
Equivalence checking
of prefix-free transducers

and deterministic two-tape automata

V.A. Zakharov

Lomonosov Moscow State University

December 14, 2018



Preliminaries

A word over alphabet A is any finite sequence w = a1a2 . . . ak of
letters in A . The empty word is denoted by ε .

Given a pair of words u and v , we write uv for their concatenation.

The set of all words over an alphabet A is denoted by A∗ .

A language over A is any subset of A∗ .

Concatenation of languages L1 and L2 is the language

L1L2 = {uv : u ∈ L1, v ∈ L2}.

If L1 = ∅ or L2 = ∅ then L1L2 = ∅ .

A transduction over alphabets A and B is any subset of A∗ × B∗ .



Real Time Finite Transducers

A Real Time Finite Transducer over an input alphabet Σ and an
output alphabet ∆ is a quadruple π = 〈Q, q0,F ,−→〉 , where

I Q is a finite set of states ,
I q0 is an initial state ,
I F ⊆ Q is a subset of final states , and
I −→ is a finite transition relation of the type Q ×Σ×∆∗×Q .

We will write π(q0) to emphasize that q0 is the initial state of π .

Transitions (q, a, u, q′) in −→ are depicted as q
a/u−→ q′ .

A run of π on an input word w = a1a2 . . . an is any finite sequence

of transitions q
a1/u1−→ q1

a2/u2−→ · · · an−1/un−1−→ qn−1
an/un−→ q′ .

The pair (w , u) , where u = u1u2 . . . un , is a label of this run.

We write q
w/u−→∗ q′ when a transducer π has a run labeled with

(w , u) from a state q to a state q′ . If q′ ∈ F then a run is final .

A transduction relation realized by a transducer π at its state q is

the set of pairs TR(π, q) = {(w , u) : q
w/u−→∗ q′, q′ ∈ F} .



Real Time Finite Transducers

Transducers π1(q1) and π2(q2) are called equivalent
(π1(q1) ∼ π2(q2) in symbols) iff TR(π1, q1) = TR(π2, q2) .

Equivalence checking problem for transducers is that of checking,
given a pair of transducers π1 and π2 , whether π1 ∼ π2 holds.

A transducer π is called

I deterministic if for every letter a and a state q it has at most

one transition of the form q
a/u−→ q′ ,

I k-ambiguous if for every input word w there is at most k final
runs of π on w from the initial state q0 ,

I k-valued if for every input word w the transduction relation
TR(π, q0) contains at most k images of w ,

I of length-degree k if for every input word w , the number of
distinct lengths of the images u of w in Tr(π, q0) is at most k
.



Real Time Finite Transducers

Equivalence checking problem is undecidable for

I transducers with ε -transitions
(Fisher P.S., Rozenberg A.L., 1966)

I real time transducers (Griffiths T., 1968)

I transducers over one-letter alphabet (Ibarra O., 1972).

Equivalence checking problem is decidable for

I deterministic transducers
(Blattner M, Head T., 1979): PTime

I single-valued transducers
(Schutzenberger M. P., 1977): PSpace

I unambiguous transducers (Gurari E., Ibarra O., 1983): PTime

I k-ambiguous transducers (Gurari E., Ibarra O., 1983)

I k-valued transducers
(Culik K., Karhumaki J., 1986): Time 2O(n2)

I transducers of length-degree k (Weber A., 1992): Time 222n



Two-tape finite automata

A Two-tape Finite State Automaton (2-FSA) over disjoint
alphabets Σ and ∆ is a 5-tuple M = 〈S1,S2, s0,F ,→〉 such that

I S1,S2 is a partitioning of a finite set S of states ,

I s0 ∈ S1 is an initial state ,

I F ⊆ S is a subset of final states , and

I → is a transition relation of the type
(S1 × Σ× S) ∪ (S2 ×∆× S) .

A run of 2-FSA M is any sequence of transitions

s
z1→ s1

z2→ · · · zn−1→ sn−1
zn−→ s ′.

A run is complete if s = s0 and s ′ ∈ F .

A 2-FSA M accepts a pair of words (w , u) ∈ Σ∗ ×∆∗ if there is a
complete run of M such that w is the projection of the word
z1z2 . . . zn−1zn on the alphabet Σ and u is the projection of the
same word z1z2 . . . zn−1zn on the alphabet ∆ .



Two-tape finite automata

A transduction relation recognized by a 2-FSA M is the set
TR(M) of all pairs of words accepted by M .

2-FSAs M ′ and M ′′ are equivalent if TR(M ′) = TR(M ′′) .

A 2-FSA M is called deterministic (2-DFSA) if for every letter a
and a state s it has at most one transition of the form s

a−→ s ′ .

Equivalence checking problem is undecidable for 2-FSAs
(Fisher P.S., Rozenberg A.L., 1966)

Equivalence checking problem is decidable for

I 2-DFSA (Bird M., 1973; Valiant L.G., 1974)

I 2-DFSA in polynomial time
(Friedman E.P., Greibach S.A., 1982)

I deterministic multi-tape automata
(Harju T., Karhumaki J., 1991)



Prefix-free transducers: preliminaries

A word u is a prefix of a word w if w = uv holds for some word v .

In this case w is called an extension of u and v = u \ w a left
quotient of u with w .

Two words u1 and u2 are compatible if one of them is a prefix of
the other.

A language L is called prefix-free if all its words are pairwise
incompatible.

Two languages L′ and L′′ are compatible if every word in any of
these languages is compatible with some word in the other.

Given a word u and a language L , we denote by

Pref (L) the set of all prefixes of the words in L ,

u \ L a left quotient {v : uv ∈ L} of u with L .

Notice, that if u /∈ Pref (L) then u \ L = ∅ .



Prefix-free transducers: preliminaries

Proposition 1.

Let L′ and L′′ be finite prefix-free compatible languages.

Then there exists the unique partitions L′ =
n⋃

i=1
L′i and L′′ =

n⋃
i=1

L′′i

such that for every i , 1 ≤ i ≤ n , one of the subsets L′i or L′′i is a
singleton {u} and all words from the other are extensions of u .

Such partitioning of a compatible pair of prefix-free languages L′

and L′′ will be called its splitting . The pairs of corresponding
subsets L′i and L′′i , 1 ≤ i ≤ n , will be called its fractions .

Example.

L′ = {aaabb, bcc, aaabab, bcaca}, L′′ = {bca, bccaa, aaab, bccc}
L′1 = {aaabb, aaabab}, L′′1 = {aaab};
L′2 = {bcc}, L′′2 = {bccaa, bccc};
L′3 = {bcaca}, L′′3 = {bca}.



Prefix-free transducers: preliminaries

Proposition 1.

Let L′ and L′′ be finite prefix-free compatible languages.

Then there exists the unique partitions L′ =
n⋃

i=1
L′i and L′′ =

n⋃
i=1

L′′i

such that for every i , 1 ≤ i ≤ n , one of the subsets L′i or L′′i is a
singleton {u} and all words from the other are extensions of u .

Such partitioning of a compatible pair of prefix-free languages L′

and L′′ will be called its splitting . The pairs of corresponding
subsets L′i and L′′i , 1 ≤ i ≤ n , will be called its fractions .

Example.

L′ = {aaabb, bcc, aaabab, bcaca}, L′′ = {bca, bccaa, aaab, bccc}

L′1 = {aaabb, aaabab}, L′′1 = {aaab};
L′2 = {bcc}, L′′2 = {bccaa, bccc};
L′3 = {bcaca}, L′′3 = {bca}.



Prefix-free transducers: preliminaries

Proposition 1.

Let L′ and L′′ be finite prefix-free compatible languages.

Then there exists the unique partitions L′ =
n⋃

i=1
L′i and L′′ =

n⋃
i=1

L′′i

such that for every i , 1 ≤ i ≤ n , one of the subsets L′i or L′′i is a
singleton {u} and all words from the other are extensions of u .

Such partitioning of a compatible pair of prefix-free languages L′

and L′′ will be called its splitting . The pairs of corresponding
subsets L′i and L′′i , 1 ≤ i ≤ n , will be called its fractions .

Example.

L′ = {aaabb, bcc, aaabab, bcaca}, L′′ = {bca, bccaa, aaab, bccc}
L′1 = {aaabb, aaabab}, L′′1 = {aaab};
L′2 = {bcc}, L′′2 = {bccaa, bccc};
L′3 = {bcaca}, L′′3 = {bca}.



Prefix-free transducers: preliminaries

Given a transducer π = 〈Q, q,F ,−→〉 over languages Σ and ∆ , a
state q ∈ Q and a letter x ∈ Σ , we denote by

Outπ(q, x) = {(u, q′) : q
x/u−→ q′} .

A transducer π is called prefix-free if for every q ∈ Q and x ∈ Σ
the language

Lπ(q, x) = {u : ∃p (u, p) ∈ Outπ(q, x)}

is prefix-free.

Prefix-free transducers have certain “deterministic” property: for
every state q of a prefix-free transducer π and for every pair
(w , u) ∈ Tr(π, q) there is the only run of π from the state q
labeled with (u,w) .



Prefix-free transducers: equivalence checking

��������q1

�
a/ggh

I
b/hg

R

a/ghg

	

a/ghh

R

b/hhg

I
b/h

$

?

a/hgh

%�
a/g

'

&

-

a/ε

����q2

����q3

��������q4



Prefix-free transducers: equivalence checking

Idea

The equivalence checking technique for prefix-free transducers is
based on manipulations with regular expressions.

1. We introduce for every state q of a transducer π a variable Xq .

2. We associate with a transducer π a system of linear regular
expression equations E(π) over variables Xq, q ∈ Q, which
specifies the behaviour of π .

3. To check the equivalence π(q′) ∼ π(q′′) we add to the set of
equations E(π) the equivalence requirement which is an equation
of the form Xq′ = Xq′′

4. Then we verify whether the resulting system of equations has a
solution.



Equivalence checking: assumptions

For the sake of clarity we will assume that:

I the input alphabet Σ = {a1, . . . , ak} and Γ ∩∆ = ∅ ;
symbols x , y , z will denote arbitrary letters from Σ ,
and symbols u , v , w will denote words from ∆∗ .

I π′ = π(q′) and π′′ = π(q′′) ,

I the transducer π is trim , i.e. a final state is reachable from
each state of π .



Equivalence checking: regexes

Regular expressions (regexes ) are built of
variables X1,X2, . . . ,
constants 0, 1 ,
and letters from Σ and ∆

by means of concatenation · and alternation + .

Regexes are interpreted on the semiring of transductions over Σ
and ∆ .

0 is interpreted as the transduction ∅
1 as {(ε, ε)} ,
every letter x as {(x , ε)} ,
every word u as {(ε, u)} .

Concatenation of transductions T1 and T2 is defined as:

T1T2 = {(h1h2, u1u2) : (h1, u1) ∈ T1, (h2, u2) ∈ T2}.



Equivalence checking: linear regexes

We will focus on linear regexes of two types.

A ∆ -regex is any expression of the form

E = u1 · X1 + u2 · X2 + · · ·+ un · Xn.

When a set of words {u1, u2, . . . , un} is prefix-free then such a ∆
-regex will be also called prefix-free.

A Σ -regex is any expression of the form

G = a1 · E1 + a2 · E2 + · · ·+ ak · Ek ,

where Ei , 1 ≤ i ≤ k , are ∆ -regexes.



Equivalence checking: systems of equations

With each state q of a transducer π we associate a variable Xq ,
and for every pair q ∈ Q and x ∈ Σ we build a ∆ -regex

Eq,x =
∑

(u,p)∈Outπ(q,x)

u · Xp.

Then the transducer π is specified by the system of equations Eπ :

{Xq =
∑
x∈Σ

x · Eq,x + cq : q ∈ Q},

where cq = 1 if q ∈ F , or cq = 0 otherwise.

Proposition 2.

For every finite transducer π the system of equation Eπ has the
unique solution {Xq = Tr(π, q) : q ∈ Q} .

Corollary.

π(p) ∼ π(q) ⇐⇒ Eπ ∪ {Xp = Xq} has a solution.



Equivalence checking: systems of equations

With each state q of a transducer π we associate a variable Xq ,
and for every pair q ∈ Q and x ∈ Σ we build a ∆ -regex

Eq,x =
∑

(u,p)∈Outπ(q,x)

u · Xp.

Then the transducer π is specified by the system of equations Eπ :

{Xq =
∑
x∈Σ

x · Eq,x + cq : q ∈ Q},

where cq = 1 if q ∈ F , or cq = 0 otherwise.

Proposition 2.

For every finite transducer π the system of equation Eπ has the
unique solution {Xq = Tr(π, q) : q ∈ Q} .

Corollary.

π(p) ∼ π(q) ⇐⇒ Eπ ∪ {Xp = Xq} has a solution.



Equivalence checking: systems of equations

With each state q of a transducer π we associate a variable Xq ,
and for every pair q ∈ Q and x ∈ Σ we build a ∆ -regex

Eq,x =
∑

(u,p)∈Outπ(q,x)

u · Xp.

Then the transducer π is specified by the system of equations Eπ :

{Xq =
∑
x∈Σ

x · Eq,x + cq : q ∈ Q},

where cq = 1 if q ∈ F , or cq = 0 otherwise.

Proposition 2.

For every finite transducer π the system of equation Eπ has the
unique solution {Xq = Tr(π, q) : q ∈ Q} .

Corollary.

π(p) ∼ π(q) ⇐⇒ Eπ ∪ {Xp = Xq} has a solution.



Equivalence checking: systems of equations

��������q1

�
a/ggh

I
b/hg

R

a/ghg

	

a/ghh

R

b/hhg

I
b/h

$

?

a/hgh

%�
a/g

'

&

-

a/ε

����q2

����q3

��������q4

The system of equations Eπ :

X1 = a · (ggh · X2 + ghg · X3 + ghh · X3)+

b · (hg · X2 + hhg · X4) + 1

X2 = a · hgh · X4

X3 = a · X2

X4 = a · g · X3 + b · h · X1 + 1

Equivalence checking problem π(q1) ∼ π(q4) :

X1 = X4



Equivalence checking: systems of equations

��������q1

�
a/ggh

I
b/hg

R

a/ghg

	

a/ghh

R

b/hhg

I
b/h

$

?

a/hgh

%�
a/g

'

&

-

a/ε

����q2

����q3

��������q4

The system of equations Eπ :

X1 = a · (ggh · X2 + ghg · X3 + ghh · X3)+

b · (hg · X2 + hhg · X4) + 1

X2 = a · hgh · X4

X3 = a · X2

X4 = a · g · X3 + b · h · X1 + 1

Equivalence checking problem π(q1) ∼ π(q4) :

X1 = X4



Equivalence checking: systems of equations

��������q1

�
a/ggh

I
b/hg

R

a/ghg

	

a/ghh

R

b/hhg

I
b/h

$

?

a/hgh

%�
a/g

'

&

-

a/ε

����q2

����q3

��������q4

The system of equations Eπ :

X1 = a · (ggh · X2 + ghg · X3 + ghh · X3)+

b · (hg · X2 + hhg · X4) + 1

X2 = a · hgh · X4

X3 = a · X2

X4 = a · g · X3 + b · h · X1 + 1

Equivalence checking problem π(q1) ∼ π(q4) :

X1 = X4



Equivalence checking: systems of equations

We say that a system of linear equations

E = Eπ(X1, . . . ,Xn) ∪ {X ′j = Ej(X1, . . . ,Xn) : 1 ≤ j ≤ m},

is reduced if {X1, . . . ,Xn} and {X ′1, . . . ,X ′m} are disjoint sets of
variables and all right-hand sides Ej are ∆ -regexes.

Proposition 3.

Every reduced system of equations E has the unique solution.



Equivalence checking: systems of equations

We say that a system of linear equations

E = Eπ(X1, . . . ,Xn) ∪ {X ′j = Ej(X1, . . . ,Xn) : 1 ≤ j ≤ m},

is reduced if {X1, . . . ,Xn} and {X ′1, . . . ,X ′m} are disjoint sets of
variables and all right-hand sides Ej are ∆ -regexes.

Proposition 3.

Every reduced system of equations E has the unique solution.



Equivalence checking: systems of equations

Some other extensions of the systems Eπ have no solutions.

Proposition 4.

If languages L1 = {u1, . . . , u`} and L2 = {v1, . . . , vm} are
incompatible then a system of equations

Eπ(X1, . . . ,Xn) ∪ {
∑̀
i=1

ui · Xi =
m∑
j=1

vj · Xj}

has no solutions.

Proposition 5.

If a set of words {u1, . . . , u`} is prefix-free and a system

Eπ(X1, . . . ,Xn) ∪ {X1 =
∑̀
i=1

ui · Xi}

has a solution then ` = 1 and u1 = ε .



Equivalence checking: systems of equations

Some other extensions of the systems Eπ have no solutions.

Proposition 4.

If languages L1 = {u1, . . . , u`} and L2 = {v1, . . . , vm} are
incompatible then a system of equations

Eπ(X1, . . . ,Xn) ∪ {
∑̀
i=1

ui · Xi =
m∑
j=1

vj · Xj}

has no solutions.

Proposition 5.

If a set of words {u1, . . . , u`} is prefix-free and a system

Eπ(X1, . . . ,Xn) ∪ {X1 =
∑̀
i=1

ui · Xi}

has a solution then ` = 1 and u1 = ε .



Systems of equations: solution technique

An iterative procedure checks the solvability of the system of
equations E1 = Eπ ∪ {Xp = Xq} for prefix-free transducer π by
bringing this system to an equivalent reduced form.

At the beginning of each iteration t the procedure gets at the
input a system of equations of the form

Et = Eπt ∪ {Xi = Ei : 1 ≤ i ≤ Nt},

where πt is some prefix-free transducer and all ∆ -regexes Ei are
prefix-free.

If a variable X occurs more than once in Et then we call it active .

At the t -th iteration equivalent transformations are applied to Et .



Systems of equations: solution technique

Et = Eπt ∪ {Xi = Ei : 1 ≤ i ≤ Nt}

1) Removing of identities.
Equations of the form X = X are removed from Et .

2) Checking if Et is reduced system
If none of the variables X1, . . . ,XNt from left-hand sides of
equations Xi = Ei occurs elsewhere then terminate and announce
the solvability.

3) Elimination of variables.
For every equation of the form Xi = Ei in Et

I if Xi is in ∆ -regex Ei then terminate and announce the
unsolvability;

I otherwise in all other equations of E replace all the
occurrences of Xi with Ei .



Systems of equations: solution technique

Et = Eπt ∪ {Xi = Ei : 1 ≤ i ≤ Nt}

1) Removing of identities.
Equations of the form X = X are removed from Et .

2) Checking if Et is reduced system
If none of the variables X1, . . . ,XNt from left-hand sides of
equations Xi = Ei occurs elsewhere then terminate and announce
the solvability.

3) Elimination of variables.
For every equation of the form Xi = Ei in Et

I if Xi is in ∆ -regex Ei then terminate and announce the
unsolvability;

I otherwise in all other equations of E replace all the
occurrences of Xi with Ei .



Systems of equations: solution technique

Et = Eπt ∪ {Xi = Ei : 1 ≤ i ≤ Nt}

1) Removing of identities.
Equations of the form X = X are removed from Et .

2) Checking if Et is reduced system
If none of the variables X1, . . . ,XNt from left-hand sides of
equations Xi = Ei occurs elsewhere then terminate and announce
the solvability.

3) Elimination of variables.
For every equation of the form Xi = Ei in Et

I if Xi is in ∆ -regex Ei then terminate and announce the
unsolvability;

I otherwise in all other equations of E replace all the
occurrences of Xi with Ei .



Systems of equations: solution technique

The system of equations:

X1 = a · (ggh · X2 + ghg · X3 + ghh · X3)+

b · (hg · X2 + hhg · X4) + 1

X2 = a · hgh · X4

X3 = a · X2

X4 = a · g · X3 + b · h · X1 + 1

X1 = X4



Systems of equations: solution technique

The system of equations:

X4 = a · (ggh · X2 + ghg · X3 + ghh · X3)+

b · (hg · X2 + hhg · X4) + 1

X2 = a · hgh · X4

X3 = a · X2

X4 = a · g · X3 + b · h · X4 + 1

X1 = X4

����

����



Systems of equations: solution technique

The system of equations:

X4 = a · (ggh · X2 + ghg · X3 + ghh · X3)+

b · (hg · X2 + hhg · X4) + 1

X2 = a · hgh · X4

X3 = a · X2

X4 = a · g · X3 + b · h · X4 + 1

X1 = X4

����

����



Systems of equations: solution technique

The number of active variables in Et decreases. But this
substitution has a side effect: non-standard equations of the form

A) E ′ = E ′′ , where E ′,E ′′ are non-variable ∆ -regexes, and

B) E = G , where E is a ∆ -regex and G is a Σ -regex,

may appear in Et . It may also happen that

C) several equations of the form X = G with the same variable X
appear in Et .



Systems of equations: solution technique

4) Elimination of non-standard equations E = G .
Equations which spoil the system are removed from Et .

I for every equation of the form E (X1, . . . ,X`) = G replace all
the occurrences of variables Xi , 1 ≤ i ≤ `, in ∆ -regex E with
Σ -regexes Gi that correspond to these variables in the
equations Xi = Gi from the subsystem Eπt : as the result we
obtain an equation of the form

E (G1, . . . ,G`) = G ;

I for every pair of equations X = G ′ and X = G ′′ with the same
left-hand side but different Σ -regexes G ′ and G ′′ replace one
of these equations with the equation G ′ = G ′′ .

All equations of the form E = G disappear and all equations of the
form X = G will have pairwise different left-hand side variables.
But this is achieved by inserting to the system non-standard
equations of the form G ′ = G ′′ where G ′,G ′′ are Σ -regexes.



Systems of equations: solution technique

The system of equations:

X4 = a · (ggh · X2 + ghg · X3 + ghh · X3)+

b · (hg · X2 + hhg · X4) + 1

X2 = a · hgh · X4

X3 = a · X2

X4 = a · g · X3 + b · h · X4 + 1

X1 = X4



Systems of equations: solution technique

The system of equations:

a · g · X3 + b · h · X4 + 1 = a · (ggh · X2 + ghg · X3 + ghh · X3)+

b · (hg · X2 + hhg · X4) + 1

X2 = a · hgh · X4

X3 = a · X2

X4 = a · g · X3 + b · h · X4

X1 = X4



Systems of equations: solution technique

5) Elimination of nonstandard equations G ′ = G ′′.
Remove from the system every equation of the form

k∑
i=1

ai · E ′i =
k∑

i=1

ai · E ′′i

and inserts instead of it k equations E ′i = E ′′i , 1 ≤ i ≤ k .

Thus, all equations of the form G ′ = G ′′ disappear from the system
due to the introduction of new equations of the form E ′ = E ′′ .

After this step equations of this form are the only non-standard
equations that remain in the system.



Systems of equations: solution technique

The system of equations:

a · g · X3 + b · h · X4 + 1 = a · (ggh · X2 + ghg · X3 + ghh · X3)+

b · (hg · X2 + hhg · X4) + 1

X2 = a · hgh · X4

X3 = a · X2

X4 = a · g · X3 + b · h · X4

X1 = X4



Systems of equations: solution technique

The system of equations:

g · X3 = ggh · X2 + ghg · X3 + ghh · X3

h · X4 = hg · X2 + hhg · X4

X2 = a · hgh · X4

X3 = a · X2

X4 = a · g · X3 + b · h · X4

X1 = X4



Systems of equations: solution technique

6) Elimination of nonstandard equations E ′ = E ′′.

For every equation
∑̀
i=1

ui · X ′i =
m∑
j=1

vj · X ′′j

check the compatiblity of L′ = {u1, . . . , u`} and L′′ = {v1, . . . , vm}
.

I if L′ and L′′ are incompatible then terminate and announce
the unsolvability of the system;

I otherwise make a splitting L′ =
n⋃

i=1
L′i and L′′ =

n⋃
i=1

L′′i ,

remove the equation from Et , and insert for every fraction
L′i = {ui0} and L′′i = {vi1 , . . . , vir } an equation

X ′i0 = (ui0 \ vi1) · X ′′i1 + · · ·+ (ui0 \ vir ) · X ′′ir .

We obtain the system of equations Et+1 which is equivalent to Et
but has a smaller number of active variables than Et .



Systems of equations: solution technique

The system of equations:

g · X3 = ggh · X2 + ghg · X3 + ghh · X3

h · X4 = hg · X2 + hhg · X4

X2 = a · hgh · X4

X3 = a · X2

X4 = a · g · X3 + b · h · X4

X1 = X4



Systems of equations: solution technique

The system of equations:

X3 = gh · X2 + hg · X3 + hh · X3

X4 = g · X2 + hg · X4

X2 = a · hgh · X4

X3 = a · X2

X4 = a · g · X3 + b · h · X4

X1 = X4



Prefix-free transducers: equivalence checking

Proposition 6.

For every prefix-free transducer π and a pair of its states p, q the
procedure above when being applied to the system of equations
E1 = Eπ ∪ {Xp = Xq} terminates and correctly detects the
solvability of E1 .

Theorem 1.

Equivalence problem for finite prefix-free transducers is decidable in
time O(n2).



2-tape automata and generalized transducers

Let M = 〈S1,S2, s0,F ,→〉 be a 2-DFSA over alphabets Σ and ∆ .

Without loss of generality we will assume that F ⊆ S1 .

For every ŝ ∈ S1 and x ∈ Σ define a set OutM(ŝ, x) ⊆ ∆∗ × S1 .

Consider the transition ŝ
x→ s of M .

1) If s ∈ S1 then OutM(ŝ, x) = {(ε, s)} .

2) If s ∈ S2 then OutM(ŝ, x) is a set of all pairs (z1z2 . . . zn−1zn, s
′)

such that there exists a run of M

s
z1→ s1

z2→ · · · zn−1→ sn−1
zn−→ s ′.

which passes only via states si of the set S2 and ends at s ′ ∈ S1 .



2-tape automata and generalized transducers

��������p1
-

a ��������q1
-

g

I
h

R
h

��������q2
-g

��������p2

��������p3

OutM(p1, a) = {(g , p2), (hhg , p2), . . . , (h2kg , p2), . . .

(hg , p3), (hhhg , p3), . . . , (h2k+1g , p3), . . . }



2-tape automata and generalized transducers

��������p1
-

a ��������q1
-

g

I
h

R
h

��������q2
-g

��������p2

��������p3

OutM(p1, a) = {(g , p2), (hhg , p2), . . . , (h2kg , p2), . . .

(hg , p3), (hhhg , p3), . . . , (h2k+1g , p3), . . . }



2-tape automata and generalized transducers

��������p1
-

a/(hh)∗g

' -
a/h(hh)∗g

��������p2

��������p3



2-tape automata and generalized transducers

Proposition 7.

For every 2-DFSA M = 〈S1,S2, s0,F ,→〉 over Σ and ∆ , a pair of
states ŝ, s ∈ S1 , and a letter x ∈ Σ the set of words

LM(ŝ, s, x) = {w : (w , s) ∈ OutM(ŝ, x)}
is a regular prefix-free language. Moreover, the union

LM(ŝ, x) =
⋃

s∈S1

LM(ŝ, s, x)

is also a regular prefix-free language.

We associate with every 2-DFSA M a transducer
πM = 〈S1, s0,F ,−→〉 over Σ and ∆ such that the transition

relation −→ meets the requirement s
x/w−→ s ′ ⇔ (w , s ′)∈OutM(ŝ, x)

for every quadruple (s, x ,w , s ′) ∈ S1 × Σ×∆∗ × S1 .

Proposition 8.

The equality TR(M) = TR(πM , s0) holds for every 2-DFSA M .



2-tape automata and generalized transducers

A generalized prefix-free finite transducer over languages Σ and ∆
is a quadruple Π = 〈Q, q0,F ,−→〉 , where

Q is a finite set of states,
q0 is an initial state,
F is a subset of final states, and
ψ : Q × Σ× Q → PFReg(∆) is a transition function such that
for every q and x the language

⋃
q′∈Q

ψ(q, x , q′) is prefix-free.

As usual, we write q
x/L−→ q′ whenever ψ(q, x , q′) = L .

A run of Π is any finite sequence of transitions

q
a1/L1−→ q1

a2/L2−→ · · · an−1/Ln−1−→ qn−1
an/Ln−→ q′.

When writing q
w/L−→∗ q′ we mean that Π has a run such that

w = a1a2 . . . an and L = L1L2 . . . Ln .
A transduction relation realized by Π in its state q is the set of

pairs TR(Π, q) = {(w , u) : q
w/L−→∗ q′, u ∈ L, q′ ∈ F}.



Generalized prefix-free transducers: equivalence
checking

For every 2-DFSA M there exists a generalized prefix-free finite
transducer ΠM such that TR(M) = TR(ΠM , s0) .

To check the equivalence of generalized prefix-free finite
transducers we adapt the approach developed for the analysis of
ordinary prefix-free finite transducers.

Regexes are built of variables X1,X2, . . . , constants 0, 1 , and
letters from Σ , but instead of ∆ we will use prefix-free regular
languages from PFReg as constants.

Modified ∆ -regexes: L1 · X1 + L2 · X2 + · · ·+ Ln · Xn , where
Li ∈ FPReg for every i , 1 ≤ i ≤ n .

The system of equations E1 = EΠ ∪ {Xq′ = Xq′′} for Π is
constructed in the same way as for ordinary transducers.

Propositions 2–5 hold for equations with modified ∆ -regexes.

Rules 1)–5) of the solvability checking procedure remain the same.



Generalized prefix-free transducers: equivalence
checking

6′) Elimination of nonstandard equations E ′ = E ′′.

For every equation (*)
∑̀
i=1

L′i · X ′i =
m∑
j=1

L′′j · X ′′j check the

compatiblity of L′ =
⋃̀
i=1

L′i and L′′ =
m⋃
j=1

L′′j .

If the languages are incompatible then terminate and announce the
unsolvability of the system. Otherwise,

6.1 For every i , 1 ≤ i ≤ `, such that L′i ∩ Pref (L′′) 6= ∅ find any
word w ∈ L′i ∩ Pref (L′′) , and add an equation

X ′i =
m∑
j=1

(w \ L′′j ) · X ′′j to the system, and replace all other

occurrences of X ′i with the right-hand side of this equation.

6.2 Do the same for every j , 1 ≤ j ≤ m .

6.3 If the equation (*) does not become an identity, then
terminate and announce the unsolvability of the system.



Generalized prefix-free transducers: equivalence
checking

Proposition 9.

If an equation L0 ·X0 =
n∑

i=1
Li ·Xi with a prefix-free ∆ -regex at the

right-hand side has a prefix-free solution, and w ∈ L0 ∩Pref (
n⋃

i=1
Li )

, then the equation X0 =
n∑

i=1
(w \ Li ) · Xi has the same solution.

Theorem 2.

The equivalence problem for generalized prefix-free finite
transducers is decidable in time O(n3) .

Corollary

The equivalence problem for deterministic two-tape finite state
automata is decidable in time O(n3) .



Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.

2. Find and prove an analogue of Proposition 1 for regular
languages instead of words. Modify correspondingly the Rule 6′).

3. Build a minimization procedure for prefix-free finite and
generalized transducers.

4. Find solutions to equivalence and minimization problems for
generalized (non prefix-free) transducers.

5. How to modify the presented technique to cope with
equivalence problem for compatibility-free finite transducers
operating over ∆1 ×∆2 instead of ∆ ?

6. How to solve equivalence problem for compatibility-free
generalized transducers operating over ∆1 ×∆2

≡
i.e. equivalence problem for deterministic 3-tape automata ?



Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.

2. Find and prove an analogue of Proposition 1 for regular
languages instead of words. Modify correspondingly the Rule 6′).

3. Build a minimization procedure for prefix-free finite and
generalized transducers.

4. Find solutions to equivalence and minimization problems for
generalized (non prefix-free) transducers.

5. How to modify the presented technique to cope with
equivalence problem for compatibility-free finite transducers
operating over ∆1 ×∆2 instead of ∆ ?

6. How to solve equivalence problem for compatibility-free
generalized transducers operating over ∆1 ×∆2

≡
i.e. equivalence problem for deterministic 3-tape automata ?



Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.

2. Find and prove an analogue of Proposition 1 for regular
languages instead of words. Modify correspondingly the Rule 6′).

3. Build a minimization procedure for prefix-free finite and
generalized transducers.

4. Find solutions to equivalence and minimization problems for
generalized (non prefix-free) transducers.

5. How to modify the presented technique to cope with
equivalence problem for compatibility-free finite transducers
operating over ∆1 ×∆2 instead of ∆ ?

6. How to solve equivalence problem for compatibility-free
generalized transducers operating over ∆1 ×∆2

≡
i.e. equivalence problem for deterministic 3-tape automata ?



Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.

2. Find and prove an analogue of Proposition 1 for regular
languages instead of words. Modify correspondingly the Rule 6′).

3. Build a minimization procedure for prefix-free finite and
generalized transducers.

4. Find solutions to equivalence and minimization problems for
generalized (non prefix-free) transducers.

5. How to modify the presented technique to cope with
equivalence problem for compatibility-free finite transducers
operating over ∆1 ×∆2 instead of ∆ ?

6. How to solve equivalence problem for compatibility-free
generalized transducers operating over ∆1 ×∆2

≡
i.e. equivalence problem for deterministic 3-tape automata ?



Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.

2. Find and prove an analogue of Proposition 1 for regular
languages instead of words. Modify correspondingly the Rule 6′).

3. Build a minimization procedure for prefix-free finite and
generalized transducers.

4. Find solutions to equivalence and minimization problems for
generalized (non prefix-free) transducers.

5. How to modify the presented technique to cope with
equivalence problem for compatibility-free finite transducers
operating over ∆1 ×∆2 instead of ∆ ?

6. How to solve equivalence problem for compatibility-free
generalized transducers operating over ∆1 ×∆2

≡
i.e. equivalence problem for deterministic 3-tape automata ?



Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.

2. Find and prove an analogue of Proposition 1 for regular
languages instead of words. Modify correspondingly the Rule 6′).

3. Build a minimization procedure for prefix-free finite and
generalized transducers.

4. Find solutions to equivalence and minimization problems for
generalized (non prefix-free) transducers.

5. How to modify the presented technique to cope with
equivalence problem for compatibility-free finite transducers
operating over ∆1 ×∆2 instead of ∆ ?

6. How to solve equivalence problem for compatibility-free
generalized transducers operating over ∆1 ×∆2

≡
i.e. equivalence problem for deterministic 3-tape automata ?



Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.

2. Find and prove an analogue of Proposition 1 for regular
languages instead of words. Modify correspondingly the Rule 6′).

3. Build a minimization procedure for prefix-free finite and
generalized transducers.

4. Find solutions to equivalence and minimization problems for
generalized (non prefix-free) transducers.

5. How to modify the presented technique to cope with
equivalence problem for compatibility-free finite transducers
operating over ∆1 ×∆2 instead of ∆ ?

6. How to solve equivalence problem for compatibility-free
generalized transducers operating over ∆1 ×∆2

≡
i.e. equivalence problem for deterministic 3-tape automata ?



Conclusions

Topics for future research.

1. Prove the complexity estimates in Theorems 1 and 2.

2. Find and prove an analogue of Proposition 1 for regular
languages instead of words. Modify correspondingly the Rule 6′).

3. Build a minimization procedure for prefix-free finite and
generalized transducers.

4. Find solutions to equivalence and minimization problems for
generalized (non prefix-free) transducers.

5. How to modify the presented technique to cope with
equivalence problem for compatibility-free finite transducers
operating over ∆1 ×∆2 instead of ∆ ?

6. How to solve equivalence problem for compatibility-free
generalized transducers operating over ∆1 ×∆2

≡
i.e. equivalence problem for deterministic 3-tape automata ?


