов

Доказательство (окончание). Если 𝑖 ≠ 𝑗, то из независимости
𝜀𝑖 и 𝜀𝑗 имеем 𝐄[𝜀𝑖𝜀𝑗] = 𝐄[𝜀𝑖] 𝐄[𝜀𝑗] = 0.

Если же 𝑖 = 𝑗, то 𝜀𝑖
2=1 и 𝐄 𝜀𝑖

2 = 1. Тогда

𝐄 𝑋 = ෍

𝑖=1

𝑛

𝑣𝑖 ⋅ 𝑣𝑖 𝐄[𝜀𝑖
2] = ෍

𝑖=1

𝑛

𝑣𝑖
2 = 𝑛.

Таким образом, найдутся наборы 𝜀1, … , 𝜀𝑛 = ±1, такие, что
𝑋 ≥ 𝑛, и такие, что 𝑋 ≤ 𝑛.

Извлекая квадратные корни, получаем требуемые
утверждения. █
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Балансировка векторов

Теорема 7. Пусть векторы 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑛 таковы, что все |𝑣𝑖| ≤ 1,
а значения 𝑝1, … , 𝑝𝑛 ∈ [0, 1] произвольны. Положим вектор
𝑤 = 𝑝1𝑣1+ … + 𝑝𝑛𝑣𝑛. Тогда существует набор 𝜀1, … , 𝜀𝑛 ∈ {0, 1},
такой, что при 𝑣 = 𝜀1𝑣1+ … + 𝜀𝑛𝑣𝑛 выполняется неравенство

|𝑤 − 𝑣| ≤ 
𝑛

2
.

Доказательство. Выберем элементы набора 𝜀1, … , 𝜀𝑛

независимо друг от друга с вероятностями

Pr[𝜀𝑖 = 1] = 𝑝𝑖 , Pr[𝜀𝑖 = 0] = 1 − 𝑝𝑖 .
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Балансировка векторов

Доказательство (продолжение).

Случайный набор чисел 𝜀1, … , 𝜀𝑛 порождает случайный вектор
𝑣 и случайную величину

𝑋 = |𝑤 − 𝑣|2.

Заметим, что

𝑋 = ෍

𝑖=1

𝑛

(𝑝𝑖 − 𝜀𝑖) 𝑣𝑖

2

= ෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑣𝑖 ⋅ 𝑣𝑗(𝑝𝑖 − 𝜀𝑖) (𝑝𝑗 − 𝜀𝑗) .
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Балансировка векторов

Доказательство (окончание). Тогда

𝐄[𝑋] = ෍

𝑖=1

𝑛

෍

𝑗=1

𝑛

𝑣𝑖 ⋅ 𝑣𝑗 𝐄[(𝑝𝑖 − 𝜀𝑖) (𝑝𝑗 − 𝜀𝑗)].

Для 𝑖 ≠ 𝑗 имеем 𝐄[(𝑝𝑖 − 𝜀𝑖) (𝑝𝑗 − 𝜀𝑗)] = 𝐄[𝑝𝑖 − 𝜀𝑖]𝐄[ 𝑝𝑗 − 𝜀𝑗] = 0.

Для 𝑖 = 𝑗 получим

𝐄[ 𝑝𝑖 − 𝜀𝑖
2] = 𝑝𝑖 𝑝𝑖 − 1 2 + 1 − 𝑝𝑖 𝑝𝑖

2 = 𝑝𝑖 1 − 𝑝𝑖 ≤
1

4
.

Таким образом, 𝐄 𝑋 = σ𝑖=1
𝑛 𝑝𝑖 1 − 𝑝𝑖 |𝑣𝑖|2 ≤

1

4
σ𝑖=1

𝑛 |𝑣𝑖|2 ≤
𝑛

4
,

и доказательство завершается так же, как доказательство
теоремы 6. █
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Без подбрасывания монет: Разбиение графов

Замечание.

Невероятностное (конструктивное) доказательство теоремы 2
может быть получено путём последовательного включения
каждой вершины 𝑥 в множества 𝑇 или 𝐵 = 𝑉 \ 𝑇. На каждом
шаге нужно поместить 𝑥 либо в 𝑇 либо в 𝐵 так, чтобы по
крайней мере половина рёбер из 𝑥, инцидентных предыдущим
вершинам, были соединяющими.
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Без подбрасывания монет: Разбиение графов

Упражнения.

1) Докажите, что при использовании этого эффективного
алгоритма по крайней мере половина всех рёбер будут
соединяющими;

2) Оцените сложность этого алгоритма (количество проверок
смежности вершин графа, в худшем случае).
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Без подбрасывания монет: Балансировка векторов

Существует простой итерационный алгоритм для выбора
знаков в теореме 6. Возьмём, например, 𝜀1 = 1 . Далее, для
нужного выбора знака 𝑣𝑖 ( 2 ≤ 𝑖 ≤ 𝑛 ) вычислим частичную
сумму 𝑤 = 𝜀1𝑣1+ … + 𝜀𝑖−1𝑣𝑖−1. Теперь, если требуется получить
малое (по модулю) значение суммы, следует выбрать 𝜀𝑖 = ±1
так, чтобы вектор 𝜀𝑖𝑣𝑖 составлял с вектором 𝑤 угол, не
меньший прямого (тупой или прямой). Если же, наоборот,
нужно получить большую по модулю сумму, то следует сделать
угол острым или прямым.
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Без подбрасывания монет: Балансировка векторов

В вырожденном случае, когда все углы прямые, с помощью
теоремы Пифагора и индукции можно показать (сделайте это!),
что конечный вектор будет иметь норму 𝑛, а в остальных
случаях норма будет меньше 𝑛 или больше 𝑛 (в первом и во
втором случаях, соответственно).

Упражнение.

3) Оцените сложность этого алгоритма (под сложностью будем
понимать количество вычислений норм, в худшем случае).
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Без подбрасывания монет: Балансировка векторов

В теореме 7 требуемые 𝜀𝑖 ∈ {0, 1} можно получить с помощью
так называемого «жадного» алгоритма. Пусть нам даны
векторы 𝑣1, … , 𝑣𝑛 ∈ ℝ𝑛, такие, что все |𝑣𝑖| ≤ 1, и значения
𝑝1, … , 𝑝𝑛 ∈ [0, 1].

Шаг 1. Возьмём, например, 𝜀1 = 1.

Шаг 𝒔 (2 ≤ 𝑠 ≤ 𝑛). Пусть все величины 𝜀1, … , 𝜀𝑠−1 ∈ {0, 1} уже
выбраны. Рассмотрим частичную сумму

𝑤𝑠−1 = σ𝑖=1
𝑠−1(𝑝𝑖 − 𝜀𝑖)𝑣𝑖 .
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Без подбрасывания монет: Балансировка векторов

Выберем 𝜀𝑠 так, чтобы вектор

𝑤𝑠 = 𝑤𝑠−1 +(𝑝𝑠 − 𝜀𝑠)𝑣𝑠 = ෍

𝑖=1

𝑠

(𝑝𝑖 − 𝜀𝑖)𝑣𝑖

имел минимальную норму. Случайное число 𝜀𝑠 ∈ 0, 1 ,
выбранное с вероятностью Pr[𝜀𝑠 = 1] = 𝑝𝑠, даёт нам

𝐄 𝑤𝑠
2 = 𝑤𝑠−1

2 + 2𝑤𝑠−1 ⋅ 𝑣𝑠𝐄 𝑝𝑠 − 𝜀𝑠 + 𝑣𝑠
2𝐄 𝑝𝑠 − 𝜀𝑠

2 =

= 𝑤𝑠−1
2 + 𝑝𝑠 1 − 𝑝𝑠 𝑣𝑠

2.

Таким образом, для некоторого выбора 𝜀𝑠 ∈ 0, 1 выполняется
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Без подбрасывания монет: Балансировка векторов

неравенство
𝑤𝑠

2 ≤ 𝑤𝑠−1
2 + 𝑝𝑠 1 − 𝑝𝑠 𝑣𝑠

2.

Поскольку это верно для всех 1 ≤ 𝑠 ≤ 𝑛 (при 𝑤0 = 0), для
вектора, получаемого жадным алгоритмом, будет выполняться
неравенство

𝑤𝑛
2 ≤ ෍

𝑖=1

𝑛

𝑝𝑖 1 − 𝑝𝑖 𝑣𝑖
2 .
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Без подбрасывания монет: Балансировка векторов

Несмотря на то, что эти доказательства схожи, прямое
применение доказательства теоремы 7 для нахождения набора
𝜀1, … , 𝜀𝑛 ∈ {0, 1} может привести к перебору, требующему
экспоненциального времени.

При применении жадного алгоритма на шаге с номером 𝑠
производятся два вычисления значения 𝑤𝑠

2: для 𝜀𝑠 = 0 и 1, с
последующим выбором того значения 𝜀𝑠, которое даёт
наименьшее значение целевой функции. Таким образом, мы
проделываем лишь линейное количество вычислений норм, а
алгоритм в целом занимает квадратичное время.
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Без подбрасывания монет: Балансировка векторов

Упражнения.

4) Докажите, что вектор 𝑣 = 𝜀1𝑣1+ … + 𝜀𝑛𝑣𝑛, получаемый по
«жадному» алгоритму, удовлетворяет условию

|𝑤 − 𝑣| ≤ 
𝑛

2
.

5) Оцените сложность этого алгоритма (под сложностью здесь
также понимается количество вычислений норм, в худшем
случае).

28



Литература к лекции

1. Алон Н., Спенсер Дж. Вероятностный метод. М.:
БИНОМ. Лаборатория знаний, 2007, С. 32-41.

2. Alon N. (1990) The maximum number of Hamiltonian
paths in tournaments // Combinatorica 10: P. 319-324.

3. Szele T. (1943) Kombinatorikai vizsgálatok az irányitott
teljes gráffal kapcsolatban. // Mat. Fiz. Lapok 50 P. 223-256

(перевод на немецкий язык: Szele T., Publ. Math.
Debrecen 13, 1966, P. 145-168).

29
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