
Математические методы
верификации схем и программ

mk.cs.msu.ru → Лекционные курсы
→ Математические методы верификации схем и программ

Блок 9

Особенности моделирования систем

Лектор:
Подымов Владислав Васильевич

E-mail:
valdus@yandex.ru

ВМК МГУ, 2025, сентябрь–декабрь
Математические методы верификации схем и программ, Блок 9 1/20

https://mk.cs.msu.ru

Моделирование программ
Рассмотрим императивную программу π, выполняющуюся
в интерпретации I на произвольном состоянии данных множества X

Модель Mπ,I,X = (S ,S0,→,L), отвечающая такому выполнению,
может быть устроена так:
I S — это множество всех состояний вычисления программы
I S0 = {〈π | σ〉 | σ ∈ X}
I → — отношение переходов программы,

в которое добавлены всевозможные пары вида 〈∅∅∅ | σ〉 → 〈∅∅∅ | σ〉
I AP — всевозможные связки x/d оценок переменных программы
I x/d ∈ L(〈π′ | σ〉) ⇔ σ(x) = d

Путями в такой модели Крипке являются
трассы программы в I на σ, σ ∈ X

Для других видов программ модель можно устроить точно так же,
если определена операционная семантика
Математические методы верификации схем и программ, Блок 9 2/20

Моделирование программ

Для примера рассмотрим программу, в которой
бесконечно (в цикле) выполняется присваивание

x := x+ y;,
в модели императивных программ с интерпретацией, задающей
арифметику двухразрядных чисел с переполнением

Пусть известно, что в начале работы программы x = 0,
а значение y может быть любым

Тогда некоторые компоненты связности
соответствующей модели Крипке устроены так
(можете представить себе и остальные по аналогии):

x/0, y/0
x/0, y/2 x/2, y/2

Математические методы верификации схем и программ, Блок 9 3/20

Моделирование схем
(кто знает термин «последовательная схема» — можете представить её
вместо схемы из функциональных элементов с задержкой, СФЭЗ)

⊕

ÿ

¬

ÿ

Модель M = (S ,S0,→,L), отвечающая СФЭЗ
(последовательной схеме), может быть устроена так:
I Все элементы задержки пронумерованы: 1, 2, . . . , n
I S = {0, 1}n (все состояния схемы)
I S0 = {(0, 0, . . . , 0)} (состояние схемы после сброса)
I s → s ′ ⇔ при переходе к следующему моменту времени

(по переднему фронту тактового сигнала)
возможна такая смена состояния схемы

I AP = {1, 2, . . . , n} × {0, 1} (номер и состояние регистра)
I (i , b) ∈ L(b0, b1, . . . , bn) ⇔ bi = b

Математические методы верификации схем и программ, Блок 9 4/20

Моделирование схем
(кто знает термин «последовательная схема» — можете представить её
вместо схемы из функциональных элементов с задержкой, СФЭЗ)

⊕

ÿ

¬

ÿ

Например, модель Крипке для этой схемы может быть устроена так:

(1, 0), (2, 0) (1, 0), (2, 1)

(1, 1), (2, 0)(1, 1), (2, 1)

Математические методы верификации схем и программ, Блок 9 5/20

Моделирование параллелизма

Современные вычислительные системы зачастую состоят
из набора компонентов, исполняющихся одновременно (параллельно)
и взаимодействующих друг с другом

В зависимости от природы системы, при построении модели
используется один из двух видов параллелизма (или их комбинация):
I Асинхронное исполнение (чередующееся исполнение;

семантика чередующихся вычислений; interleaving):
шаг вычисления системы отвечает одному шагу выполнения
одного компонента, а остальные компоненты не выполняются

I Синхронное исполнение: шаг вычисления системы отвечает
одновременному выполнению шага вычисления всех компонентов

Математические методы верификации схем и программ, Блок 9 6/20

Моделирование параллелизма

Параллельная композиция моделей Крипке M = (S ,S0,→,L) и
M ′ = (S ′,S ′0, 7→,L′) над непересекающимися множествами атомарных
высказываний — это модель M|M ′ = (S × S ′,S0 × S ′0, ,L), где:
I L(s, s ′) = L(s) ∪ L′(s ′)
I Отношение переходов определяется видом параллелизма

Синхронное исполнение характерно для аппаратных систем,
и других имеющих встроенные средства синхронизации компонентов

Переходы синхронной композиции моделей
(без взаимодействия компонентов) определяются так:

(s1, s ′1) (s2, s ′2) ⇔ s1 → s2 и s ′1 7→ s ′2

Математические методы верификации схем и программ, Блок 9 7/20

Моделирование параллелизма
M = (S ,S0,→,L) M ′ = (S ′,S ′0, 7→,L′) M|M ′ = (S × S ′,S0 × S ′0, ,L)
Например:

⊕

ÿ

¬

ÿ

x

Модели Крипке, описывающие поведение левой и правой задержек:

0

s0
1

s1
0 s ′0

1 s ′1

Синхронная композиция этих моделей:
0, 0(s0, s ′0) 1, 0 (s1, s ′0)

0, 1(s0, s ′1) 1, 1 (s1, s ′1)

Математические методы верификации схем и программ, Блок 9 8/20

Моделирование параллелизма

Асинхронное исполнение характерно для систем
без встроенных средств синхронизации компонентов,
в том числе (с «примесью» синхронности) для программных систем

Переходы асинхронной композиции моделей
(без взаимодействия компонентов) определяются так:

(s1, s ′1) (s2, s ′2) ⇔ (s1 → s2 и s ′1 = s ′2) или (s1 = s2 и s ′1 7→ s ′2)

Математические методы верификации схем и программ, Блок 9 9/20

Моделирование параллелизма

Для примера рассмотрим две параллельно работающие программы,
в цикле выполняющие одно присваивание:

π1 : x := x+ 1; π2 : y := y+ 1;

Для простоты будем считать, что эти программы выполняются
в условиях арифметики одноразрядных чисел с переполнением

Модели Крипке для этих программ устроены так:

x/0

s0

x/1

s1
y/0 s ′0

y/1 s ′1

Асинхронная композиция этих моделей:
x/0, y/0(s0, s ′0) x/1, y/0 (s1, s ′0)

x/0, y/1(s0, s ′1) x/1, y/1 (s1, s ′1)

Математические методы верификации схем и программ, Блок 9 10/20

Моделирование взаимодействия

Пример: с сетевым принтером пытаются взаимодействовать
участники неизвестной природы

Принтер работает последовательно: принимает информацию
и производит печать согласно содержащейся в нём программе

Программы остальных участников, если они есть, неизвестны

Математические методы верификации схем и программ, Блок 9 11/20

Моделирование взаимодействия

Предположим, что в контроллере принтера
есть однобитовый регистр R, доступный на чтение и запись
всем желающим послать запрос на печать:

R = t ⇔ принтер свободен для печати

Тогда программу π, посредством которой можно организовать
взаимодействие участника с принтером, можно устроить так:

while t do
L1 : while ¬R do ∅∅∅ od
L2 : R := f;
L3 : послать данные для печати
L4 : R := t;

od

Математические методы верификации схем и программ, Блок 9 12/20

Моделирование взаимодействия

Модель Крипке для π: (функция разметки опущена)

〈L1 | [R/t]〉 〈L1 | [R/f]〉

〈L2 | [R/t]〉

〈L3 | [R/f]〉

〈L4 | [R/f]〉

Математические методы верификации схем и программ, Блок 9 13/20

Моделирование взаимодействия

Программа в вычислительной системе
может взаимодействовать с другими программами:
общие переменные, обмен сообщениями, сигналы, . . .

Такое взаимодействие выражается в том, что состояние вычисления
программы может измениться под воздействием её окружения

Например, регистр R в примере может быть изменён любым участником

Чтобы учесть такое изменение, следует добавить в модель Крипке
переходы, отвечающие всем возможностям окружения
повлиять на состояние вычисления программы

Математические методы верификации схем и программ, Блок 9 14/20

Моделирование взаимодействия

Модель Крипке для программы π с окружением,
способным произвольно переключать значение регистра R:

〈L1 | [R/t]〉 〈L1 | [R/f]〉

〈L2 | [R/t]〉

〈L3 | [R/f]〉

〈L4 | [R/f]〉

〈L2 | [R/f]〉

〈L3 | [R/t]〉

〈L4 | [R/t]〉

Математические методы верификации схем и программ, Блок 9 15/20

Моделирование взаимодействия

Рассмотрим две (одинаковые) программы взаимодействия с сетевым
принтером, выполняющиеся согласно следующим моделям Крипке:

π1 π2
〈L1 | t〉 〈L1 | f〉

〈L2 | t〉

〈L3 | f〉

〈L4 | f〉

〈K1 | t〉 〈K1 | f〉

〈K2 | t〉

〈K3 | f〉

〈K4 | f〉

Математические методы верификации схем и программ, Блок 9 16/20

Моделирование взаимодействия

Модель Крипке, описывающая асинхронное исполнение π1 и π2
с общим регистром R:

〈L1,K1, t〉

〈L2,K1, t〉〈L3,K1, f〉〈L4,K1, f〉 〈L1,K2, t〉 〈L1,K3, f〉 〈L1,K4, f〉

〈L2,K2, t〉

〈L2,K3, f〉 〈L3,K2, f〉

〈L3,K3, f〉 〈L4,K2, f〉〈L2,K4, f〉

〈L4,K3, f〉〈L3,K4, f〉

〈L4,K4, f〉〈L3,K1, t〉 〈L4,K1, t〉 〈L1,K4, t〉 〈L1,K3, t〉

〈L2,K4, t〉 〈L2,K3, t〉〈L4,K2, t〉〈L3,K2, t〉 〈L1,K1, f〉

Математические методы верификации схем и программ, Блок 9 17/20

Гранулярность и атомарность в моделях
Переход t в модели отвечает выполнению
атомарного действия системы:
I в выполнение t не могут вмешаться другие действия
I t невозможно или неразумно разделять на более простые действия
I при выполнении t не наблюдаются промежуточные состояния

Выбор гранулярности действий в модели: того, какие именно (насколько
детальные или абстрактные) действия будут считаться атомарными —
играет важную роль при разработке модели:
I Если действия модели слишком абстрактны, то в модели

могут отсутствовать некоторые ошибки, наблюдающиеся
при частичном выполнении и «перекрытии» реальных действий

I Если действия модели слишком детальны, то это может
I существенно увеличить размер модели

за счёт несуществующих или «неважных» состояний и из-за этого
I понизить эффективность верификации

Математические методы верификации схем и программ, Блок 9 18/20

Гранулярность и атомарность в моделях

Например,

|| ||

||||||

Нужно ли рассматривать отдельное действие «плавание по реке»?

А «посадка в лодку» и «высадка из лодки»?

Можно ли посчитать атомарным плавание туда и обратно?

Математические методы верификации схем и программ, Блок 9 19/20

Гранулярность и атомарность в моделях
Другой пример
Рассмотрим две параллельно выполняющиеся программы, каждая из
которых выполняет одну команду

π1 : x := x+ y; π2 : y := x+ y;

Устроит ли нас, если эти две команды будут считаться атомарными?

Тогда в вычислении системы на [x/2, y/3] будут достигаться только
состояния данных [x/5, y/3], [x/5, y/8], [x/2, y/5] и [x/7, y/5]

Но реализация таких присваиваний на языке ассемблера может
содержать и более одной команды:

load $1, x
load $2, y
add $1, $2
store $1, x

load $3, x
load $4, y
add $3, $4
store $3, y

Если атомарными считать ассемблерные команды,
то достижимы и другие состояния данных — например, [x/5, y/5] —
что может оказаться нежелательным (ошибкой)
Математические методы верификации схем и программ, Блок 9 20/20

