Equivalence checking of prefix-free transducers and deterministic two-tape automata

V.A. Zakharov

Lomonosov Moscow State University

December 14, 2018

Preliminaries

A word over alphabet A is any finite sequence $w=a_{1} a_{2} \ldots a_{k}$ of letters in A. The empty word is denoted by ε.

Given a pair of words u and v, we write $u v$ for their concatenation.
The set of all words over an alphabet A is denoted by A^{*}.
A language over A is any subset of A^{*}.
Concatenation of languages L_{1} and L_{2} is the language

$$
L_{1} L_{2}=\left\{u v: u \in L_{1}, v \in L_{2}\right\} .
$$

If $L_{1}=\emptyset$ or $L_{2}=\emptyset$ then $L_{1} L_{2}=\emptyset$.
A transduction over alphabets A and B is any subset of $A^{*} \times B^{*}$.

Real Time Finite Transducers

A Real Time Finite Transducer over an input alphabet Σ and an output alphabet Δ is a quadruple $\pi=\left\langle Q, q_{0}, F, \longrightarrow\right\rangle$, where

- Q is a finite set of states ,
- q_{0} is an initial state,
- $F \subseteq Q$ is a subset of final states, and
- \longrightarrow is a finite transition relation of the type $Q \times \Sigma \times \Delta^{*} \times Q$. We will write $\pi\left(q_{0}\right)$ to emphasize that q_{0} is the initial state of π. Transitions $\left(q, a, u, q^{\prime}\right)$ in \longrightarrow are depicted as $q \xrightarrow{a / u} q^{\prime}$.
A run of π on an input word $w=a_{1} a_{2} \ldots a_{n}$ is any finite sequence of transitions $q \xrightarrow{a_{1} / u_{1}} q_{1} \xrightarrow{a_{2} / u_{2}} \ldots \xrightarrow{a_{n-1} / u_{n-1}} q_{n-1} \xrightarrow{a_{n} / u_{n}} q^{\prime}$. The pair (w, u), where $u=u_{1} u_{2} \ldots u_{n}$, is a label of this run. We write $q \xrightarrow{w / u} q^{\prime}$ when a transducer π has a run labeled with (w, u) from a state q to a state q^{\prime}. If $q^{\prime} \in F$ then a run is final. A transduction relation realized by a transducer π at its state q is the set of pairs $\operatorname{TR}(\pi, q)=\left\{(w, u): q \xrightarrow{w / u} q_{0}^{\prime}, q^{\prime} \in F\right\}_{\exists}$

Real Time Finite Transducers

Transducers $\pi_{1}\left(q_{1}\right)$ and $\pi_{2}\left(q_{2}\right)$ are called equivalent $\left(\pi_{1}\left(q_{1}\right) \sim \pi_{2}\left(q_{2}\right)\right.$ in symbols) iff $\operatorname{TR}\left(\pi_{1}, q_{1}\right)=\operatorname{TR}\left(\pi_{2}, q_{2}\right)$.
Equivalence checking problem for transducers is that of checking, given a pair of transducers π_{1} and π_{2}, whether $\pi_{1} \sim \pi_{2}$ holds.

A transducer π is called

- deterministic if for every letter a and a state q it has at most one transition of the form $q \xrightarrow{a / 山} q^{\prime}$,
- k-ambiguous if for every input word w there is at most k final runs of π on w from the initial state q_{0},
- k-valued if for every input word w the transduction relation $\operatorname{TR}\left(\pi, q_{0}\right)$ contains at most k images of w,
- of length-degree k if for every input word w, the number of distinct lengths of the images u of w in $\operatorname{Tr}\left(\pi, q_{0}\right)$ is at most k

Real Time Finite Transducers

Equivalence checking problem is undecidable for

- transducers with ε-transitions
(Fisher P.S., Rozenberg A.L., 1966)
- real time transducers (Griffiths T., 1968)
- transducers over one-letter alphabet (Ibarra O., 1972).

Equivalence checking problem is decidable for

- deterministic transducers
(Blattner M, Head T., 1979): PTime
- single-valued transducers
(Schutzenberger M. P., 1977): PSpace
- unambiguous transducers (Gurari E., Ibarra O., 1983): PTime
- k-ambiguous transducers (Gurari E., Ibarra O., 1983)
- k-valued transducers
(Culik K., Karhumaki J., 1986): Time $2^{O\left(n^{2}\right)}$
- transducers of length-degree k (Weber A., 1992): Time $2^{2^{2^{n}}}$

Two-tape finite automata

A Two-tape Finite State Automaton (2-FSA) over disjoint alphabets Σ and Δ is a 5 -tuple $M=\left\langle S_{1}, S_{2}, s_{0}, F, \rightarrow\right\rangle$ such that

- S_{1}, S_{2} is a partitioning of a finite set S of states,
- $s_{0} \in S_{1}$ is an initial state,
- $F \subseteq S$ is a subset of final states, and
- \rightarrow is a transition relation of the type $\left(S_{1} \times \Sigma \times S\right) \cup\left(S_{2} \times \Delta \times S\right)$.
A run of 2-FSA M is any sequence of transitions

$$
s \xrightarrow{z_{1}} s_{1} \xrightarrow{z_{2}} \cdots \xrightarrow{z_{n-1}} s_{n-1} \xrightarrow{z_{n}} s^{\prime}
$$

A run is complete if $s=s_{0}$ and $s^{\prime} \in F$.
A 2-FSA M accepts a pair of words $(w, u) \in \Sigma^{*} \times \Delta^{*}$ if there is a complete run of M such that w is the projection of the word $z_{1} z_{2} \ldots z_{n-1} z_{n}$ on the alphabet Σ and u is the projection of the same word $z_{1} z_{2} \ldots z_{n-1} z_{n}$ on the alphabet Δ_{4}

Two-tape finite automata

A transduction relation recognized by a 2-FSA M is the set $T R(M)$ of all pairs of words accepted by M.

2-FSAs M^{\prime} and $M^{\prime \prime}$ are equivalent if $T R\left(M^{\prime}\right)=T R\left(M^{\prime \prime}\right)$.
A 2-FSA M is called deterministic (2-DFSA) if for every letter a and a state s it has at most one transition of the form $s \xrightarrow{a} s^{\prime}$.

Equivalence checking problem is undecidable for 2-FSAs (Fisher P.S., Rozenberg A.L., 1966)

Equivalence checking problem is decidable for

- 2-DFSA (Bird M., 1973; Valiant L.G., 1974)
- 2-DFSA in polynomial time
(Friedman E.P., Greibach S.A., 1982)
- deterministic multi-tape automata (Harju T., Karhumaki J., 1991)

Prefix-free transducers: preliminaries

A word u is a prefix of a word w if $w=u v$ holds for some word v. In this case w is called an extension of u and $v=u \backslash w$ a left quotient of u with w.
Two words u_{1} and u_{2} are compatible if one of them is a prefix of the other.
A language L is called prefix-free if all its words are pairwise incompatible.
Two languages L^{\prime} and $L^{\prime \prime}$ are compatible if every word in any of these languages is compatible with some word in the other.

Given a word u and a language L, we denote by
$\operatorname{Pref}(L)$ the set of all prefixes of the words in L,
$u \backslash L$ a left quotient $\{v: u v \in L\}$ of u with L.
Notice, that if $u \notin \operatorname{Pref}(L)$ then $u \backslash L=\emptyset$.

Prefix-free transducers: preliminaries

Proposition 1.

Let L^{\prime} and $L^{\prime \prime}$ be finite prefix-free compatible languages.
Then there exists the unique partitions $L^{\prime}=\bigcup_{i=1}^{n} L_{i}^{\prime}$ and $L^{\prime \prime}=\bigcup_{i=1}^{n} L_{i}^{\prime \prime}$
such that for every $i, 1 \leq i \leq n$, one of the subsets L_{i}^{\prime} or $L_{i}^{\prime \prime}$ is a singleton $\{u\}$ and all words from the other are extensions of u.

Such partitioning of a compatible pair of prefix-free languages L^{\prime} and $L^{\prime \prime}$ will be called its splitting. The pairs of corresponding subsets L_{i}^{\prime} and $L_{i}^{\prime \prime}, 1 \leq i \leq n$, will be called its fractions.

Prefix-free transducers: preliminaries

Proposition 1.

Let L^{\prime} and $L^{\prime \prime}$ be finite prefix-free compatible languages.
Then there exists the unique partitions $L^{\prime}=\bigcup_{i=1}^{n} L_{i}^{\prime}$ and $L^{\prime \prime}=\bigcup_{i=1}^{n} L_{i}^{\prime \prime}$ such that for every $i, 1 \leq i \leq n$, one of the subsets L_{i}^{\prime} or $L_{i}^{\prime \prime}$ is a singleton $\{u\}$ and all words from the other are extensions of u.

Such partitioning of a compatible pair of prefix-free languages L^{\prime} and $L^{\prime \prime}$ will be called its splitting. The pairs of corresponding subsets L_{i}^{\prime} and $L_{i}^{\prime \prime}, 1 \leq i \leq n$, will be called its fractions.

Example.

$$
L^{\prime}=\{a a a b b, b c c, a a a b a b, b c a c a\}, \quad L^{\prime \prime}=\{b c a, b c c a a, a a a b, b c c c\}
$$

Prefix-free transducers: preliminaries

Proposition 1.

Let L^{\prime} and $L^{\prime \prime}$ be finite prefix-free compatible languages.
Then there exists the unique partitions $L^{\prime}=\bigcup_{i=1}^{n} L_{i}^{\prime}$ and $L^{\prime \prime}=\bigcup_{i=1}^{n} L_{i}^{\prime \prime}$ such that for every $i, 1 \leq i \leq n$, one of the subsets L_{i}^{\prime} or $L_{i}^{\prime \prime}$ is a singleton $\{u\}$ and all words from the other are extensions of u.

Such partitioning of a compatible pair of prefix-free languages L^{\prime} and $L^{\prime \prime}$ will be called its splitting. The pairs of corresponding subsets L_{i}^{\prime} and $L_{i}^{\prime \prime}, 1 \leq i \leq n$, will be called its fractions.

Example.

$$
\begin{array}{ll}
L^{\prime}=\{a a a b b, b c c, a a a b a b, b c a c a\}, & L^{\prime \prime}=\{b c a, b c c a a, a a a b, b c c c\} \\
L_{1}^{\prime}=\{\text { aaabb }, a a a b a b\}, & L_{1}^{\prime \prime}=\{a a a b\} ; \\
L_{2}^{\prime}=\{b c c\}, & L_{2}^{\prime \prime}=\{b c c a a, b c c c\} ; \\
L_{3}^{\prime}=\{b c a c a\}, & L_{3}^{\prime \prime}=\{b c a\} .
\end{array}
$$

Prefix-free transducers: preliminaries

Given a transducer $\pi=\langle Q, q, F, \longrightarrow\rangle$ over languages Σ and Δ, a state $q \in Q$ and a letter $x \in \Sigma$, we denote by

$$
\operatorname{Out}_{\pi}(q, x)=\left\{\left(u, q^{\prime}\right): q \xrightarrow{x / u} q^{\prime}\right\}
$$

A transducer π is called prefix-free if for every $q \in Q$ and $x \in \Sigma$ the language

$$
L_{\pi}(q, x)=\left\{u: \exists p(u, p) \in \operatorname{Out}_{\pi}(q, x)\right\}
$$

is prefix-free.
Prefix-free transducers have certain "deterministic" property: for every state q of a prefix-free transducer π and for every pair $(w, u) \in \operatorname{Tr}(\pi, q)$ there is the only run of π from the state q labeled with (u, w).

Prefix-free transducers: equivalence checking

Prefix-free transducers: equivalence checking

Idea

The equivalence checking technique for prefix-free transducers is based on manipulations with regular expressions.

1. We introduce for every state q of a transducer π a variable X_{q}.
2. We associate with a transducer π a system of linear regular expression equations $\mathcal{E}(\pi)$ over variables $X_{q}, q \in Q$, which specifies the behaviour of π.
3. To check the equivalence $\pi\left(q^{\prime}\right) \sim \pi\left(q^{\prime \prime}\right)$ we add to the set of equations $\mathcal{E}(\pi)$ the equivalence requirement which is an equation of the form $X_{q^{\prime}}=X_{q^{\prime \prime}}$
4. Then we verify whether the resulting system of equations has a solution.

Equivalence checking: assumptions

For the sake of clarity we will assume that:

- the input alphabet $\Sigma=\left\{a_{1}, \ldots, a_{k}\right\}$ and $\Gamma \cap \Delta=\emptyset$; symbols x, y, z will denote arbitrary letters from Σ, and symbols u, v, w will denote words from Δ^{*}.
- $\pi^{\prime}=\pi\left(q^{\prime}\right)$ and $\pi^{\prime \prime}=\pi\left(q^{\prime \prime}\right)$,
- the transducer π is trim, i.e. a final state is reachable from each state of π.

Equivalence checking: regexes

Regular expressions (regexes) are built of variables X_{1}, X_{2}, \ldots,
constants 0,1 ,
and letters from Σ and Δ
by means of concatenation and alternation + .
Regexes are interpreted on the semiring of transductions over Σ and Δ.

0 is interpreted as the transduction \emptyset
1 as $\{(\varepsilon, \varepsilon)\}$,
every letter x as $\{(x, \varepsilon)\}$, every word u as $\{(\varepsilon, u)\}$.

Concatenation of transductions T_{1} and T_{2} is defined as:

$$
T_{1} T_{2}=\left\{\left(h_{1} h_{2}, u_{1} u_{2}\right):\left(h_{1}, u_{1}\right) \in T_{1},\left(h_{2}, u_{2}\right) \in T_{2}\right\} .
$$

Equivalence checking: linear regexes

We will focus on linear regexes of two types.
A Δ-regex is any expression of the form

$$
E=u_{1} \cdot X_{1}+u_{2} \cdot X_{2}+\cdots+u_{n} \cdot X_{n}
$$

When a set of words $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is prefix-free then such a Δ -regex will be also called prefix-free.

A Σ-regex is any expression of the form

$$
G=a_{1} \cdot E_{1}+a_{2} \cdot E_{2}+\cdots+a_{k} \cdot E_{k},
$$

where $E_{i}, 1 \leq i \leq k$, are Δ-regexes.

Equivalence checking: systems of equations

With each state q of a transducer π we associate a variable X_{q}, and for every pair $q \in Q$ and $x \in \Sigma$ we build a Δ-regex

$$
E_{q, x}=\sum_{(u, p) \in \operatorname{Out}_{\pi}(q, x)} u \cdot X_{p} .
$$

Then the transducer π is specified by the system of equations \mathcal{E}_{π} :

$$
\left\{X_{q}=\sum_{x \in \Sigma} x \cdot E_{q, x}+c_{q}: q \in Q\right\}
$$

where $c_{q}=1$ if $q \in F$, or $c_{q}=0$ otherwise.

Equivalence checking: systems of equations

With each state q of a transducer π we associate a variable X_{q}, and for every pair $q \in Q$ and $x \in \Sigma$ we build a Δ-regex

$$
E_{q, x}=\sum_{(u, p) \in O u t_{\pi}(q, x)} u \cdot X_{p} .
$$

Then the transducer π is specified by the system of equations \mathcal{E}_{π} :

$$
\left\{X_{q}=\sum_{x \in \Sigma} x \cdot E_{q, x}+c_{q}: q \in Q\right\}
$$

where $c_{q}=1$ if $q \in F$, or $c_{q}=0$ otherwise.

Proposition 2.

For every finite transducer π the system of equation \mathcal{E}_{π} has the unique solution $\left\{X_{q}=\operatorname{Tr}(\pi, q): q \in Q\right\}$.

Equivalence checking: systems of equations

With each state q of a transducer π we associate a variable X_{q}, and for every pair $q \in Q$ and $x \in \Sigma$ we build a Δ-regex

$$
E_{q, x}=\sum_{(u, p) \in O u t_{\pi}(q, x)} u \cdot X_{p} .
$$

Then the transducer π is specified by the system of equations \mathcal{E}_{π} :

$$
\left\{X_{q}=\sum_{x \in \Sigma} x \cdot E_{q, x}+c_{q}: q \in Q\right\}
$$

where $c_{q}=1$ if $q \in F$, or $c_{q}=0$ otherwise.

Proposition 2.

For every finite transducer π the system of equation \mathcal{E}_{π} has the unique solution $\left\{X_{q}=\operatorname{Tr}(\pi, q): q \in Q\right\}$.

Corollary.

$\pi(p) \sim \pi(q) \quad \Longleftrightarrow \quad \mathcal{E}_{\pi} \cup\left\{X_{p}=X_{q}\right\}$ has a solution.

Equivalence checking: systems of equations

Equivalence checking: systems of equations

The system of equations \mathcal{E}_{π} :

$$
\begin{aligned}
X_{1}= & \mathbf{a} \cdot\left(g g h \cdot X_{2}+g h g \cdot X_{3}+g h h \cdot X_{3}\right)+ \\
& \mathbf{b} \cdot\left(h g \cdot X_{2}+h h g \cdot X_{4}\right)+1 \\
X_{2}= & \mathbf{a} \cdot h g h \cdot X_{4} \\
X_{3}= & \mathbf{a} \cdot X_{2} \\
X_{4}= & \mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{1}+1
\end{aligned}
$$

Equivalence checking: systems of equations

The system of equations \mathcal{E}_{π} :

$$
\begin{aligned}
X_{1}= & \mathbf{a} \cdot\left(g g h \cdot X_{2}+g h g \cdot X_{3}+g h h \cdot X_{3}\right)+ \\
& \mathbf{b} \cdot\left(h g \cdot X_{2}+h h g \cdot X_{4}\right)+1 \\
X_{2}= & \mathbf{a} \cdot h g h \cdot X_{4} \\
X_{3}= & \mathbf{a} \cdot X_{2} \\
X_{4}= & \mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{1}+1
\end{aligned}
$$

Equivalence checking problem $\pi\left(q_{1}\right) \sim \pi\left(q_{4}\right)$:

$$
X_{1}=X_{4}
$$

Equivalence checking: systems of equations

We say that a system of linear equations

$$
\mathcal{E}=\mathcal{E}_{\pi}\left(X_{1}, \ldots, X_{n}\right) \cup\left\{X_{j}^{\prime}=E_{j}\left(X_{1}, \ldots, X_{n}\right): 1 \leq j \leq m\right\}
$$

is reduced if $\left\{X_{1}, \ldots, X_{n}\right\}$ and $\left\{X_{1}^{\prime}, \ldots, X_{m}^{\prime}\right\}$ are disjoint sets of variables and all right-hand sides E_{j} are Δ-regexes.

Equivalence checking: systems of equations

We say that a system of linear equations

$$
\mathcal{E}=\mathcal{E}_{\pi}\left(X_{1}, \ldots, X_{n}\right) \cup\left\{X_{j}^{\prime}=E_{j}\left(X_{1}, \ldots, X_{n}\right): 1 \leq j \leq m\right\}
$$

is reduced if $\left\{X_{1}, \ldots, X_{n}\right\}$ and $\left\{X_{1}^{\prime}, \ldots, X_{m}^{\prime}\right\}$ are disjoint sets of variables and all right-hand sides E_{j} are Δ-regexes.

Proposition 3.

Every reduced system of equations \mathcal{E} has the unique solution.

Equivalence checking: systems of equations

Some other extensions of the systems \mathcal{E}_{π} have no solutions.

Proposition 4.

If languages $L_{1}=\left\{u_{1}, \ldots, u_{\ell}\right\}$ and $L_{2}=\left\{v_{1}, \ldots, v_{m}\right\}$ are incompatible then a system of equations

$$
\mathcal{E}_{\pi}\left(X_{1}, \ldots, X_{n}\right) \cup\left\{\sum_{i=1}^{\ell} u_{i} \cdot X_{i}=\sum_{j=1}^{m} v_{j} \cdot X_{j}\right\}
$$

has no solutions.

Equivalence checking: systems of equations

Some other extensions of the systems \mathcal{E}_{π} have no solutions.

Proposition 4.

If languages $L_{1}=\left\{u_{1}, \ldots, u_{\ell}\right\}$ and $L_{2}=\left\{v_{1}, \ldots, v_{m}\right\}$ are incompatible then a system of equations

$$
\mathcal{E}_{\pi}\left(X_{1}, \ldots, X_{n}\right) \cup\left\{\sum_{i=1}^{\ell} u_{i} \cdot X_{i}=\sum_{j=1}^{m} v_{j} \cdot X_{j}\right\}
$$

has no solutions.

Proposition 5.

If a set of words $\left\{u_{1}, \ldots, u_{\ell}\right\}$ is prefix-free and a system

$$
\mathcal{E}_{\pi}\left(X_{1}, \ldots, X_{n}\right) \cup\left\{X_{1}=\sum_{i=1}^{\ell} u_{i} \cdot X_{i}\right\}
$$

has a solution then $\ell=1$ and $u_{1}=\varepsilon$.

Systems of equations: solution technique

An iterative procedure checks the solvability of the system of equations $\mathcal{E}_{1}=\mathcal{E}_{\pi} \cup\left\{X_{p}=X_{q}\right\}$ for prefix-free transducer π by bringing this system to an equivalent reduced form.

At the beginning of each iteration t the procedure gets at the input a system of equations of the form

$$
\mathcal{E}_{t}=\mathcal{E}_{\pi_{t}} \cup\left\{X_{i}=E_{i}: 1 \leq i \leq N_{t}\right\},
$$

where π_{t} is some prefix-free transducer and all Δ-regexes E_{i} are prefix-free.

If a variable X occurs more than once in \mathcal{E}_{t} then we call it active.
At the t-th iteration equivalent transformations are applied to \mathcal{E}_{t}.

Systems of equations: solution technique

$$
\mathcal{E}_{t}=\mathcal{E}_{\pi_{t}} \cup\left\{X_{i}=E_{i}: 1 \leq i \leq N_{t}\right\}
$$

1) Removing of identities.

Equations of the form $X=X$ are removed from \mathcal{E}_{t}.

Systems of equations: solution technique

$$
\mathcal{E}_{t}=\mathcal{E}_{\pi_{t}} \cup\left\{X_{i}=E_{i}: 1 \leq i \leq N_{t}\right\}
$$

1) Removing of identities.

Equations of the form $X=X$ are removed from \mathcal{E}_{t}.
2) Checking if \mathcal{E}_{t} is reduced system

If none of the variables $X_{1}, \ldots, X_{N_{t}}$ from left-hand sides of equations $X_{i}=E_{i}$ occurs elsewhere then terminate and announce the solvability.

Systems of equations: solution technique

$$
\mathcal{E}_{t}=\mathcal{E}_{\pi_{t}} \cup\left\{X_{i}=E_{i}: 1 \leq i \leq N_{t}\right\}
$$

1) Removing of identities.

Equations of the form $X=X$ are removed from \mathcal{E}_{t}.
2) Checking if \mathcal{E}_{t} is reduced system

If none of the variables $X_{1}, \ldots, X_{N_{t}}$ from left-hand sides of equations $X_{i}=E_{i}$ occurs elsewhere then terminate and announce the solvability.
3) Elimination of variables.

For every equation of the form $X_{i}=E_{i}$ in \mathcal{E}_{t}

- if X_{i} is in Δ-regex E_{i} then terminate and announce the unsolvability;
- otherwise in all other equations of \mathcal{E} replace all the occurrences of X_{i} with E_{i}.

Systems of equations: solution technique

The system of equations:

$$
\begin{aligned}
X_{1}= & \mathbf{a} \cdot\left(g g h \cdot X_{2}+g h g \cdot X_{3}+g h h \cdot X_{3}\right)+ \\
& \mathbf{b} \cdot\left(h g \cdot X_{2}+h h g \cdot X_{4}\right)+1 \\
X_{2}= & \mathbf{a} \cdot h g h \cdot X_{4} \\
X_{3}= & \mathbf{a} \cdot X_{2} \\
X_{4}= & \mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{1}+1 \\
X_{1}= & X_{4}
\end{aligned}
$$

Systems of equations: solution technique

The system of equations:

$$
\begin{aligned}
X_{4}= & \mathbf{a} \cdot\left(g g h \cdot X_{2}+g h g \cdot X_{3}+g h h \cdot X_{3}\right)+ \\
& \mathbf{b} \cdot\left(h g \cdot X_{2}+h h g \cdot X_{4}\right)+1 \\
X_{2}= & \mathbf{a} \cdot h g h \cdot X_{4} \\
X_{3}= & \mathbf{a} \cdot X_{2} \\
X_{4}= & \mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{4}+1 \\
X_{1}= & X_{4}
\end{aligned}
$$

Systems of equations: solution technique

The system of equations:

$$
\begin{aligned}
X_{4}= & =\mathbf{a} \cdot\left(g g h \cdot X_{2}+g h g \cdot X_{3}+g h h \cdot X_{3}\right)+ \\
& \mathbf{b} \cdot\left(h g \cdot X_{2}+h h g \cdot X_{4}\right)+1 \\
X_{2} & =\mathbf{a} \cdot h g h \cdot X_{4} \\
X_{3} & =\mathbf{a} \cdot X_{2} \\
X_{4} & =\mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{4}+1 \\
X_{1} & =X_{4}
\end{aligned}
$$

Systems of equations: solution technique

The number of active variables in \mathcal{E}_{t} decreases. But this substitution has a side effect: non-standard equations of the form
A) $E^{\prime}=E^{\prime \prime}$, where $E^{\prime}, E^{\prime \prime}$ are non-variable Δ-regexes, and B) $E=G$, where E is a Δ-regex and G is a Σ-regex, may appear in \mathcal{E}_{t}. It may also happen that
C) several equations of the form $X=G$ with the same variable X appear in \mathcal{E}_{t}.

Systems of equations: solution technique

4) Elimination of non-standard equations $E=G$.

Equations which spoil the system are removed from \mathcal{E}_{t}.

- for every equation of the form $E\left(X_{1}, \ldots, X_{\ell}\right)=G$ replace all the occurrences of variables $X_{i}, 1 \leq i \leq \ell$, in Δ-regex E with Σ-regexes G_{i} that correspond to these variables in the equations $X_{i}=G_{i}$ from the subsystem $\mathcal{E}_{\pi_{t}}$: as the result we obtain an equation of the form

$$
E\left(G_{1}, \ldots, G_{\ell}\right)=G ;
$$

- for every pair of equations $X=G^{\prime}$ and $X=G^{\prime \prime}$ with the same left-hand side but different Σ-regexes G^{\prime} and $G^{\prime \prime}$ replace one of these equations with the equation $G^{\prime}=G^{\prime \prime}$.
All equations of the form $E=G$ disappear and all equations of the form $X=G$ will have pairwise different left-hand side variables.
But this is achieved by inserting to the system non-standard equations of the form $G^{\prime}=G^{\prime \prime}$ where $G^{\prime}, G^{\prime \prime}$ are Σ-regexes.

Systems of equations: solution technique

The system of equations:

$$
\begin{aligned}
X_{4}= & \mathbf{a} \cdot\left(g g h \cdot X_{2}+g h g \cdot X_{3}+g h h \cdot X_{3}\right)+ \\
& \mathbf{b} \cdot\left(h g \cdot X_{2}+h h g \cdot X_{4}\right)+1 \\
X_{2}= & \mathbf{a} \cdot h g h \cdot X_{4} \\
X_{3}= & \mathbf{a} \cdot X_{2} \\
X_{4}= & \mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{4}+1 \\
X_{1}= & X_{4}
\end{aligned}
$$

Systems of equations: solution technique

The system of equations:

$$
\begin{aligned}
& \begin{array}{l}
\mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{4}+1 \\
\mathbf{b} \cdot\left(h g \cdot X_{2}+h h g \cdot X_{4}\right)+1 \\
X_{2}=\mathbf{a} \cdot h g h \cdot X_{4} \\
X_{3}=\mathbf{a} \cdot X_{2} \\
X_{4}=\mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{4} \\
X_{1}=X_{4}
\end{array}
\end{aligned}
$$

Systems of equations: solution technique

5) Elimination of nonstandard equations $G^{\prime}=G^{\prime \prime}$.

Remove from the system every equation of the form

$$
\sum_{i=1}^{k} \mathbf{a}_{\mathbf{i}} \cdot E_{i}^{\prime}=\sum_{i=1}^{k} \mathbf{a}_{\mathbf{i}} \cdot E_{i}^{\prime \prime}
$$

and inserts instead of it k equations $E_{i}^{\prime}=E_{i}^{\prime \prime}, 1 \leq i \leq k$.
Thus, all equations of the form $G^{\prime}=G^{\prime \prime}$ disappear from the system due to the introduction of new equations of the form $E^{\prime}=E^{\prime \prime}$.

After this step equations of this form are the only non-standard equations that remain in the system.

Systems of equations: solution technique

The system of equations:

$$
\begin{gathered}
\mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{4}+1=\mathbf{a} \cdot\left(g g h \cdot X_{2}+g h g \cdot X_{3}+g h h \cdot X_{3}\right)+ \\
\mathbf{b} \cdot\left(h g \cdot X_{2}+h h g \cdot X_{4}\right)+1
\end{gathered}
$$

$X_{2}=\mathbf{a} \cdot h g h \cdot X_{4}$

$$
X_{3}=\mathbf{a} \cdot X_{2}
$$

$$
X_{4}=\mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{4}
$$

$$
X_{1}=X_{4}
$$

Systems of equations: solution technique

The system of equations:

$$
\begin{aligned}
& g \cdot X_{3}=g g h \cdot X_{2}+g h g \cdot X_{3}+g h h \cdot X_{3} \\
& h \cdot X_{4}=h g \cdot X_{2}+h h g \cdot X_{4} \\
& X_{2}=\mathbf{a} \cdot h g h \cdot X_{4} \\
& X_{3}=\mathbf{a} \cdot X_{2} \\
& X_{4}=\mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{4} \\
& X_{1}=X_{4}
\end{aligned}
$$

Systems of equations: solution technique

6) Elimination of nonstandard equations $E^{\prime}=E^{\prime \prime}$.

For every equation $\sum_{i=1}^{\ell} u_{i} \cdot X_{i}^{\prime}=\sum_{j=1}^{m} v_{j} \cdot X_{j}^{\prime \prime}$
check the compatiblity of $L^{\prime}=\left\{u_{1}, \ldots, u_{\ell}\right\}$ and $L^{\prime \prime}=\left\{v_{1}, \ldots, v_{m}\right\}$

- if L^{\prime} and $L^{\prime \prime}$ are incompatible then terminate and announce the unsolvability of the system;
- otherwise make a splitting $L^{\prime}=\bigcup_{i=1}^{n} L_{i}^{\prime}$ and $L^{\prime \prime}=\bigcup_{i=1}^{n} L_{i}^{\prime \prime}$, remove the equation from \mathcal{E}_{t}, and insert for every fraction $L_{i}^{\prime}=\left\{u_{i_{0}}\right\}$ and $L_{i}^{\prime \prime}=\left\{v_{i_{1}}, \ldots, v_{i_{r}}\right\}$ an equation

$$
X_{i_{0}}^{\prime}=\left(u_{i_{0}} \backslash v_{i_{1}}\right) \cdot X_{i_{1}}^{\prime \prime}+\cdots+\left(u_{i_{0}} \backslash v_{i_{r}}\right) \cdot X_{i_{r}}^{\prime \prime} .
$$

We obtain the system of equations \mathcal{E}_{t+1} which is equivalent to \mathcal{E}_{t} but has a smaller number of active variables than \mathcal{E}_{5}.

Systems of equations: solution technique

The system of equations:

$$
\begin{aligned}
& g \cdot X_{3}=g g h \cdot X_{2}+g h g \cdot X_{3}+g h h \cdot X_{3} \\
& h \cdot X_{4}=h g \cdot X_{2}+h h g \cdot X_{4} \\
& X_{2}=\mathbf{a} \cdot h g h \cdot X_{4} \\
& X_{3}=\mathbf{a} \cdot X_{2} \\
& X_{4}=\mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{4} \\
& X_{1}=X_{4}
\end{aligned}
$$

Systems of equations: solution technique

The system of equations:

$$
\begin{aligned}
& X_{3}=g h \cdot X_{2}+h g \cdot X_{3}+h h \cdot X_{3} \\
& X_{4}=g \cdot X_{2}+h g \cdot X_{4} \\
& X_{2}=\mathbf{a} \cdot h g h \cdot X_{4} \\
& X_{3}=\mathbf{a} \cdot X_{2} \\
& X_{4}=\mathbf{a} \cdot g \cdot X_{3}+\mathbf{b} \cdot h \cdot X_{4} \\
& X_{1}=X_{4}
\end{aligned}
$$

Prefix-free transducers: equivalence checking

Proposition 6.

For every prefix-free transducer π and a pair of its states p, q the procedure above when being applied to the system of equations $\mathcal{E}_{1}=\mathcal{E}_{\pi} \cup\left\{X_{p}=X_{q}\right\}$ terminates and correctly detects the solvability of \mathcal{E}_{1}.

Theorem 1.

Equivalence problem for finite prefix-free transducers is decidable in time $O\left(n^{2}\right)$.

2-tape automata and generalized transducers

Let $M=\left\langle S_{1}, S_{2}, s_{0}, F, \rightarrow\right\rangle$ be a 2-DFSA over alphabets Σ and Δ.
Without loss of generality we will assume that $F \subseteq S_{1}$.
For every $\widehat{s} \in S_{1}$ and $x \in \Sigma$ define a set $\operatorname{Out}_{M}(\widehat{s}, x) \subseteq \Delta^{*} \times S_{1}$.
Consider the transition $\widehat{s} \xrightarrow{x} s$ of M.

1) If $s \in S_{1}$ then $\operatorname{Out}_{M}(\widehat{s}, x)=\{(\varepsilon, s)\}$.
2) If $s \in S_{2}$ then $\operatorname{Out}_{M}(\widehat{s}, x)$ is a set of all pairs $\left(z_{1} z_{2} \ldots z_{n-1} z_{n}, s^{\prime}\right)$ such that there exists a run of M

$$
s \xrightarrow{z_{1}} s_{1} \xrightarrow{z_{2}} \cdots \xrightarrow{z_{n-1}} s_{n-1} \xrightarrow{z_{n}} s^{\prime} .
$$

which passes only via states s_{i} of the set S_{2} and ends at $s^{\prime} \in S_{1}$.

2-tape automata and generalized transducers

2-tape automata and generalized transducers

$$
\begin{aligned}
\operatorname{Out}_{M}\left(p_{1}, \mathbf{a}\right)= & \left\{\left(g, p_{2}\right),\left(h h g, p_{2}\right), \ldots,\left(h^{2 k} g, p_{2}\right), \ldots\right. \\
& \left.\left(h g, p_{3}\right),\left(h h h g, p_{3}\right), \ldots,\left(h^{2 k+1} g, p_{3}\right), \ldots\right\}
\end{aligned}
$$

2-tape automata and generalized transducers

2-tape automata and generalized transducers

Proposition 7.

For every 2-DFSA $M=\left\langle S_{1}, S_{2}, s_{0}, F, \rightarrow\right\rangle$ over Σ and Δ, a pair of states $\widehat{s}, s \in S_{1}$, and a letter $x \in \Sigma$ the set of words

$$
L_{M}(\widehat{s}, s, x)=\left\{w:(w, s) \in \operatorname{Out}_{M}(\widehat{s}, x)\right\}
$$

is a regular prefix-free language. Moreover, the union

$$
L_{M}(\widehat{s}, x)=\bigcup_{s \in S_{1}} L_{M}(\widehat{s}, s, x)
$$

is also a regular prefix-free language.
We associate with every 2-DFSA M a transducer $\pi_{M}=\left\langle S_{1}, s_{0}, F, \longrightarrow\right\rangle$ over Σ and Δ such that the transition relation \longrightarrow meets the requirement $s \xrightarrow{x / w} s^{\prime} \Leftrightarrow\left(w, s^{\prime}\right) \in \operatorname{Out}_{M}(\widehat{s}, x)$ for every quadruple $\left(s, x, w, s^{\prime}\right) \in S_{1} \times \Sigma \times \Delta^{*} \times S_{1}$.

Proposition 8.

The equality $\operatorname{TR}(M)=\operatorname{TR}\left(\pi_{M}, s_{0}\right)$ holds for every 2-DFSA M.

2-tape automata and generalized transducers

A generalized prefix-free finite transducer over languages Σ and Δ is a quadruple $\Pi=\left\langle Q, q_{0}, F, \longrightarrow\right\rangle$, where
Q is a finite set of states,
q_{0} is an initial state,
F is a subset of final states, and
$\psi: Q \times \Sigma \times Q \rightarrow \operatorname{PFReg}(\Delta)$ is a transition function such that for every q and x the language $\bigcup_{q^{\prime} \in Q} \psi\left(q, x, q^{\prime}\right)$ is prefix-free.

As usual, we write $q \xrightarrow{x / L} q^{\prime}$ whenever $\psi\left(q, x, q^{\prime}\right)=L$. A run of Π is any finite sequence of transitions

$$
q \xrightarrow{a_{1} / L_{1}} q_{1} \xrightarrow{a_{2} / L_{2}} \cdots \xrightarrow{a_{n-1} / L_{n-1}} q_{n-1} \xrightarrow{a_{n} / L_{n}} q^{\prime} .
$$

When writing $q \xrightarrow{w / L} q^{\prime}$ we mean that Π has a run such that $w=a_{1} a_{2} \ldots a_{n}$ and $L=L_{1} L_{2} \ldots L_{n}$.
A transduction relation realized by Π in its state q is the set of pairs $\operatorname{TR}(\Pi, q)=\left\{(w, u): q \xrightarrow{w / L} q^{\prime}, u \in L, q^{\prime} \in F\right\}$.

Generalized prefix-free transducers: equivalence checking

For every 2-DFSA M there exists a generalized prefix-free finite transducer Π_{M} such that $\operatorname{TR}(M)=\operatorname{TR}\left(\Pi_{M}, s_{0}\right)$.

To check the equivalence of generalized prefix-free finite transducers we adapt the approach developed for the analysis of ordinary prefix-free finite transducers.

Regexes are built of variables X_{1}, X_{2}, \ldots, constants 0,1 , and letters from Σ, but instead of Δ we will use prefix-free regular languages from PFReg as constants.
Modified Δ-regexes: $L_{1} \cdot X_{1}+L_{2} \cdot X_{2}+\cdots+L_{n} \cdot X_{n}$, where $L_{i} \in$ FPReg for every $i, 1 \leq i \leq n$.
The system of equations $\mathcal{E}_{1}=\mathcal{E}_{\Pi} \cup\left\{X_{q^{\prime}}=X_{q^{\prime \prime}}\right\}$ for Π is constructed in the same way as for ordinary transducers.
Propositions $2-5$ hold for equations with modified Δ-regexes. Rules 1)-5) of the solvability checking procedure remain the same.

Generalized prefix-free transducers: equivalence checking

6^{\prime}) Elimination of nonstandard equations $E^{\prime}=E^{\prime \prime}$.
For every equation $\left(^{*}\right) \sum_{i=1}^{\ell} L_{i}^{\prime} \cdot X_{i}^{\prime}=\sum_{j=1}^{m} L_{j}^{\prime \prime} \cdot X_{j}^{\prime \prime}$ check the
compatiblity of $L^{\prime}=\bigcup_{i=1}^{\ell} L_{i}^{\prime}$ and $L^{\prime \prime}=\bigcup_{j=1}^{m} L_{j}^{\prime \prime}$.
If the languages are incompatible then terminate and announce the unsolvability of the system. Otherwise,
6.1 For every $i, 1 \leq i \leq \ell$, such that $L_{i}^{\prime} \cap \operatorname{Pref}\left(L^{\prime \prime}\right) \neq \emptyset$ find any word $w \in L_{i}^{\prime} \cap \operatorname{Pref}\left(L^{\prime \prime}\right)$, and add an equation $X_{i}^{\prime}=\sum_{j=1}^{m}\left(w \backslash L_{j}^{\prime \prime}\right) \cdot X_{j}^{\prime \prime}$ to the system, and replace all other occurrences of X_{i}^{\prime} with the right-hand side of this equation.
6.2 Do the same for every $j, 1 \leq j \leq m$.
6.3 If the equation $\left(^{*}\right)$ does not become an identity, then terminate and announce the unsolvability of the system.

Generalized prefix-free transducers: equivalence checking

Proposition 9.

If an equation $L_{0} \cdot X_{0}=\sum_{i=1}^{n} L_{i} \cdot X_{i}$ with a prefix-free Δ-regex at the right-hand side has a prefix-free solution, and $w \in L_{0} \cap \operatorname{Pref}\left(\bigcup_{i=1}^{n} L_{i}\right)$, then the equation $X_{0}=\sum_{i=1}^{n}\left(w \backslash L_{i}\right) \cdot X_{i}$ has the same solution.

Theorem 2.

The equivalence problem for generalized prefix-free finite transducers is decidable in time $O\left(n^{3}\right)$.

Corollary

The equivalence problem for deterministic two-tape finite state automata is decidable in time $O\left(n^{3}\right)$.

Conclusions

Topics for future research.

Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.

Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.
2. Find and prove an analogue of Proposition 1 for regular languages instead of words. Modify correspondingly the Rule 6').

Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.
2. Find and prove an analogue of Proposition 1 for regular languages instead of words. Modify correspondingly the Rule 6^{\prime}).
3. Build a minimization procedure for prefix-free finite and generalized transducers.

Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.
2. Find and prove an analogue of Proposition 1 for regular languages instead of words. Modify correspondingly the Rule 6^{\prime}).
3. Build a minimization procedure for prefix-free finite and generalized transducers.
4. Find solutions to equivalence and minimization problems for generalized (non prefix-free) transducers.

Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.
2. Find and prove an analogue of Proposition 1 for regular languages instead of words. Modify correspondingly the Rule 6^{\prime}).
3. Build a minimization procedure for prefix-free finite and generalized transducers.
4. Find solutions to equivalence and minimization problems for generalized (non prefix-free) transducers.
5. How to modify the presented technique to cope with equivalence problem for compatibility-free finite transducers operating over $\Delta_{1} \times \Delta_{2}$ instead of Δ ?

Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.
2. Find and prove an analogue of Proposition 1 for regular languages instead of words. Modify correspondingly the Rule 6').
3. Build a minimization procedure for prefix-free finite and generalized transducers.
4. Find solutions to equivalence and minimization problems for generalized (non prefix-free) transducers.
5. How to modify the presented technique to cope with equivalence problem for compatibility-free finite transducers operating over $\Delta_{1} \times \Delta_{2}$ instead of Δ ?
6. How to solve equivalence problem for compatibility-free generalized transducers operating over $\Delta_{1} \times \Delta_{2}$

Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.
2. Find and prove an analogue of Proposition 1 for regular languages instead of words. Modify correspondingly the Rule 6').
3. Build a minimization procedure for prefix-free finite and generalized transducers.
4. Find solutions to equivalence and minimization problems for generalized (non prefix-free) transducers.
5. How to modify the presented technique to cope with equivalence problem for compatibility-free finite transducers operating over $\Delta_{1} \times \Delta_{2}$ instead of Δ ?
6. How to solve equivalence problem for compatibility-free generalized transducers operating over $\Delta_{1} \times \Delta_{2}$
i.e. equivalence problem for deterministic 3-tape automata ?
