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Попков К.А.
Короткие полные проверяющие тесты для схем из двухвходо-

вых функциональных элементов
Установлено, что почти любую булеву функцию от 𝑛 переменных

можно реализовать схемой из функциональных элементов в базисе
{𝑥&𝑦, 𝑥 ∨ 𝑦, 𝑥 ⊕ 𝑦, 1}, допускающей полный проверяющий тест длины
не более 4 относительнопроизвольных константныхнеисправностейна
выходах элементов. Доказаны также следующие утверждения: любую
булеву функцию от 𝑛 переменных можно реализовать схемой из функ-
циональных элементов в базисе {𝑥&𝑦, 𝑥∨𝑦, 𝑥⊕𝑦, 1} (в базисе {𝑥&𝑦, 𝑥∨𝑦,
𝑥∨ 𝑦, 𝑥⊕ 𝑦}), содержащей не более одной фиктивной входной перемен-
ной и допускающей полный проверяющий тест длины не более 5 (соот-
ветственно, не более 4) относительно неисправностей такого же типа.

Ключевые слова: схема из функциональных элементов, произволь-
ная константная неисправность, полный проверяющий тест

Kirill Andreevich Popkov
Short complete fault detection tests for logic networks with fan-in

two
It is established that one can implement almost any Boolean function on

𝑛 variables by a logic network in the basis {𝑥&𝑦, 𝑥 ∨ 𝑦, 𝑥 ⊕ 𝑦, 1}, allowing
a complete fault detection test with length not exceeding 4 under arbitrary
stuck-at faults at outputs of gates. The following assertions are also proved:
one can implement any Boolean function on 𝑛 variables by a logic network in
the basis {𝑥&𝑦, 𝑥∨𝑦, 𝑥⊕𝑦, 1} (in the basis {𝑥&𝑦, 𝑥∨𝑦, 𝑥∨𝑦, 𝑥⊕𝑦}), containing
not more than one dummy variable and allowing a complete fault detection
test with length not exceeding 5 (not exceeding 4, respectively) under faults
of the same type.

Key words: logic network, arbitrary stuck-at fault, complete fault detec-
tion test
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Введение

В работе рассматривается задача синтеза легкотестируемых схем,
реализующих заданные булевы функции. Логический подход к тести-
рованию электрических схем предложен С. В. Яблонским и И.А. Чегис
в [1]; этот подход также применим к тестированию схем из функцио-
нальных элементов (СФЭ) (см. [2, 3, 4]). Пусть имеется СФЭ 𝑆 с 𝑛 входа-
ми (𝑛 > 1), на которые подаются переменные 𝑥1, . . . , 𝑥𝑛, и одним выхо-
дом, реализующая булеву функцию 𝑓(𝑥̃𝑛), где 𝑥̃𝑛 = (𝑥1, . . . , 𝑥𝑛). Под воз-
действием некоторого источника неисправностей один или несколько
элементов схемы 𝑆 могут перейти в неисправное состояние. В резуль-
тате схема вместо исходной функции 𝑓(𝑥̃𝑛) будет реализовывать неко-
торую булеву функцию 𝑔(𝑥̃𝑛), вообще говоря, отличную от 𝑓 . Все такие
функции 𝑔(𝑥̃𝑛), получающиеся при всевозможных допустимых для рас-
сматриваемой задачи неисправностях элементов схемы 𝑆, называются
функциями неисправности данной схемы. Если 𝑔 ̸≡ 𝑓 , то функцию неис-
правности 𝑔 схемы 𝑆 называют нетривиальной.

Введём следующие определения [2, 3, 4]. Проверяющим тестом для
схемы 𝑆 называется такое множество 𝑇 наборов значений переменных
𝑥1, . . . , 𝑥𝑛, что для любойотличнойот 𝑓(𝑥̃𝑛)функциинеисправности 𝑔(𝑥̃𝑛)
схемы 𝑆 в 𝑇 найдётся набор 𝜎̃, на котором 𝑓(𝜎̃) ̸= 𝑔(𝜎̃). Число наборов в 𝑇
называется длиной теста. В качестве тривиального проверяющего теста
длины 2𝑛 для схемы 𝑆 всегда можно взять множество, состоящее из всех
двоичных наборов длины 𝑛. Тест называется полным, если в схемемогут
быть неисправны сколько угодно элементов, и единичным, если в схеме
может быть неисправен только один элемент.

Любое множество булевых функций будем называть (схемным) бази-
сом.

Пусть зафиксирован виднеисправностей элементов,𝐵—произволь-
ный функционально полный базис и 𝑇 — полный проверяющий тест
(ППТ) для некоторой СФЭ 𝑆 в базисе 𝐵. Введём следующие обозначе-
ния: 𝐷𝐵(𝑇 ) — длина теста 𝑇 ; 𝐷𝐵(𝑆) = min𝐷𝐵(𝑇 ), где минимум берётся
по всемППТ 𝑇 для схемы 𝑆;𝐷𝐵(𝑓) = min𝐷𝐵(𝑆), где минимум берётся по
всем схемам𝑆 в базисе𝐵, реализующимфункцию 𝑓 ;𝐷𝐵(𝑛) = max𝐷𝐵(𝑓),
где максимум берётся по всем булевым функциям 𝑓 от 𝑛 переменных.
Функция𝐷𝐵(𝑛) называется функцией Шеннона длины ППТ.

Перечислим основные результаты, касающиеся полных проверяю-
щих тестов для СФЭ. Класс допустимых неисправностей функциональ-
ных элементов ограничим константными неисправностями на выходах
элементов, при которых значение на выходе любого неисправного эле-
мента становится равно некоторой булевой константе. Неисправности
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на выходах элементов называются однотипными константными типа 𝑝,
если эта константа одна и та же для каждого неисправного элемента
и равна 𝑝, и произвольными константными, если эта константа может
быть равна как 0, так и 1 для каждого неисправного элемента независи-
мо от неисправностей других элементов. Для удобства над буквой𝐷 бу-
дем ставить символы «0, 1», «0» или «1» в случаях, когда в схемах допус-
каются произвольные константные неисправности, однотипные конс-
тантные неисправности типа 0 или типа 1 на выходах элементов соот-
ветственно. Вполне разумно предполагать, что если в базисе содержит-
ся булева константа 𝛼, то у элемента, её реализующего, не может быть
неисправности типа 𝛼.

Н. П. Редькин в [7, 8] для любого полного конечного базиса 𝐵1 полу-
чил оценку𝐷0,1

𝐵1
(𝑛) 6 2

(︁
2⌊

𝑛
2⌋ + 2⌈

𝑛
2⌉ + 𝑛

)︁
; Д. С. Романов в [9] доказал, что

существует базис 𝐵2, состоящий из не более чем сорока шести булевых
функций от не более чем семи переменных, в котором 2 6 𝐷0,1

𝐵2
(𝑛) 6 4

при 𝑛 > 1. В [10] доказано существование такого базиса 𝐵3, состояще-
го из двух булевых функций от не более чем четырёх переменных, что
𝐷0,1

𝐵3
(𝑛) = 2 при 𝑛 > 1. Для базиса 𝐵4 = {&,∨,¬} Н.П. Редькин в [11]

получил оценку𝐷 𝑝
𝐵4
(𝑛) 6 𝑛 при 𝑛 > 1, где 𝑝 = 0 или 1. Впоследствии ука-

занная оценка была улучшена Ю.В. Бородиной, которая в [12] устано-
вила, что𝐷 𝑝

𝐵4
(𝑛) = 2 при 𝑛 > 2. Также ей удалось доказать соотношения

𝐷0
𝐵5
(𝑛) = 1 [13] (совместно с П.А. Бородиным) и𝐷1

𝐵6
(𝑛) > 𝑛+1 при 𝑛 > 2

[14], где 𝐵5 = {&,⊕, 1, 0}, 𝐵6 = {|} (штрих Шеффера).
Всюду в настоящей работе будем предполагать, что СФЭ, реализую-

щая булеву функцию 𝑓(𝑥̃𝑛), реализует также и все булевы функции, по-
лучающиеся из 𝑓(𝑥̃𝑛) изъятием всех или части фиктивных переменных
этой функции. Это предположение согласуется с общепринятым поло-
жением теории булевых функций о том, что две булевы функции, по-
лучающиеся друг из друга при помощи операций добавления и изъ-
ятия фиктивных переменных, считаются равными (см., например, [5,
с. 12]). Будем говорить, что СФЭ содержит 𝑘 фиктивных входных пере-
менных и реализует функцию 𝑓(𝑥̃𝑛), если данная схема содержит 𝑘 вход-
ных переменных, отличных от переменных 𝑥1, . . . , 𝑥𝑛, и реализует буле-
вуфункцию, не зависящую существенно от этих 𝑘 переменныхиравную
функции 𝑓(𝑥̃𝑛). Например, схема, изображенная на рис. 1, содержит од-
ну фиктивную входную переменную 𝑥0 и реализует функцию 𝑥1𝑥2. Усло-
вимся считать, что наборы из любого теста для схемы, содержащей 𝑘
фиктивных входных переменных и реализующей функцию 𝑓(𝑥̃𝑛), име-
ют длину 𝑛 + 𝑘 (по общему числу переменных 𝑥1, . . . , 𝑥𝑛 и фиктивных
входных переменных схемы). Такое предположение сделано в [6], где
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рассматриваются, в частности, контактные схемы, содержащиевходные
переменные 𝑥0, 𝑥1, . . . , 𝑥𝑛 и реализующие функцию 𝑓(𝑥̃𝑛), и тесты для
этих схем, содержащие наборы длины 𝑛+ 1.

&

&

x0 x1 x2

Рис. 1

По аналогии с обозначениями 𝐷𝐵(𝑓), 𝐷𝐵(𝑛) введём обозначения
𝐷

(+𝑘)
𝐵 (𝑓) = min𝐷𝐵(𝑆), где минимум берётся по всем СФЭ 𝑆 в базисе 𝐵,

содержащим не более 𝑘 фиктивных входных переменных и реализую-
щим функцию 𝑓(𝑥̃𝑛), и𝐷(+𝑘)

𝐵 (𝑛) = max𝐷
(+𝑘)
𝐵 (𝑓), где максимум берётся по

всем булевым функциям 𝑓 от 𝑛 переменных. Ясно, что для любой буле-
вой функции 𝑓 и любого 𝑘 ∈ N выполнено соотношение

𝐷
(+𝑘)
𝐵 (𝑓) 6 𝐷

(+0)
𝐵 (𝑓) = 𝐷𝐵(𝑓). (1)

В данной работе будут рассматриваться только произвольные кон-
стантные неисправности на выходах функциональных элементов. Бу-
дут доказаны следующие неравенства: 𝐷0,1

𝐵7
(𝑓) 6 4 для почти всех буле-

вых функций 𝑓 от 𝑛 переменных,𝐷0,1 (+1)
𝐵7

(𝑛) 6 5 и𝐷0,1 (+1)
𝐵′

7
(𝑛) 6 4 (теоре-

мы 1–3), где 𝐵7 = {𝑥&𝑦, 𝑥 ∨ 𝑦, 𝑥⊕ 𝑦, 1}, 𝐵′
7 = {𝑥&𝑦, 𝑥 ∨ 𝑦, 𝑥 ∨ 𝑦, 𝑥⊕ 𝑦}.

В дальнейшем для краткости верхние индексы 0, 1 у величин𝐷0,1
𝐵7
(𝑓),

𝐷
0,1 (+1)
𝐵7

(𝑛),𝐷0,1 (+1)
𝐵7

(𝑓),𝐷0,1 (+1)
𝐵′

7
(𝑛) и𝐷0,1 (+1)

𝐵′
7

(𝑓) будем опускать.

Введём обозначения 0̃𝑟 = 0, . . . , 0⏟  ⏞  
𝑟

, 1̃𝑟 = 1, . . . , 1⏟  ⏞  
𝑟

, где 𝑟 ∈ N ∪ {0}.

Назовём цепочкой любой блок из функциональных элементов, име-
ющий один выход, в котором выход любого элемента, кроме выходного
(при его наличии), соединён ровно с одним входом ровно одного эле-
мента; входами этого блока являются все незанятые входы его элемен-
тов.
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Будем говорить, что элемент 𝐸 ′ расположен в схеме 𝑆 или в цепоч-
ке 𝑍 выше (ниже) элемента 𝐸, если в этой схеме (цепочке) существует
ориентированный путь от 𝐸 ′ к 𝐸 (соответственно от 𝐸 к 𝐸 ′).

Вместо «вход схемы 𝑆, отвечающий переменной 𝑥𝑖» для краткости
будем писать «вход ”𝑥𝑖“схемы 𝑆».

Метод построения основной схемы

Лемма 1. Пусть 𝑆 — произвольная СФЭ, некоторые элементы в кото-
рой могут быть неисправны; 𝑍 — произвольная непустая цепочка из эле-
ментов в этой схеме; 𝜎̃1 и 𝜎̃2—такие входные наборы схемы 𝑆, что на вы-
ходе верхнего элемента цепочки 𝑍 и на всех её входах, кроме, быть может,
входов её верхнего элемента, на данных двух наборах возникают одинако-
вые значения. Тогда значения на выходах всех элементов этой цепочки на
наборах 𝜎̃1 и 𝜎̃2 одинаковы.

Доказательство.Пусть цепочка 𝑍 состоит из 𝑑 элементов; занумеру-
емих сверху вниз числамиот 1до 𝑑. Докажемпоиндукции, чтона значе-
нияна выходе 𝑖-го элементананаборах 𝜎̃1 и 𝜎̃2 совпадают, где 𝑖 = 1, . . . , 𝑑.

База индукции.Пусть 𝑖 = 1. На выходепервого элемента (т. е. верхнего
элемента цепочки 𝑍) по условию леммы возникают одинаковые значе-
ния на наборах 𝜎̃1 и 𝜎̃2. База индукции доказана.

Предположение и шаг индукции. Пусть утверждение доказано для 𝑖 =
= 𝑗 < 𝑑; докажем его для 𝑖 = 𝑗+1. На тех входах (𝑗+1)-го элемента, кото-
рые соединены в цепочке 𝑍 с выходом 𝑗-го элемента, на наборах 𝜎̃1 и 𝜎̃2
возникнут одинаковые значения по предположению индукции. На всех
остальных входах (𝑗 + 1)-го элемента, т. е. на тех его входах, которые
являются входами цепочки 𝑍, значения на данных двух наборах также
совпадают в силу условия леммы. Тогда значения на выходе (𝑗 + 1)-го
элемента на наборах 𝜎̃1 и 𝜎̃2, очевидно, будут совпадать как в случае ис-
правности, так и в случае неисправности этого элемента (когда на его
выходе реализуется некоторая булева константа). Шаг индукции дока-
зан. Лемма 1 доказана.

Рассмотрим базис𝐵7 = {𝑥&𝑦, 𝑥∨ 𝑦, 𝑥⊕ 𝑦, 1}. Любой функциональный
элемент, реализующий функцию вида 𝑥&𝑦 (вида 𝑥 ∨ 𝑦, 𝑥 ⊕ 𝑦, 1), будем
называть конъюнктором (соответственно дизъюнктором, сумматором,
элементом «константа 1»).

Лемма 2. Любую булеву функцию 𝑓(𝑥̃𝑡), где 𝑡 > 3, для которой выполне-
ны соотношения 𝑓(0̃𝑡) ̸= 𝑓(1, 0̃𝑡−1) и 𝑓(0, 1̃𝑡−1) ̸= 𝑓(1̃𝑡), можно реализовать
СФЭ в базисе 𝐵7, допускающей ППТ {(0̃𝑡), (1, 0̃𝑡−1), (0, 1̃𝑡−1), (1̃𝑡)}.
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Доказательство. Пусть

𝑓 ′(𝑥̃𝑡) = (𝑥1 ∨ . . . ∨ 𝑥𝑡)⊕ (𝑥1& . . .&𝑥𝑡)⊕ 𝑓(𝑥̃𝑡). (2)

Тогда

𝑓 ′(0̃𝑡) = 0⊕ 0⊕ 𝑓(0̃𝑡) = 𝑓(0̃𝑡),

𝑓 ′(1, 0̃𝑡−1) = 1⊕ 0⊕ 𝑓(1, 0̃𝑡−1) = 𝑓(1, 0̃𝑡−1) = 𝑓(0̃𝑡),

𝑓 ′(0, 1̃𝑡−1) = 1⊕ 0⊕ 𝑓(0, 1̃𝑡−1) = 𝑓(0, 1̃𝑡−1) = 𝑓(1̃𝑡),

𝑓 ′(1̃𝑡) = 1⊕ 1⊕ 𝑓(1̃𝑡) = 𝑓(1̃𝑡),

откуда

𝑓 ′(0̃𝑡) = 𝑓 ′(1, 0̃𝑡−1), (3)
𝑓 ′(0, 1̃𝑡−1) = 𝑓 ′(1̃𝑡). (4)

Представим функцию 𝑓 ′ полиномом Жегалкина:

𝑓 ′(𝑥̃𝑡) = 𝐾1 ⊕ . . .⊕𝐾𝑚 ⊕ 𝑐, (5)

где 𝑐 ∈ {0, 1}, а𝐾1, . . . , 𝐾𝑚 — попарно различные конъюнкции перемен-
ных из множества {𝑥1, . . . , 𝑥𝑡} (в случае 𝑚 = 0 полагаем 𝐾1 ⊕ . . . ⊕𝐾𝑚 ⊕
⊕ 𝑐 = 𝑐). Из соотношений (3), (5) следует, что

𝑓 ′(1, 0̃𝑡−1) = 𝑓 ′(0̃𝑡) = 0⊕ . . .⊕ 0⏟  ⏞  
𝑚

⊕𝑐 = 𝑐. (6)

Если среди конъюнкций𝐾1, . . . , 𝐾𝑚 присутствует слагаемое 𝑥1, то на на-
боре (1, 0̃𝑡) каждая из этих конъюнкций, кроме 𝑥1, обратится в нуль, а
слагаемое 𝑥1 — в единицу, поэтому 𝑓 ′(1, 0̃𝑡−1) = 1 ⊕ 𝑐 в силу (5), однако
это противоречит соотношению (6). Поэтому ни одна из конъюнкций
𝐾1, . . . , 𝐾𝑚 неравна 𝑥1. Далее, пусть переменная 𝑥1 входит в𝑚1 конъюнк-
ций из числа 𝐾1, . . . , 𝐾𝑚 и не входит в остальные 𝑚 − 𝑚1 конъюнкций.
Тогда из соотношения (5) следует, что

𝑓 ′(1̃𝑡) = 1⊕ . . .⊕ 1⏟  ⏞  
𝑚

⊕𝑐,

𝑓 ′(0, 1̃𝑡−1) = 0⊕ . . .⊕ 0⏟  ⏞  
𝑚1

⊕ 1⊕ . . .⊕ 1⏟  ⏞  
𝑚−𝑚1

⊕𝑐 = 1⊕ . . .⊕ 1⏟  ⏞  
𝑚−𝑚1

⊕𝑐,

а отсюда и из соотношения (4) — что числа𝑚 и𝑚−𝑚1 одной чётности,
т. е. число𝑚1 чётно.
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Пусть 𝑖2, . . . , 𝑖𝑡 — попарно различные индексы от 2 до 𝑡, причём 𝑖2 <
< . . . < 𝑖𝑘 и 𝑖𝑘+1 < . . . < 𝑖𝑡, где 𝑘 ∈ {2, . . . , 𝑡− 1}. Докажем тождество

𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘 ≡ (𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘 ∨ 𝑥𝑖𝑘+1
)⊕ (𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘𝑥𝑖𝑘+1

∨ 𝑥𝑖𝑘+2
)⊕

⊕ . . .⊕ (𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘 . . . 𝑥𝑖𝑡−1
∨ 𝑥𝑖𝑡)⊕ 𝑥1𝑥2 . . . 𝑥𝑡 ⊕ 𝑥𝑖𝑘+1

⊕ . . .⊕ 𝑥𝑖𝑡. (7)

Преобразуем его правую часть, используя очевидное тождество 𝑥 ∨ 𝑦 ≡
≡ 𝑥⊕ 𝑦 ⊕ 𝑥𝑦 для 𝑥, 𝑦 ∈ {0, 1}. Имеем:

(𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘 ∨ 𝑥𝑖𝑘+1
)⊕ (𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘𝑥𝑖𝑘+1

∨ 𝑥𝑖𝑘+2
)⊕ . . .⊕

⊕ (𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘 . . . 𝑥𝑖𝑡−1
∨ 𝑥𝑖𝑡)⊕ 𝑥1𝑥2 . . . 𝑥𝑡 ⊕ 𝑥𝑖𝑘+1

⊕ . . .⊕ 𝑥𝑖𝑡 ≡
≡ (𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘 ⊕ 𝑥𝑖𝑘+1

⊕ 𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘𝑥𝑖𝑘+1
)⊕ (𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘𝑥𝑖𝑘+1

⊕ 𝑥𝑖𝑘+2
⊕

⊕ 𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘𝑥𝑖𝑘+1
𝑥𝑖𝑘+2

)⊕ . . .⊕ (𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘 . . . 𝑥𝑖𝑡−1
⊕ 𝑥𝑖𝑡⊕

⊕ 𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘 . . . 𝑥𝑖𝑡)⊕ 𝑥1𝑥2 . . . 𝑥𝑡 ⊕ 𝑥𝑖𝑘+1
⊕ . . .⊕ 𝑥𝑖𝑡.

Нетрудно заметить, что после раскрытия всех скобок в правой части
полученного тождества каждое слагаемое, кроме 𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘, будет при-
сутствовать в ней ровно два раза (с учётом того, что 𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘 . . . 𝑥𝑖𝑡 ≡
≡ 𝑥1𝑥2 . . . 𝑥𝑡), откуда следует справедливость соотношения (7).

Каждую из конъюнкций 𝐾1, . . . , 𝐾𝑚 из представления (5), содержа-
щих переменную 𝑥1, кроме 𝑥1𝑥2 . . . 𝑥𝑡, перепишем в соответствии с (7)
(напомним, что ни одна из них не равна 𝑥1). Тогда равенство (5) примет
вид

𝑓 ′(𝑥̃𝑡) = 𝐾 ′
1 ⊕ . . .⊕𝐾 ′

𝑚′ ⊕ 𝑐, (8)

где каждое из слагаемых 𝐾 ′
1, . . . , 𝐾

′
𝑚′ является либо конъюнкцией пе-

ременных из множества {𝑥2, . . . , 𝑥𝑡}, либо конъюнкцией 𝑥1𝑥2 . . . 𝑥𝑡, либо
имеет вид𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘∨𝑥𝑖𝑘+1

, где 𝑘 ∈ {2, . . . , 𝑡−1}и 𝑖2, . . . , 𝑖𝑘, 𝑖𝑘+1 ∈ {2, . . . , 𝑡},
причём 𝑖2 < . . . < 𝑖𝑘 и 𝑖𝑘+1—минимальное число измножества {2, . . . , 𝑡}∖
∖ {𝑖2, . . . , 𝑖𝑘}. При этом слагаемое 𝑥1𝑥2 . . . 𝑥𝑡 входит в правую часть пред-
ставления (8) по одному разу за каждую конъюнкциюизмножества {𝐾1,
. . . , 𝐾𝑚}, содержащую переменную 𝑥1 (см. правую часть тождества (7)),
число которых равно 𝑚1 и, как показано выше, чётно. Следовательно,
все слагаемые 𝑥1𝑥2 . . . 𝑥𝑡 в правой части (8) можно взаимно уничтожить.
Также в ней можно избавиться от всех остальных пар одинаковых сла-
гаемых. Поэтому можно считать, что все слагаемые𝐾 ′

1, . . . , 𝐾
′
𝑚′ попарно

различны и каждое из них либо является конъюнкцией переменных из
множества {𝑥2, . . . , 𝑥𝑡}, либо имеет вид 𝑥1𝑥𝑖2 . . . 𝑥𝑖𝑘 ∨ 𝑥𝑖𝑘+1

(в случае𝑚′ = 0
полагаем𝐾 ′

1 ⊕ . . .⊕𝐾 ′
𝑚′ ⊕ 𝑐 = 𝑐).

В силу (2), (8) имеем

(𝑥1 ∨ . . . ∨ 𝑥𝑡)⊕ (𝑥1& . . .&𝑥𝑡)⊕ 𝑓(𝑥̃𝑡) = 𝐾 ′
1 ⊕ . . .⊕𝐾 ′

𝑚′ ⊕ 𝑐,
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откуда

𝑓(𝑥̃𝑡) = (𝑥1 ∨ . . . ∨ 𝑥𝑡)⊕ (𝑥1& . . .&𝑥𝑡)⊕𝐾 ′
1 ⊕ . . .⊕𝐾 ′

𝑚′ ⊕ 𝑐. (9)

Реализуем функцию 𝑓 схемой 𝑆 в базисе 𝐵7 в соответствии с представ-
лением (9) (см. рис. 2). Каждое слагаемое 𝐾 ′

𝑗, 𝑗 ∈ {1, . . . ,𝑚′}, являющее-
ся конъюнкцией каких-то переменных 𝑥𝑖1(𝑗), . . . , 𝑥𝑖𝑘𝑗 (𝑗) ∈ {𝑥2, . . . , 𝑥𝑡}, ре-
ализуем цепочкой 𝑍𝑗 из 𝑘𝑗 − 1 конъюнктора, на входы которой пода-
ются все указанные переменные (в случае 𝑘𝑗 = 1 эта цепочка пуста,
т. е. не содержит функциональных элементов, а её выход совпадает со
входом «𝑥𝑖1(𝑗)» схемы). Далее каждое слагаемое 𝐾

′
𝑗, 𝑗 ∈ {1, . . . ,𝑚′} вида

𝑥1𝑥𝑖2(𝑗) . . . 𝑥𝑖𝑘𝑗 (𝑗) ∨ 𝑥𝑖𝑘𝑗+1(𝑗), где 𝑘𝑗 ∈ {2, . . . , 𝑡 − 1} и 𝑖2(𝑗), . . . , 𝑖𝑘𝑗(𝑗), 𝑖𝑘𝑗+1(𝑗) ∈
∈ {2, . . . , 𝑡}, причём 𝑖2(𝑗) < . . . < 𝑖𝑘𝑗(𝑗) и 𝑖𝑘𝑗+1(𝑗) — минимальное чис-
ло из множества {2, . . . , 𝑡} ∖ {𝑖2(𝑗), . . . , 𝑖𝑘𝑗(𝑗)}, реализуем цепочкой 𝑍𝑗 из
𝑘𝑗 − 1 конъюнктора и одного дизъюнктора, нижним элементом в кото-
рой является дизъюнктор; на свободные входы конъюнкторов подают-
ся переменные 𝑥1, 𝑥𝑖2(𝑗), . . . , 𝑥𝑖𝑘𝑗 (𝑗), а на свободный вход дизъюнктора —
переменная 𝑥𝑖𝑘𝑗+1(𝑗), причём переменная 𝑥1 подаётся на один из входов
верхнего конъюнктора цепочки 𝑍𝑗. Множество всех построенных к дан-
ному моменту функциональных элементов обозначим через𝑀 .

Выходы всех элементов из множества 𝑀 и входы «𝑥1», . . . , «𝑥𝑡» схе-
мы 𝑆 соединим со входами цепочки 𝑍& из конъюнкторов, причём вхо-
ды «𝑥1» и «𝑥2» схемы соединим со входами верхнего конъюнктора этой
цепочки. Затем выходы всех элементов из множества 𝑀 и из цепоч-
ки 𝑍&, а также входы «𝑥1», . . . , «𝑥𝑡» схемы 𝑆 соединим со входами цепоч-
ки 𝑍∨ из дизъюнкторов, причём вход «𝑥1» схемы соединим с одним из
входов верхнего, а вход «𝑥2» схемы — с одним из входов нижнего дизъ-
юнктора этой цепочки. Наконец, выходы цепочек 𝑍∨, 𝑍&, 𝑍1, . . . , 𝑍𝑚′, а
также — в случае 𝑐 = 1 — выход элемента «константа 1» соединим со
входами цепочки 𝑍⊕ из сумматоров, причём выход цепочки 𝑍∨ соеди-
ним с одним из входов верхнего сумматора. Выходом схемы 𝑆 будем
считать выход цепочки 𝑍⊕.

Докажем, что построенная схема 𝑆 при отсутствии в ней неисправ-
ностей реализует функцию 𝑓(𝑥̃𝑡). В силу (9) достаточно доказать, что на
выходах цепочек 𝑍& и 𝑍∨ реализуются функции 𝑥1& . . .&𝑥𝑡 и 𝑥1 ∨ . . . ∨ 𝑥𝑡
соответственно. На любом входном наборе схемы 𝑆, хотя бы одна ком-
понента которого равна 0, на соответствующий ей вход схемы, а значит,
и на некоторый вход цепочки𝑍& поступит нуль, поэтому на выходе этой
цепочки возникнет значение 0. В то же время, на наборе (1̃𝑡) на выходах
всех элементов из множества 𝑀 , как нетрудно видеть из их определе-
ния, возникнут единицы, поэтому на все входы цепочки 𝑍& поступят
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значения 1 и такое же значение возникнет на её выходе. Тем самым по-
казано, что на выходе указанной цепочки реализуется в точности функ-
ция 𝑥1& . . .&𝑥𝑡.

Далее, на любом входном наборе схемы 𝑆, хотя бы одна компонен-
та которого равна 1, на соответствующий ей вход схемы, а значит, и на
некоторый вход цепочки 𝑍∨ поступит единица, поэтому на выходе этой
цепочки возникнет значение 1. В то же время, на наборе (0̃𝑡) на выходах
всех элементов из множества𝑀 и из цепочки 𝑍&, как нетрудно видеть
из их определения, возникнут нули, поэтому на все входы цепочки 𝑍∨
поступят значения 0 и такое же значение возникнет на её выходе. Тем
самым показано, что на выходе указанной цепочки реализуется в точ-
ности функция 𝑥1∨ . . .∨𝑥𝑡. Следовательно, схема 𝑆 при отсутствии в ней
неисправностей реализует функцию 𝑓(𝑥̃𝑡).

Докажем, чтомножество {(0̃𝑡), (1, 0̃𝑡−1), (0, 1̃𝑡−1), (1̃𝑡)} являетсядлядан-
ной схемы ППТ. Цепочку, представляющую собой объединение цепо-
чек 𝑍∨ и 𝑍⊕, для удобства обозначим через 𝑍∨,⊕. Рассмотрим три случая.

1. Имеет место либо неисправность хотя бы одного элемента цепоч-
ки 𝑍∨,⊕, либо неисправность типа 1 хотя бы одного элемента из мно-
жества𝑀 или из цепочки 𝑍&. Нетрудно заметить, что для любого тако-
го 𝑗 ∈ {1, . . . ,𝑚′}, что цепочка 𝑍𝑗 непуста, на каждом из наборов (0̃𝑡),
(1, 0̃𝑡−1) на всех входах этой цепочки, кроме, быть может, одного из вхо-
дов её верхнего элемента, возникнут нули. По построению верхний эле-
мент цепочки 𝑍𝑗 является конъюнктором и хотя бы на один из его вхо-
дов подаётся одна из переменных 𝑥2, . . . , 𝑥𝑡, равная 0 на каждом из на-
боров (0̃𝑡), (1, 0̃𝑡−1). Поэтому на выходе данного элемента на этих двух
наборах возникнет одно и то же значение (нуль, если он исправен, либо
некоторая булева константа, если он неисправен). Тогда по лемме 1 на
выходах всех элементов цепочки 𝑍𝑗 на наборах (0̃𝑡) и (1, 0̃𝑡−1) возникнут
одинаковые значения.

Получаем, что при рассматриваемой неисправности элементов схе-
мы 𝑆 значения на выходе каждого элемента из множества𝑀 совпадают
на наборах (0̃𝑡) и (1, 0̃𝑡−1). Отсюда следует, что на данных двух наборах
на все входы цепочки 𝑍&, кроме того входа её верхнего конъюнктора,
который соединён со входом «𝑥1» схемы, поступят одинаковые значе-
ния. При этом на другой вход указанного конъюнктора подаётся пере-
менная 𝑥2, равная 0 на каждом из наборов (0̃𝑡), (1, 0̃𝑡−1). Поэтому на вы-
ходе данного конъюнктора на этих двух наборах возникнет одно и то
же значение (нуль, если он исправен, либо некоторая булева констан-
та, если он неисправен). Тогда по лемме 1 на выходах всех элементов
цепочки 𝑍& на наборах (0̃𝑡) и (1, 0̃𝑡−1) возникнут одинаковые значения.

Из сказанного выше и определения цепочек 𝑍∨, 𝑍⊕ следует, что на
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рассматриваемых двух наборах на все входы цепочки 𝑍∨,⊕, кроме того
входа её верхнего дизъюнктора, который соединён со входом «𝑥1» схе-
мы 𝑆, поступят одинаковые значения (отметим, что при 𝑐 = 1 указанное
свойство справедливо и для того входа цепочки 𝑍∨,⊕, который соединён
с выходом элемента «константа 1», вне зависимости от исправности или
неисправности этого элемента). Рассмотрим два подслучая.

1.1. Неисправен хотя бы один элемент 𝐸 из цепочки 𝑍∨,⊕. Пусть 𝑍 —
нижняя часть этой цепочки, верхним элементом которой является 𝐸.
Тогда на выходе (неисправного) верхнего элемента цепочки 𝑍 на набо-
рах (0̃𝑡) и (1, 0̃𝑡−1), очевидно, возникнет одно и то же значение, поэтому
по лемме 1 значения на выходах всех элементов этой цепочки, в том
числе выходного, совпадающего с выходным элементом цепочек 𝑍∨,⊕,
𝑍⊕ и, следовательно, с выходом схемы 𝑆, на данных двух наборах оди-
наковы. Таким образом, неисправность будет обнаружена на одном из
наборов (0̃𝑡), (1, 0̃𝑡−1), поскольку 𝑓(0̃𝑡) ̸= 𝑓(1, 0̃𝑡−1) по условию леммы 2.

1.2. Все элементы цепочки 𝑍∨,⊕ исправны, но имеет место неисправ-
ность типа 1 хотя бы одного элемента 𝐸 ′ из множества 𝑀 или из це-
почки 𝑍&. По определению цепочки 𝑍∨ выход элемента 𝐸 ′ соединён со
входов одного из её дизъюнкторов𝐸. На каждом из наборов (0̃𝑡), (1, 0̃𝑡−1)
на указанный вход поступит значение 1, поэтому на выходе дизъюнкто-
ра 𝐸 на этих двух наборах возникнет единица. Пусть 𝑍 — нижняя часть
цепочки𝑍∨,⊕, верхним элементом которой является𝐸. Тогда по лемме 1
значения на выходах всех элементов цепочки𝑍, в том числе выходного,
совпадающего с выходом схемы 𝑆, на наборах (0̃𝑡) и (1, 0̃𝑡−1) одинаковы.
Таким образом, неисправность будет обнаружена на одном из этих двух
наборов, поскольку 𝑓(0̃𝑡) ̸= 𝑓(1, 0̃𝑡−1). Случай 1 разобран.

2. Случай 1 не выполнен, но при этом имеет место неисправность
типа 0 хотя бы одного элемента из множества 𝑀 или из цепочки 𝑍&.
Нетрудно заметить, что для любого такого 𝑗 ∈ {1, . . . ,𝑚′}, что слага-
емое 𝐾 ′

𝑗 является конъюнкцией каких-то переменных из множества
{𝑥2, . . . , 𝑥𝑡}, на каждомиз наборов (0, 1̃𝑡−1), (1̃𝑡) при отсутствии неисправ-
ностей в цепочке 𝑍𝑗 на её выходе возникнет значение 1, а при наличии
в ней неисправности типа 0 хотя бы одного элемента — значение 0 (от-
метим, что при указанном условии на 𝑗 данная цепочка состоит только
из конъюнкторов, а неисправности типа 1 элементов в ней невозмож-
ны в силу невыполнения случая 1). Для всех остальных 𝑗 ∈ {1, . . . ,𝑚′}
нижнимэлементомцепочки𝑍𝑗 попостроениюявляется дизъюнктор, на
один из входов которого подаётся переменная 𝑥𝑖𝑘𝑗+1(𝑗) ∈ {𝑥2, . . . , 𝑥𝑡}. На
каждом из наборов (0, 1̃𝑡−1), (1̃𝑡) на указанный вход поступит значение 1,
поэтому на выходе цепочки 𝑍𝑗 на этих двух наборах возникнет одно и
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то же значение (единица, если выходной дизъюнктор данной цепочки
исправен, либо нуль, если он неисправен).

На один из входов нижнего дизъюнктора цепочки 𝑍∨ по построению
подаётся переменная 𝑥2, равная 1 на каждом из наборов (0, 1̃𝑡−1), (1̃𝑡).
Поэтому на выходе данной цепочки на обоих этих наборах возникнет
значение 1. Наконец, в силу предположения случая 2 и определения це-
почки 𝑍& либо один из её входов соединён с выходом неисправного и
выдающего 0 элемента из множества 𝑀 , либо имеет место неисправ-
ность типа 0 хотя бы одного элемента самой этой цепочки (либо и то, и
другое), при этом в ней не может быть неисправности типа 1 ни одно-
го элемента. Отсюда получаем, что на выходе цепочки 𝑍& реализуется
тождественный нуль.

Из сказанного выше и определения цепочки 𝑍⊕ следует, что на набо-
рах (0, 1̃𝑡−1) и (1̃𝑡) на все входы цепочки 𝑍⊕ поступят одинаковые значе-
ния. Тогда и значения на выходе схемы 𝑆 на этих двух наборах совпада-
ют, поскольку все элементы цепочки𝑍⊕ исправны в силу невыполнения
случая 1. Таким образом, неисправность будет обнаружена на одном из
наборов (0, 1̃𝑡−1), (1̃𝑡) с учётом того, что 𝑓(0, 1̃𝑡−1) ̸= 𝑓(1̃𝑡) по условию лем-
мы 2. Случай 2 разобран.

3. Случаи 1 и 2 не выполнены, но при этом 𝑐 = 1 и имеет место неис-
правность типа 0 элемента «константа 1». Тогда все остальные элементы
в схеме 𝑆 исправны и указанную неисправность можно обнаружить на
любом из наборов (0̃𝑡), (1, 0̃𝑡−1), (0, 1̃𝑡−1), (1̃𝑡). Случай 3 разобран.

Получаем, что любую неисправность схемы 𝑆 можно обнаружить
хотя бы на одном из этих четырёх наборов. Поэтому множество {(0̃𝑡),
(1, 0̃𝑡−1), (0, 1̃𝑡−1), (1̃𝑡)} является для данной схемы ППТ. Лемма 2 доказа-
на.

Применение метода
к доказательствам теорем

Теорема 1.Долятех булевых функций 𝑓 от 𝑛 переменных, для которых
𝐷𝐵7

(𝑓) 6 4, стремится к 1 при 𝑛→ ∞.
Доказательство. Вместо 𝐷𝐵7

(𝑓) для краткости будем писать 𝐷(𝑓).
Пусть 𝑛 > 3 и 𝐹𝑛—множество таких булевых функций от 𝑛 переменных,
каждая из которых принимает значение 1 ровно на 0, 1, 3 или 4 набо-
рах из множества 𝐴𝑖 = {(0̃𝑛), (0̃𝑖, 1, 0̃𝑛−𝑖−1), (1̃𝑖, 0, 1̃𝑛−𝑖−1), (1̃𝑛)} для каждого
𝑖 = 0, . . . , 𝑛 − 1. Пусть 𝑓(𝑥̃𝑛) — произвольная булева функция, не при-
надлежащая множеству 𝐹𝑛. Докажем неравенство 𝐷(𝑓) 6 4. Существует
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такое 𝑖 ∈ {0, . . . , 𝑛 − 1}, что функция 𝑓 принимает значение 1 ровно на
двух наборах из множества 𝐴𝑖. Без ограничения общности 𝑖 = 0 (в про-
тивном случае можно соответствующим образом переименовать пере-
менные функции 𝑓 , для полученной функции 𝑓 доказать неравенство
𝐷(𝑓) 6 4, а затем воспользоваться очевиднымравенством𝐷(𝑓) = 𝐷(𝑓)).
Тогда функция 𝑓 принимает значение 1 ровно на двух наборах из мно-
жества 𝐴0 = {(0̃𝑛), (1, 0̃𝑛−1), (0, 1̃𝑛−1), (1̃𝑛)}. Отсюда, в частности, следует
соотношение

𝑓(0̃𝑛)⊕ 𝑓(1, 0̃𝑛−1)⊕ 𝑓(0, 1̃𝑛−1)⊕ 𝑓(1̃𝑛) = 0,

а из него — соотношение

𝑓(0̃𝑛)⊕ 𝑓(1, 0̃𝑛−1) = 𝑓(0, 1̃𝑛−1)⊕ 𝑓(1̃𝑛).

Возможны два случая.

1.Пусть 𝑓(0̃𝑛)⊕𝑓(1, 0̃𝑛−1) = 𝑓(0, 1̃𝑛−1)⊕𝑓(1̃𝑛) = 1. Тогда 𝑓(0̃𝑛) ̸= 𝑓(1, 0̃𝑛−1)
и 𝑓(0, 1̃𝑛−1) ̸= 𝑓(1̃𝑛), а в таком случае неравенство 𝐷(𝑓) 6 4 следует из
леммы 2 при 𝑡 = 𝑛.

2. Пусть 𝑓(0̃𝑛)⊕𝑓(1, 0̃𝑛−1) = 𝑓(0, 1̃𝑛−1)⊕𝑓(1̃𝑛) = 0. Тогда 𝑓(0̃𝑛) = 𝑓(1, 0̃𝑛−1)
и 𝑓(0, 1̃𝑛−1) = 𝑓(1̃𝑛). Рассмотрим функцию 𝑓 ′(𝑥̃𝑛) = 𝑓(𝑥̃𝑛)⊕ 𝑥1. Имеем:

𝑓 ′(0̃𝑛) = 𝑓(0̃𝑛)⊕ 0 = 𝑓(0̃𝑛) = 𝑓(1, 0̃𝑛−1) ̸= 𝑓(1, 0̃𝑛−1)⊕ 1 = 𝑓 ′(1, 0̃𝑛−1),

𝑓 ′(0, 1̃𝑛−1) = 𝑓(0, 1̃𝑛−1)⊕ 0 = 𝑓(0, 1̃𝑛−1) = 𝑓(1̃𝑛) ̸= 𝑓(1̃𝑛)⊕ 1 = 𝑓 ′(1̃𝑛),

т. е. 𝑓 ′(0̃𝑛) ̸= 𝑓 ′(1, 0̃𝑛−1)и 𝑓 ′(0, 1̃𝑛−1) ̸= 𝑓 ′(1̃𝑛). В таком случае в силу леммы2
при 𝑡 = 𝑛функцию 𝑓 ′(𝑥̃𝑛)можно реализовать СФЭ 𝑆 ′ в базисе𝐵7, для ко-
тороймножество𝐴0 является ППТ. Выход схемы 𝑆 ′ соединим с одним из
входов сумматора 𝐸, на другой вход которого подадим переменную 𝑥1.
Выход элемента 𝐸 будем считать выходом полученной схемы, которую
обозначим через 𝑆. При отсутствии неисправностей в схеме 𝑆 на её вы-
ходе, очевидно, реализуется функция 𝑓 ′(𝑥̃𝑛)⊕ 𝑥1 = 𝑓(𝑥̃𝑛).

Если элемент𝐸 неисправен, то на выходе схемы 𝑆 реализуется неко-
торая булева константа, которую можно отличить от функции 𝑓 на на-
борах из множества 𝐴0, поскольку данная функция на двух наборах из
этого множества принимает значение 1, а на двух— значение 0. Если же
элемент 𝐸 исправен, а хотя бы один элемент в подсхеме 𝑆 ′ неисправен,
то получающуюся функцию неисправности 𝑔 подсхемы 𝑆 ′ при 𝑔 ̸≡ 𝑓 ′

можно отличить от функции 𝑓 ′ на каком-то наборе 𝜎̃ ∈ 𝐴0, так как 𝐴0 —
ППТдля𝑆 ′. Поэтому 𝑔(𝜎̃) ̸= 𝑓 ′(𝜎̃). На выходе схемы𝑆 возникнетфункция
неисправности 𝑔 ⊕ 𝑥1, которую можно отличить от функции 𝑓 = 𝑓 ′ ⊕ 𝑥1
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на наборе 𝜎̃ в силу предыдущего соотношения. Тем самымдоказано, что
множество 𝐴0 является ППТ для схемы 𝑆, откуда следует, что 𝐷(𝑓) 6 4.
Случай 2 разобран. Неравенство𝐷(𝑓) 6 4 полностью доказано.

Найдём мощность множества |𝐹𝑛|. Для любых 𝛼1, 𝛼2 ∈ {0, 1} обозна-
чим через𝐹 𝛼1𝛼2

𝑛 подмножествомножества𝐹𝑛, состоящее из всех булевых
функций, принимающих на наборах (0̃𝑛) и (1̃𝑛) значения 𝛼1 и 𝛼2 соответ-
ственно. В силу определения множества 𝐹𝑛 для любого 𝑖 ∈ {0, . . . , 𝑛− 1}
на паре наборов ((0̃𝑖, 1, 0̃𝑛−𝑖−1), (1̃𝑖, 0, 1̃𝑛−𝑖−1)) любая функция из множе-
ства 𝐹 00

𝑛 должна принимать одну из пар значений (0, 0), (0, 1) или (1, 0),
любая функция из каждого из множеств 𝐹 01

𝑛 , 𝐹 10
𝑛 —одну из пар значений

(0, 0) или (1, 1), а любая функция из множества 𝐹 11
𝑛 — одну из пар зна-

чений (0, 1), (1, 0) или (1, 1). При этом на 2𝑛 − 2𝑛 − 2 двоичных наборах
длины 𝑛, не принадлежащих множеству 𝐴0 ∪ . . . ∪ 𝐴𝑛−1, любая функция
из каждого из множеств 𝐹 00

𝑛 , 𝐹 01
𝑛 , 𝐹 10

𝑛 , 𝐹 11
𝑛 может принимать произволь-

ные значения. Отсюда следуют соотношения |𝐹 00
𝑛 | = |𝐹 11

𝑛 | = 3𝑛 · 22𝑛−2𝑛−2,
|𝐹 01

𝑛 | = |𝐹 10
𝑛 | = 2𝑛 · 22𝑛−2𝑛−2,

|𝐹𝑛| = |𝐹 00
𝑛 |+ |𝐹 01

𝑛 |+ |𝐹 10
𝑛 |+ |𝐹 11

𝑛 | = (2 · 3𝑛 + 2 · 2𝑛) · 22𝑛−2𝑛−2 =

= (3𝑛 + 2𝑛) · 22𝑛−2𝑛−1,

|𝐹𝑛|
22𝑛

=
3𝑛 + 2𝑛

22𝑛+1
=

1

2
·
(︂
3

4

)︂𝑛

+
1

2
·
(︂
1

2

)︂𝑛

→ 0 (𝑛→ ∞),

т. е. отношение числа булевыхфункцийизмножества𝐹𝑛 к общему числу
булевых функций от 𝑛 переменных стремится к 0 при 𝑛→ ∞. Выше бы-
ло показано, что для любой булевой функции 𝑓(𝑥̃𝑛), не принадлежащей
множеству 𝐹𝑛, выполнено неравенство 𝐷(𝑓) 6 4, откуда следует спра-
ведливость теоремы 1.

Теорема 2. Справедливо неравенство𝐷(+1)
𝐵7

(𝑛) 6 5.
Доказательство. Для любой булевой функции 𝑓(𝑥̃𝑛) надо доказать,

что 𝐷(+1)
𝐵7

(𝑓) 6 5. В силу (1) достаточно рассмотреть случай 𝐷𝐵7
(𝑓) > 6

(отметим, что по теореме 1 доля такихфункций 𝑓 от𝑛переменных стре-
мится к 0 при 𝑛→ ∞). Тогда 𝑛 > 3, поскольку в противном случае любая
СФЭ без фиктивных входных переменных, реализующая любую булеву
функцию от 𝑛 6 2 переменных, допускает тривиальный ППТ, состоя-
щий из всех 2𝑛 6 4 двоичных наборов длины 𝑛. Пусть 𝑓 (+1)(𝑥0, 𝑥1, . . . ,
𝑥𝑛) — булева функция, не зависящая существенно от переменной 𝑥0 и
равная функции 𝑓(𝑥̃𝑛); 𝑓 ′(𝑥0, 𝑥1, . . . , 𝑥𝑛) = 𝑓 (+1)(𝑥0, 𝑥1, . . . , 𝑥𝑛)⊕𝑥0. Имеем:

𝑓 ′(0̃𝑛+1) = 𝑓 (+1)(0̃𝑛+1)⊕ 0 = 𝑓 (+1)(1, 0̃𝑛) ̸= 𝑓 (+1)(1, 0̃𝑛)⊕ 1 = 𝑓 ′(1, 0̃𝑛),

𝑓 ′(0, 1̃𝑛) = 𝑓 (+1)(0, 1̃𝑛)⊕ 0 = 𝑓 (+1)(1̃𝑛+1) ̸= 𝑓 (+1)(1̃𝑛+1)⊕ 1 = 𝑓 ′(1̃𝑛+1),
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т. е. 𝑓 ′(0̃𝑛+1) ̸= 𝑓 ′(1, 0̃𝑛) и 𝑓 ′(0, 1̃𝑛) ̸= 𝑓 ′(1̃𝑛+1). В таком случае в силу лем-
мы 2 при 𝑡 = 𝑛 + 1 функцию 𝑓 ′(𝑥0, 𝑥1, . . . , 𝑥𝑛) можно реализовать СФЭ 𝑆 ′

в базисе 𝐵7, для которой множество 𝑇 = {(0̃𝑛+1), (1, 0̃𝑛), (0, 1̃𝑛), (1̃𝑛+1)} яв-
ляется ППТ. Выход схемы 𝑆 ′ соединим с одним из входов сумматора 𝐸,
на другой вход которого подадим переменную 𝑥0. Выход элемента𝐸 бу-
дем считать выходом полученной схемы, которую обозначим через 𝑆.
При отсутствии неисправностей в схеме 𝑆 на её выходе, очевидно, реа-
лизуется функция 𝑓 ′(𝑥0, 𝑥1, . . . , 𝑥𝑛)⊕ 𝑥0 = 𝑓 (+1)(𝑥0, 𝑥1, . . . , 𝑥𝑛).

Если элемент𝐸 исправен, а хотя бы один элемент в подсхеме 𝑆 ′ неис-
правен, то получающуюся функцию неисправности 𝑔 подсхемы 𝑆 ′ при
𝑔 ̸≡ 𝑓 ′ можно отличить от функции 𝑓 ′ на каком-то наборе 𝜎̃ ∈ 𝑇 , так
как 𝑇 — ППТ для 𝑆 ′. Поэтому 𝑔(𝜎̃) ̸= 𝑓 ′(𝜎̃). На выходе схемы 𝑆 возник-
нет функция неисправности 𝑔 ⊕ 𝑥0, которую можно отличить от функ-
ции 𝑓 (+1) = 𝑓 ′ ⊕ 𝑥0 на наборе 𝜎̃ в силу предыдущего соотношения. Если
же элемент 𝐸 неисправен, то на выходе схемы 𝑆 реализуется некоторая
булева константа. Рассмотрим два случая.

1. Пусть 𝑓(0̃𝑛) ̸= 𝑓(1̃𝑛). Тогда

𝑓 (+1)(0̃𝑛+1) = 𝑓(0̃𝑛) ̸= 𝑓(1̃𝑛) = 𝑓 (+1)(1̃𝑛+1),

т. е. значения функции 𝑓 (+1) на наборах (0̃𝑛+1) и (1̃𝑛+1) различаются, по-
этому её можно отличить от любой из булевых констант на одном из на-
боров (0̃𝑛+1), (1̃𝑛+1) ∈ 𝑇 . Тем самым доказано, что множество 𝑇 является
ППТ длины 4 для схемы 𝑆.

2. Пусть 𝑓(0̃𝑛) = 𝑓(1̃𝑛). Функцию 𝑓 (+1) можно отличить от констан-
ты 𝑓 (+1)(0̃𝑛+1) на наборе (0̃𝑛+1) ∈ 𝑇 , а от константы 𝑓 (+1)(0̃𝑛+1) в случае
𝑓 (+1) ̸≡ 𝑓 (+1)(0̃𝑛+1) — на любом наборе 𝜋̃ длины 𝑛 + 1, на котором функ-
ция 𝑓 (+1) принимает значение 𝑓 (+1)(0̃𝑛+1). Тем самымдоказано, что мно-
жество 𝑇 ∪ {𝜋̃} является ППТ длины 5 для схемы 𝑆.

В каждом из случаев 1, 2 установлено, что схема 𝑆 в базисе𝐵7, реали-
зующая функцию 𝑓 (+1)(𝑥0, 𝑥1, . . . , 𝑥𝑛), допускает ППТ длины не более 5,
а отсюда и из определений этой функции и величины 𝐷

(+1)
𝐵7

(𝑓) следует
неравенство𝐷(+1)

𝐵7
(𝑓) 6 5. Теорема 2 доказана.

Рассмотрим базисы 𝐵′
7 = {𝑥&𝑦, 𝑥 ∨ 𝑦, 𝑥 ∨ 𝑦, 𝑥 ⊕ 𝑦}, 𝐵′′

7 = {𝑥&𝑦, 𝑥 ∨ 𝑦,
𝑥&𝑦, 𝑥 ∨ 𝑦, 𝑥&𝑦, 𝑥 ∨ 𝑦, 𝑥 ⊕ 𝑦, 𝑥 ∼ 𝑦, 1}. Любой функциональный элемент,
реализующий функцию вида 𝜓(𝑥, 𝑦), где 𝜓(𝑥, 𝑦) — произвольная булева
функция, будем называть 𝜓-элементом.

Лемма 3. Пусть булеву функцию 𝑓(𝑥̃𝑡) можно реализовать СФЭ 𝑆 в ба-
зисе 𝐵′′

7 , допускающей ППТ 𝑇 . Тогда эту же функцию можно реализовать
СФЭ в базисе 𝐵′

7, допускающей ППТ 𝑇 .
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Доказательство. Если в схеме 𝑆 нет выходного элемента, то её выход
совпадает с одним из её входов, поэтому 𝑓 ∈ {𝑥1, . . . , 𝑥𝑡}. Тогда функ-
цию 𝑓 можнореализовать схемой, не содержащейфункциональных эле-
ментов; у такой схемы нет ни одной функции неисправности, поэтому
любое множество двоичных наборов длины 𝑛, в том числе и 𝑇 , является
для неёППТ. Далее, если в схеме 𝑆 нет ни одного𝜙-элемента для каждой
функции 𝜙(𝑥, 𝑦) ∈ {𝑥&𝑦, 𝑥&𝑦, 𝑥 ∨ 𝑦, 𝑥 ∼ 𝑦}, а также ни одного элемента
«константа 1», то эта схема является схемойи в базисе𝐵′

7, откуда следует
утверждение леммы.

Пусть теперь в схеме 𝑆 есть выходной элемент и есть хотя бы один 𝜙-
элемент, где 𝜙(𝑥, 𝑦) ∈ {𝑥&𝑦, 𝑥&𝑦, 𝑥∨𝑦, 𝑥 ∼ 𝑦}, либо хотя бы один элемент
«константа 1». Для каждой функции 𝜙 из указанного множества заме-
ним каждый 𝜙-элемент схемы 𝑆 на блок 𝑆𝜙, состоящий из трёх функци-
ональных элементов: 𝜙-элемента, (𝑥∨ 𝑦)-элемента 𝐸1 (одного и того же
для каждого блока 𝑆𝜙), на оба входа которого подаётся переменная 𝑥1, и
сумматора, входы которого соединяются с выходами данных двух эле-
ментов; входами этого блока являются входы указанного 𝜙-элемента, а
выходом— выход указанного сумматора (см. рис. 3). На выходе элемен-
та 𝐸1 реализуется функция 𝑥1 ∨ 𝑥1 = 1, а на выходе блока 𝑆𝜙 — функция
𝜙 ⊕ 1 = 𝜙 от его входов. Далее заменим каждый элемент «константа 1»
схемы 𝑆 на (один и тот же) элемент 𝐸1. Полученную схему обозначим
через 𝑆 ′.

x1 x1

φ E1

Рис. 3. Блок 𝑆𝜙

Заметим, что 𝑥&𝑦 = 𝑦 ∨ 𝑥, 𝑥&𝑦 = 𝑥 ∨ 𝑦, 𝑥 ∨ 𝑦 = 𝑥&𝑦 и 𝑥 ∼ 𝑦 = 𝑥 ⊕ 𝑦,
поэтому 𝜙(𝑥, 𝑦) ∈ {𝑦 ∨ 𝑥, 𝑥 ∨ 𝑦, 𝑥&𝑦, 𝑥 ⊕ 𝑦} и 𝑆 ′ является схемой в ба-
зисе 𝐵′

7. Каждый блок 𝑆𝜙 реализует ту же функцию, что и 𝜙-элемент, а
элемент 𝐸1 — константу 1, поэтому схема 𝑆 ′ реализует ту же функцию,
что и схема 𝑆, т. е. функцию 𝑓(𝑥̃𝑡). Выход элемента 𝐸1, а также выход
выходного элемента схемы 𝑆 ′ соединим со входами конъюнктора 𝐸&;
выход этого конъюнктора будем считать выходом полученной схемы,
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которую обозначим через 𝑆 ′′. Очевидно, что при отсутствии неисправ-
ностей в схеме 𝑆 ′′ она также реализует функцию 𝑓(𝑥̃𝑡).

Докажем, что любая нетривиальная функция неисправности схе-
мы 𝑆 ′′ является функцией неисправности схемы 𝑆. При произвольной
неисправности элемента 𝐸& и/или при неисправности типа 0 элемен-
та 𝐸1 схема 𝑆 ′′, очевидно, станет реализовывать некоторую булеву кон-
станту, но такая же константа возникнет на выходе схемы 𝑆 при соот-
ветствующей неисправности её выходного элемента. Пусть теперь эле-
мент 𝐸& исправен, элемент 𝐸1 реализует константу 1 (это может быть
как при его исправности, так и при его неисправности типа 1), некото-
рые элементы в подсхеме 𝑆 ′, возможно, неисправны и получающаяся
при этом функция неисправности 𝑔′(𝑥̃𝑡) схемы 𝑆 ′′ нетривиальна, т. е. от-
лична от 𝑓(𝑥̃𝑡). Тогда в подсхеме 𝑆 ′ есть хотя бы один неисправный эле-
мент. Легко видеть, что при произвольной неисправности 𝜙-элемента
и/или сумматора в произвольном блоке 𝑆𝜙 схемы 𝑆 ′′ на выходе этого
блока реализуетсянекоторая булева константа. Тогдапри соответствую-
щих неисправностях 𝜙-элементов схемы 𝑆, отсутствии неисправностей
среди элементов «константа 1» и таких же неисправностях остальных
элементов схемы𝑆, как и в схеме𝑆 ′′, на выходе схемы𝑆 возникнетфунк-
ция неисправности 𝑔, удовлетворяющая тождеству 𝑔&1 ≡ 𝑔′, т. е. совпа-
дающая с функцией 𝑔′.

Тем самым показано, что любая нетривиальная функция неисправ-
ности схемы 𝑆 ′′ является функцией неисправности (причём нетриви-
альной) схемы 𝑆. Поэтому ППТ 𝑇 для схемы 𝑆 является ППТ и для схе-
мы 𝑆 ′′ в базисе 𝐵′

7. Лемма 3 доказана.

Введём обозначение 𝛼𝛽 = 𝛼 ⊕ 𝛽 ⊕ 1, где 𝛼, 𝛽 ∈ {0, 1}. Очевидно, что
𝛼1 = 𝛼, 𝛼0 = 𝛼, 1𝛽 = 𝛽 и 0𝛽 = 𝛽.

Лемма 4. Пусть для булевой функции 𝑓(𝑥̃𝑡), 𝑡 > 3, существуют та-
кие булевы константы 𝜎1, 𝜎2, . . . , 𝜎𝑡, что 𝑓(𝛿1) ̸= 𝑓(𝛿2) и 𝑓(𝛿3) ̸= 𝑓(𝛿4), где
𝛿1 = (𝜎1, 𝜎2, . . . , 𝜎𝑡), 𝛿2 = (𝜎1, 𝜎2, . . . , 𝜎𝑡), 𝛿3 = (𝜎1, 𝜎2, . . . , 𝜎𝑡) и 𝛿4 = (𝜎1, 𝜎2,
. . . , 𝜎𝑡). Тогда функцию 𝑓(𝑥̃𝑡)можно реализовать СФЭ в базисе𝐵′

7, допуска-
ющей ППТ {𝛿1, 𝛿2, 𝛿3, 𝛿4}.

Доказательство.Всилу леммы3достаточнодоказать такоеже утвер-
ждение для базиса𝐵′′

7 . Рассмотримфункцию 𝑓 ′(𝑥̃𝑡) = 𝑓(𝑥𝜎1
1 , . . . , 𝑥

𝜎𝑡
𝑡 ). Име-

ем:

𝑓 ′(0̃𝑡) = 𝑓(0𝜎1, . . . , 0𝜎𝑡) = 𝑓(𝜎1, . . . , 𝜎𝑡) = 𝑓(𝛿4),

𝑓 ′(1, 0̃𝑡−1) = 𝑓(1𝜎1, 0𝜎2, . . . , 0𝜎𝑡) = 𝑓(𝜎1, 𝜎2, . . . , 𝜎𝑡) = 𝑓(𝛿3),

𝑓 ′(0, 1̃𝑡−1) = 𝑓(0𝜎1, 1𝜎2, . . . , 1𝜎𝑡) = 𝑓(𝜎1, 𝜎2, . . . , 𝜎𝑡) = 𝑓(𝛿2),
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𝑓 ′(1̃𝑡) = 𝑓(1𝜎1, . . . , 1𝜎𝑡) = 𝑓(𝜎1, . . . , 𝜎𝑡) = 𝑓(𝛿1),

откуда

𝑓 ′(0̃𝑡) = 𝑓(𝛿4) ̸= 𝑓(𝛿3) = 𝑓 ′(1, 0̃𝑡−1),

𝑓 ′(0, 1̃𝑡−1) = 𝑓(𝛿2) ̸= 𝑓(𝛿1) = 𝑓 ′(1̃𝑡),

т. е. 𝑓 ′(0̃𝑡) ̸= 𝑓 ′(1, 0̃𝑡−1) и 𝑓 ′(0, 1̃𝑡−1) ̸= 𝑓 ′(1̃𝑡). Тогда в силу леммы 2 функ-
цию 𝑓 ′(𝑥̃𝑡) можно реализовать СФЭ 𝑆 ′ в базисе 𝐵7, для которой множе-
ство 𝑇 ′ = {(0̃𝑡), (1, 0̃𝑡−1), (0, 1̃𝑡−1), (1̃𝑡)} является ППТ.

Предположим, что в схеме 𝑆 ′ не содержится выходного элемента. То-
гда выход этой схемы совпадает с одним из её входов, 𝑓 ′ ∈ {𝑥1, . . . , 𝑥𝑡}
и 𝑓(𝑥̃𝑡) = 𝑓 ′(𝑥𝜎1

1 , . . . , 𝑥
𝜎𝑡
𝑡 ) ∈ {𝑥1, . . . , 𝑥𝑡, 𝑥1, . . . , 𝑥𝑡}. Если 𝑓 ∈ {𝑥1, . . . , 𝑥𝑡}, то

функцию 𝑓 можно реализовать схемой, не содержащей функциональ-
ных элементов; у этой схемы нет ни однойфункции неисправности, по-
этому множество 𝑇 = {𝛿1, 𝛿2, 𝛿3, 𝛿4} является для неё ППТ. Если же 𝑓 = 𝑥𝑖
длянекоторого 𝑖 ∈ {1, . . . , 𝑡}, тофункцию 𝑓 можнореализовать схемой𝑆,
состоящей из элемента «константа 1» и сумматора, один вход которого
соединяется с выходом этого элемента, а другой—со входом «𝑥𝑖» схемы;
у неё, очевидно, есть три функции неисправности — 0, 1 и 𝑥𝑖. Функцию
𝑥𝑖 = 𝑓 можно отличить от функции 𝑓 на любом наборе из множества 𝑇 ,
а функции 0 и 1 от функции 𝑓 —на наборах 𝛿1, 𝛿2 ∈ 𝑇 в силу соотношения
𝑓(𝛿1) ̸= 𝑓(𝛿2), поэтому 𝑇 — ППТ для схемы 𝑆.

Далее будем считать, что в схеме 𝑆 ′ содержится выходной элемент.
Пусть 𝑋0 — подмножество множества {𝑥1, . . . , 𝑥𝑡} входных переменных
этой схемы, состоящее из всех таких переменных 𝑥𝑖, что 𝜎𝑖 = 0. Для каж-
дой функции 𝜙(𝑥, 𝑦) ∈ {𝑥&𝑦, 𝑥 ∨ 𝑦, 𝑥 ⊕ 𝑦} заменим каждый 𝜙-элемент
схемы 𝑆 ′, хотя бы на один вход которого подаётся переменная из мно-
жества 𝑋0, на свой 𝜙′-элемент, где 𝜙′(𝑥, 𝑦) = 𝜙(𝑥𝛼1, 𝑦𝛼2), а 𝛼1 = 0 (𝛼2 = 0)
в том и только том случае, когда на вход рассматриваемого 𝜙-элемента,
отвечающийпеременной 𝑥 (соответственно, 𝑦), подаётся переменнаяиз
множества𝑋0. Полученную схему обозначим через 𝑆; легко видеть, что
она является схемой в базисе 𝐵′′

7 — например,

𝑥𝛼1 ⊕ 𝑦𝛼2 = 𝑥⊕ 𝛼⊕ 1⊕ 𝑦⊕ 𝛼2 ⊕ 1 ∈ {𝑥⊕ 𝑦, 𝑥⊕ 𝑦⊕ 1} = {𝑥⊕ 𝑦, 𝑥 ∼ 𝑦} ⊂ 𝐵′′
7 .

Также нетрудно заметить, что на выходе каждого элемента схемы 𝑆 при
отсутствии в ней неисправностей реализуется та же функция, что и на
выходе соответствующего элемента схемы 𝑆 ′ при подаче на входы схе-
мы 𝑆 ′, отвечающие переменным из множества 𝑋0, отрицаний этих пе-
ременных — другими словами, при подаче на входы схемы 𝑆 ′ вместо
переменных 𝑥1, . . . , 𝑥𝑡 функций 𝑥𝜎1

1 , . . . , 𝑥
𝜎𝑡
𝑡 соответственно. Отсюда сле-

дуют три утверждения:
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1) на выходе схемы 𝑆 реализуется функция 𝑓 ′(𝑥𝜎1
1 , . . . , 𝑥

𝜎𝑡
𝑡 ) = 𝑓(𝑥̃𝑡);

2) при неисправностях некоторых элементов схемы 𝑆 и таких же
неисправностях соответствующих элементов схемы𝑆 ′ на выходе каждо-
го (исправного или неисправного) элемента схемы 𝑆 реализуется та же
функция, что и на выходе соответствующего элемента схемы 𝑆 ′ при по-
даче на входы схемы𝑆 ′ вместо переменных 𝑥1, . . . , 𝑥𝑡функций 𝑥𝜎1

1 , . . . , 𝑥
𝜎𝑡
𝑡

соответственно;
3) при возможном наличии неисправностей элементов в схеме 𝑆 и

таких же неисправностей соответствующих элементов в схеме 𝑆 ′ при
подаче на входы схемы 𝑆 наборов 𝛿1, 𝛿2, 𝛿3 и 𝛿4 значения на выходе каж-
дого (исправного или неисправного) элемента схемы 𝑆 будут совпадать
со значениями на выходе соответствующего элемента схемы 𝑆 ′ на на-
борах (1̃𝑡), (0, 1̃𝑡−1), (1, 0̃𝑡−1) и (0̃𝑡) соответственно.

(В качестве пояснения к утверждению 3) можно написать, например,
равенство (𝜎𝜎1

1 , 𝜎
𝜎2
2 , . . . , 𝜎

𝜎𝑡
𝑡 ) = (0, 1̃𝑡−1).)

В свою очередь, из утверждения 2) вытекает, что если на выходе вы-
ходного элемента схемы 𝑆, т. е. на выходе всей этой схемы, при неис-
правностях некоторых её элементов возникает функция неисправно-
сти 𝑔(𝑥̃𝑡), то при таких же неисправностях соответствующих элементов
схемы 𝑆 ′ на её выходе возникнет функция неисправности 𝑔′(𝑥̃𝑡), удо-
влетворяющая условию 𝑔′(𝑥𝜎1

1 , . . . , 𝑥
𝜎𝑡
𝑡 ) = 𝑔(𝑥̃𝑡). Докажем, что функцию 𝑔

можно отличить от функции 𝑓 на наборах из множества {𝛿1, 𝛿2, 𝛿3, 𝛿4},
если 𝑔 ̸≡ 𝑓 . Из последнего соотношения следует, что 𝑔′(𝑥𝜎1

1 , . . . , 𝑥
𝜎𝑡
𝑡 ) ̸≡

̸≡ 𝑓 ′(𝑥𝜎1
1 , . . . , 𝑥

𝜎𝑡
𝑡 ), значит, 𝑔′ ̸≡ 𝑓 ′. Множество 𝑇 ′ = {(0̃𝑡), (1, 0̃𝑡−1), (0, 1̃𝑡−1),

(1̃𝑡)} является ППТ для схемы 𝑆 ′, поэтому функцию неисправности 𝑔′

этой схемы можно отличить от функции 𝑓 ′ на наборах из 𝑇 ′, т. е. выпол-
нено хотя бы одно из неравенств

𝑔′(1̃𝑡) ̸= 𝑓 ′(1̃𝑡),

𝑔′(0, 1̃𝑡−1) ̸= 𝑓 ′(0, 1̃𝑡−1),

𝑔′(1, 0̃𝑡−1) ̸= 𝑓 ′(1, 0̃𝑡−1),

𝑔′(0̃𝑡) ̸= 𝑓 ′(0̃𝑡).

Из утверждения 3) вытекают равенства

𝑔(𝛿1) = 𝑔′(1̃𝑡),

𝑔(𝛿2) = 𝑔′(0, 1̃𝑡−1),

𝑔(𝛿3) = 𝑔′(1, 0̃𝑡−1),

𝑔(𝛿4) = 𝑔′(0̃𝑡),



21

а при отсутствии неисправностей в схемах 𝑆 и 𝑆 ′ — равенства

𝑓(𝛿1) = 𝑓 ′(1̃𝑡),

𝑓(𝛿2) = 𝑓 ′(0, 1̃𝑡−1),

𝑓(𝛿3) = 𝑓 ′(1, 0̃𝑡−1),

𝑓(𝛿4) = 𝑓 ′(0̃𝑡).

Сравнивая последние двенадцать соотношений между собой, заключа-
ем, что выполнено хотя быодноизнеравенств 𝑔(𝛿1) ̸= 𝑓(𝛿1), 𝑔(𝛿2) ̸= 𝑓(𝛿2),
𝑔(𝛿3) ̸= 𝑓(𝛿3), 𝑔(𝛿4) ̸= 𝑓(𝛿4), что и требовалось доказать.

Таким образом, множество {𝛿1, 𝛿2, 𝛿3, 𝛿4} является ППТ для схемы 𝑆 в
базисе 𝐵′′

7 , реализующей функцию 𝑓(𝑥̃𝑡). Лемма 4 доказана.
Два двоичных набора называются противоположными, если они раз-

личаются во всех компонентах.
Теорема 3. Справедливо неравенство𝐷(+1)

𝐵′
7
(𝑛) 6 4.

Доказательство. Для любой булевой функции 𝑓(𝑥̃𝑛) надо доказать,
что 𝐷(+1)

𝐵′
7
(𝑓) 6 4. В случае 𝑛 6 2 любая СФЭ без фиктивных входных пе-

ременных, реализующая функцию 𝑓(𝑥̃𝑛), допускает тривиальный ППТ,
состоящий из всех 2𝑛 6 4 двоичных наборов длины 𝑛, откуда следует
требуемое неравенство. Далее будем считать, что 𝑛 > 3. Рассмотрим два
случая.

1. Существуют такие булевы константы 𝜎1, 𝜎2, . . . , 𝜎𝑛, что 𝑓(𝛿1) ̸= 𝑓(𝛿2)
и 𝑓(𝛿3) ̸= 𝑓(𝛿4), где 𝛿1 = (𝜎1, 𝜎2, . . . , 𝜎𝑛), 𝛿2 = (𝜎1, 𝜎2, . . . , 𝜎𝑛), 𝛿3 = (𝜎1, 𝜎2,

. . . , 𝜎𝑛) и 𝛿4 = (𝜎1, 𝜎2, . . . , 𝜎𝑛). Тогда𝐷
(+1)
𝐵′

7
(𝑓) 6 4 в силу леммы 4 при 𝑡 = 𝑛

и соотношения (1), что и требовалось доказать.
2. Отрицание случая 1: для любых булевых констант 𝜎1, 𝜎2, . . . , 𝜎𝑛 вы-

полнено хотя бы одно из равенств 𝑓(𝛿1) = 𝑓(𝛿2), 𝑓(𝛿3) = 𝑓(𝛿4), где 𝛿1 =
= (𝜎1, 𝜎2, . . . , 𝜎𝑛), 𝛿2 = (𝜎1, 𝜎2, . . . , 𝜎𝑛), 𝛿3 = (𝜎1, 𝜎2, . . . , 𝜎𝑛) и 𝛿4 = (𝜎1, 𝜎2, . . . ,
𝜎𝑛). Если 𝑓 ≡ 1 (𝑓 ≡ 0), то функцию 𝑓 можно реализовать схемой, со-
стоящей из одного элемента «константа 1» (соответственно, состоящей
из одного сумматора, на оба входа которого подаётся переменная 𝑥1).
Очевидно, что единственной нетривиальной функцией неисправности
такой схемы является константа 0 (соответственно, 1), которую можно
отличить от функции 𝑓 на любом наборе, поэтому𝐷(+1)

𝐵′
7
(𝑓) 6 1.

Пусть теперь 𝑓 ̸≡ 0 и 𝑓 ̸≡ 1. Тогда существуют такие два набора 𝛿′1
и 𝛿′2 длины 𝑛, различающиеся ровно в одной компоненте, что 𝑓(𝛿′1) ̸=
̸= 𝑓(𝛿′2). Без ограничения общности они различаются в первой компо-
ненте. Пусть 𝛿′1 = (𝜎′1, 𝜎

′
2, . . . , 𝜎

′
𝑛), тогда 𝛿′2 = (𝜎′1, 𝜎

′
2, . . . , 𝜎

′
𝑛). В силу пред-

положения случая 2 имеем 𝑓(𝛿′3) = 𝑓(𝛿′4), где 𝛿′3 = (𝜎′1, 𝜎
′
2, . . . , 𝜎

′
𝑛), 𝛿′4 = (𝜎′1,
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𝜎′2, . . . , 𝜎
′
𝑛). Тогда либо 𝑓(𝛿′3) = 𝑓(𝛿′4) ̸= 𝑓(𝛿′1), либо 𝑓(𝛿′3) = 𝑓(𝛿′4) ̸= 𝑓(𝛿′2),

откуда либо 𝑓(𝛿′4) ̸= 𝑓(𝛿′1), либо 𝑓(𝛿′3) ̸= 𝑓(𝛿′2). Заметим, что 𝛿′4 и 𝛿′1, а также
𝛿′3 и 𝛿′2 — противоположные наборы, поэтому существуют такие проти-
воположные наборы 𝜏 и 𝜏 ′ длины 𝑛, что

𝑓(𝜏) ̸= 𝑓(𝜏 ′). (10)

Пусть 𝜏 = (𝜏1, . . . , 𝜏𝑛), тогда 𝜏 ′ = (𝜏 1, . . . , 𝜏𝑛). Положим 𝜏0 = (0, 𝜏1, . . . , 𝜏𝑛),
𝜏1 = (1, 𝜏1, . . . , 𝜏𝑛), 𝜏 ′0 = (0, 𝜏 1, . . . , 𝜏𝑛) и 𝜏 ′1 = (1, 𝜏 1, . . . , 𝜏𝑛).

Пусть 𝑓 (+1)(𝑥0, 𝑥1, . . . , 𝑥𝑛)—булевафункция, не зависящая существен-
но от переменной 𝑥0 и равная функции 𝑓(𝑥̃𝑛); 𝑓 ′(𝑥0, 𝑥1, . . . , 𝑥𝑛) = 𝑓 (+1)(𝑥0,
𝑥1, . . . , 𝑥𝑛)⊕ 𝑥0. Имеем:

𝑓 ′(𝜏0) = 𝑓 (+1)(𝜏0)⊕ 0 = 𝑓 (+1)(𝜏1) ̸= 𝑓 (+1)(𝜏1)⊕ 1 = 𝑓 ′(𝜏1),

𝑓 ′(𝜏 ′0) = 𝑓 (+1)(𝜏 ′0)⊕ 0 = 𝑓 (+1)(𝜏 ′1) ̸= 𝑓 (+1)(𝜏 ′1)⊕ 1 = 𝑓 ′(𝜏 ′1),

т. е. 𝑓 ′(𝜏0) ̸= 𝑓 ′(𝜏1) и 𝑓 ′(𝜏 ′0) ̸= 𝑓 ′(𝜏 ′1). В таком случае в силу леммы 4 при
𝑡 = 𝑛 + 1 функцию 𝑓 ′(𝑥0, 𝑥1, . . . , 𝑥𝑛) можно реализовать СФЭ 𝑆 ′ в бази-
се 𝐵′

7, для которой множество 𝑇 = {𝜏0, 𝜏1, 𝜏 ′0, 𝜏 ′1} является ППТ. Выход
схемы 𝑆 ′ соединим с одним из входов сумматора 𝐸, на другой вход ко-
торого подадим переменную 𝑥0. Выход элемента 𝐸 будем считать вы-
ходом полученной схемы, которую обозначим через 𝑆. При отсутствии
неисправностей в схеме 𝑆 на её выходе, очевидно, реализуется функция
𝑓 ′(𝑥0, 𝑥1, . . . , 𝑥𝑛)⊕ 𝑥0 = 𝑓 (+1)(𝑥0, 𝑥1, . . . , 𝑥𝑛).

Если элемент𝐸 неисправен, то на выходе схемы 𝑆 реализуется неко-
торая булева константа, которую можно отличить от функции 𝑓 (+1) на
наборах 𝜏0, 𝜏 ′0 ∈ 𝑇 , поскольку

𝑓 (+1)(𝜏0) = 𝑓(𝜏) ̸= 𝑓(𝜏 ′) = 𝑓 (+1)(𝜏 ′0)

в силу (10). Если же элемент 𝐸 исправен, а хотя бы один элемент в под-
схеме 𝑆 ′ неисправен, то получающуюся функцию неисправности 𝑔 под-
схемы 𝑆 ′ при 𝑔 ̸≡ 𝑓 ′ можно отличить от функции 𝑓 ′ на каком-то наборе
𝜎̃ ∈ 𝑇 , так как 𝑇 — ППТ для 𝑆 ′. Поэтому 𝑔(𝜎̃) ̸= 𝑓 ′(𝜎̃). На выходе схемы 𝑆
возникнет функция неисправности 𝑔 ⊕ 𝑥0, которую можно отличить от
функции 𝑓 (+1) = 𝑓 ′ ⊕ 𝑥0 на наборе 𝜎̃ в силу предыдущего соотношения.
Тем самым доказано, что множество 𝑇 является ППТ длины 4 для схе-
мы 𝑆 в базисе 𝐵′

7, реализующей функцию 𝑓 (+1)(𝑥0, 𝑥1, . . . , 𝑥𝑛). Отсюда и
из определений этой функции и величины𝐷(+1)

𝐵7
(𝑓) следует неравенство

𝐷
(+1)
𝐵′

7
(𝑓) 6 4. Теорема 3 доказана.
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Заключение

В работе рассмотрен случай произвольных константных неисправ-
ностей на выходах функциональных элементов. Для любой булевой
функции 𝑓(𝑥̃𝑡), 𝑡 > 3, удовлетворяющей условиям 𝑓(0̃𝑡) ̸= 𝑓(1, 0̃𝑡−1) и
𝑓(0, 1̃𝑡−1) ̸= 𝑓(1̃𝑡), описанметод построения СФЭ в базисе𝐵7 = {𝑥&𝑦, 𝑥∨𝑦,
𝑥⊕𝑦, 1}, реализующейданнуюфункциюидопускающейППТиз наборов
(0̃𝑡), (1, 0̃𝑡−1), (0, 1̃𝑡−1)и (1̃𝑡) (лемма 2). На основании этогометода установ-
лены следующие факты:

- почти любую булеву функцию от 𝑛 переменныхможно реализовать
СФЭ в базисе 𝐵7, допускающей ППТ не более чем из четырёх наборов
(теорема 1);

- любую булеву функцию от 𝑛 переменных можно реализовать СФЭ в
базисе𝐵7, содержащей не более одной фиктивной входной переменной
и допускающей ППТ не более чем из пяти наборов (теорема 2);

- любую булеву функцию от 𝑛 переменных можно реализовать СФЭ
в базисе {𝑥&𝑦, 𝑥 ∨ 𝑦, 𝑥 ∨ 𝑦, 𝑥 ⊕ 𝑦}, содержащей не более одной фиктив-
ной входной переменной и допускающей ППТ не более чем из четырёх
наборов (теорема 3).

В частности, впервые получена константная верхняя оценка длины
минимальногоППТдляпочти всех булевыхфункцийприреализацииих
схемами из функциональных элементов, имеющих не более двух вхо-
дов. С учётом простоты таких элементов предложенные методы синте-
за легкотестируемых схем могут иметь практическое применение.
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