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Малые вариации. Комбинаторная геометрия

Рассмотрим множество 𝑆 из 𝑛 точек в единичном квадрате 𝑈.
Обозначим через 𝑻(𝑺) минимальную из площадей
треугольников с вершинами в трёх различных точках из 𝑆.

Положим 𝑻 𝒏 = max 𝑇(𝑆), где максимум берётся по семейству
всех 𝑛 − точечных подмножеств 𝑆 множества 𝑈 . Хейлбронн
предположил, что 𝑇 𝑛 = 𝑂( Τ1 𝑛2).

Эта гипотеза опровергнута в работе [2] (Komlós J., Pintz J.,
Szemerédi E.), где с помощью довольно сложной конструкции
показано, что существует множество 𝑆 из 𝑛 точек множества 𝑈,
такое, что 𝑇 𝑆 = Ω Τlog 𝑛 𝑛2 .
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Малые вариации. Комбинаторная геометрия

Поскольку это доказательство довольно громоздкое, мы
приведём здесь более простое доказательство, показывающее,
что 𝑇 𝑆 = Ω Τ1 𝑛2 .
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Малые вариации. Комбинаторная геометрия

Теорема 1. Существует множество 𝑆 из 𝑛 точек в единичном
квадрате 𝑈, такое, что 𝑇 𝑆 ≥ Τ1 100𝑛2 .

Доказательство. Сначала приведём некоторые вычисления.

Пусть точки 𝑃, 𝑄, 𝑅 выбираются независимо и равновероятно
из 𝑈. Обозначим через 𝜇 = 𝜇 𝑃𝑄𝑅 площадь треугольника
𝑃𝑄𝑅. Мы оценим величину Pr[𝜇 ≤ 𝜀] следующим образом.
Пусть 𝑥 ― расстояние между 𝑃 и 𝑄. Тогда

Pr 𝑏 ≤ 𝑥 ≤ 𝑏 + 𝛥𝑏 ≤ 𝜋 𝑏 + 𝛥𝑏 2 − 𝜋𝑏2,

и в пределе имеем Pr 𝑏 ≤ 𝑥 ≤ 𝑏 + 𝑑𝑏 ≤ 2𝜋𝑏 ⋅ 𝑑𝑏.
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Малые вариации. Комбинаторная геометрия

Доказательство (продолжение). Если расстояние между
точками 𝑃 и 𝑄 равно 𝑏, то высота, опущенная из точки 𝑅 на
прямую 𝑃𝑄, должна иметь длину ℎ ≤ Τ2𝜀 𝑏, и, таким образом,
точка 𝑅 должна лежать в полосе ширины Τ4𝜀 𝑏 и длины не

больше, чем 2. Это происходит с вероятностью, не

превышающей Τ4 2𝜀 𝑏.

Так как 0 ≤ 𝑏 ≤ 2 , искомая вероятность ограничивается
сверху величиной

𝟎׬

𝟐
(2𝜋𝑏)( Τ4 2𝜀 𝑏)𝑑𝑏 = 16𝜋𝜀.
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Малые вариации. Комбинаторная геометрия

Доказательство (продолжение). Пусть теперь точки 𝑃1, … , 𝑃2𝑛

выбираются независимо и равновероятно из 𝑈, и пусть 𝑋
обозначает число треугольников 𝑃𝑖𝑃𝑗𝑃𝑘 площади, меньшей, чем

Τ1 100𝑛2 . Вероятность появления произвольной такой
тройки 𝑖, 𝑗, 𝑘 меньше, чем 0.6𝑛−2, и поэтому

𝐄 𝑋 ≤
2𝑛
3

0.6𝑛−2 < 𝑛.

Таким образом, существует множество из 2𝑛 вершин, в котором
менее 𝑛 треугольников имеют площадь меньше, чем Τ1 100𝑛2 .
Удалим по вершине из каждого такого треугольника.
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Малые вариации. Комбинаторная геометрия

Доказательство (окончание). При этом останется не менее 𝑛
вершин, но теперь уже нет треугольников, имеющих площадь,
меньшую, чем Τ1 100𝑛2 . █

Теорема 2 (Эрдёш). Если 𝑛 простое, то 𝑇 𝑛 ≥
1

2 𝑛−1 2 .

Доказательство. На квадрате 0, 𝑛 − 1 × 0, 𝑛 − 1 рассмотрим
𝑛 точек 𝑥, 𝑥2 , где 𝑥2 берётся по mod 𝑛. Если через некоторые
три точки этого множества можно провести прямую, то она
будет задаваться уравнением 𝑦 = 𝑘𝑥 + 𝑏, где 𝑘― рациональное
число со знаменателем, не превосходящим 𝑛.
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Малые вариации. Комбинаторная геометрия

Доказательство (окончание). Но тогда в ℤ𝑛
2 парабола 𝑦 = 𝑥2

должна пересекать прямую 𝑦 = 𝑘𝑥 + 𝑏 в трёх точках, и, тем
самым, квадратный трёхчлен 𝑥2 − 𝑘𝑥 − 𝑏 имеет три различных
корня (по простому модулю), что невозможно. Легко
проверить, что площадь каждого треугольника с вершинами в
целых точках плоскости является либо целым числом, либо
полуцелым. Следовательно, эти площади должны быть не
меньше Τ1 2 . Сжимая плоскость путём деления обеих
координат на 𝑛 − 1, получим требуемое множество. █

Замечание. Хотя этот изящный результат лучше теоремы 1, он
всё ещё слабее результата, полученного в [2].
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Малые вариации. Упаковка

Определения. Пусть 𝐶 ― ограниченное измеримое

подмножество пространства ℝ𝑑 , а через 𝐵𝑑(𝑥) обозначим куб

[0, 𝑥]𝑑 со стороной 𝑥. Упаковкой множества 𝐶 в 𝐵𝑑(𝑥)

называется семейство взаимно непересекающихся копий

множества 𝐶, каждая из которых лежит в 𝐵𝑑(𝑥).

Обозначим через 𝑓(𝑥) наибольшую меру такого семейства.

Константа упаковки определяется равенством

𝜹𝒅 𝑪 = 𝜇 𝐶 lim
𝑥→∞

𝑓 𝑥 𝑥−𝑑 ,

где 𝜇 𝐶 ― мера множества 𝐶 в пространстве ℝ𝑑 .
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Малые вариации. Упаковка

Таким образом, 𝛿𝑑 𝐶 ― это максимальная доля пространства,
которая может быть заполнена непересекающимися копиями
множества 𝐶.

Замечание. Можно доказать, что предел в определении 𝛿𝑑 𝐶
всегда существует. Но даже без этого следующий результат
имеет место с заменой lim на lim inf.
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Малые вариации. Упаковка

Теорема 3. Пусть множество 𝐶 (𝐶 ⊂ ℝ𝑑) ограничено, выпукло и

центрально симметрично относительно начала координат.

Тогда 𝛿𝑑 𝐶 ≥ 2−𝑑−1.

Доказательство. Пусть точки 𝑃 и 𝑄 выбираются независимо и
равномерно из 𝐵𝑑(𝑥).

Рассмотрим событие « 𝑪 + 𝑷) ∩ (𝑪 + 𝑸 ≠ ∅». Для того, чтобы
оно произошло, мы должны иметь для некоторых c1, c2 ∈ 𝐶

𝑃 − 𝑄 = 𝑐1 − 𝑐2 = 2 ∙
𝑐1 − 𝑐2

2
∈ 2𝐶

в силу центральной симметрии и выпуклости.
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Малые вариации. Упаковка

Доказательство (продолжение). Событие 𝑃 ∈ 𝑄 + 2𝐶 имеет
вероятность, не превышающую 𝜇 2𝐶 𝑥−𝑑 для любого
заданного 𝑄, следовательно,

Pr 𝐶 + 𝑃) ∩ (𝐶 + 𝑄 ≠ ∅ ≤ 𝜇 2𝐶 𝑥−𝑑 = 2𝑑 𝑥−𝑑𝜇 𝐶 .

Пусть теперь 𝑃1, … , 𝑃𝑛 выбираются независимо и равномерно
из 𝐵𝑑(𝑥). Обозначим через 𝑋 число таких пар 𝑖, 𝑗 , для которых

выполнено 𝑖 < 𝑗 и 𝐶 + 𝑃𝑖) ∩ (𝐶 + 𝑃𝑗 ≠ ∅. В силу линейности

математического ожидания имеем

𝐄 𝑋 ≤
𝑛2

2
2𝑑 𝑥−𝑑𝜇 𝐶 .
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Малые вариации. Упаковка

Доказательство (продолжение). Следовательно, существует
выборка из 𝑛 точек с меньшим, чем указанное, числом
пересекающихся пар копий множества 𝐶.

Для каждой пары 𝑃𝑖 , 𝑃𝑗 с 𝐶 + 𝑃𝑖) ∩ (𝐶 + 𝑃𝑗 ≠ ∅ удалим или 𝑃𝑖 ,

или 𝑃𝑗 из множества. Остаются по меньшей мере

𝑛 −
𝑛2

2
2𝑑 𝑥−𝑑𝜇 𝐶 непересекающихся копий множества 𝐶.
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Малые вариации. Упаковка

Доказательство (окончание). Положим 𝑛 = 𝑥𝑑2−𝑑/𝜇(𝐶), чтобы
максимизировать это количество. Отсюда вытекает
существование по меньшей мере 𝑛 = 𝑥𝑑2−𝑑−1/𝜇(𝐶) попарно
непересекающихся копий множества 𝐶. Не все они лежат
внутри 𝐵𝑑(𝑥), но, обозначив через 𝑤 верхнюю оценку
абсолютных величин координат точек множества 𝐶, мы
обнаружим, что они все лежат внутри куба со стороной 𝑥 + 2𝑤.

Следовательно, 𝑓(𝑥 + 2𝑤) ≥ 𝑥𝑑2−𝑑−1/𝜇(𝐶),

а значит, 𝛿𝑑(𝐶) ≥ lim
𝑥→∞

𝜇(𝐶)𝑓(𝑥 + 2𝑤)(𝑥 + 2𝑤)−𝑑 ≥ 2−𝑑−1. █
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Упаковка. Жадный алгоритм

Обычный жадный алгоритм даёт несколько лучший результат.

Теорема 4. Пусть множество 𝐶 (𝐶 ⊂ ℝ𝑑) ограничено, выпукло и
центрально симметрично относительно начала координат.
Тогда 𝛿𝑑 𝐶 ≥ 2−𝑑 .

Доказательство. Пусть 𝑃1, … , 𝑃𝑚 ― какое-нибудь максимальное
подмножество множества [0, 𝑥]𝑑 , обладающее тем свойством,
что множества 𝐶 + 𝑃𝑖 не пересекаются. Мы заметили, что 𝐶 + 𝑃𝑖

перекрывает 𝐶 + 𝑃 тогда и только тогда, когда 𝑃 ∈ 2𝐶 + 𝑃𝑖 .
Следовательно, множества 2𝐶 + 𝑃𝑖 должны покрывать [0, 𝑥]𝑑 .

15



Упаковка. Жадный алгоритм

Доказательство (окончание).

Поскольку каждое такое множество имеет меру 𝜇(2𝐶)=2𝑑𝜇 𝐶 ,
необходимо, чтобы 𝑚 ≥ 𝑥𝑑2−𝑑/𝜇 𝐶 .

Как и прежде, все множества 𝐶 + 𝑃𝑖 лежат в кубе со стороной
𝑥 + 2𝑤, где 𝑤 ― константа. Поэтому

𝑓(𝑥 + 2𝑤) ≥ 𝑚 ≥ 𝑥𝑑2−𝑑/𝜇(𝐶),

и, значит,

𝛿𝑑(𝐶) ≥ lim
𝑥→∞

𝜇(𝐶)𝑓(𝑥 + 2𝑤)(𝑥 + 2𝑤)−𝑑 ≥ 2−𝑑 . █
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Эффективная упаковка

Определения. Пусть множество 𝐶 ⊂ ℝ𝑛 имеет ограниченную
риманову меру 𝜇 = 𝜇 𝐶 > 0. Обозначим через
𝑁 𝐶, 𝑥 максимальное число непересекающихся копий
множества 𝐶, которые можно разместить в кубе со стороной 𝑥.
Определим константу упаковки следующим образом:

𝜹𝒏 𝑪 = 𝜇 𝐶 lim
𝑥→∞

𝑁(𝐶, 𝑥)𝑥−𝑛 ,

т. е. как максимальную долю пространства, которая может
быть заполнена непересекающимися копиями множества 𝐶.

Следующая теорема улучшает результаты, которые
формулируются в теоремах 3 и 4.
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Эффективная упаковка

Теорема 5. Пусть множество 𝐶 ⊂ ℝ𝑛 ограничено, выпукло и
центрально симметрично относительно начала координат.

Тогда 𝛿𝑛 𝐶 ≥ 2−(𝑛−1).

Доказательство. Фиксируем произвольное 𝜀 > 0. Нормализуем
𝐶 так, чтобы выполнялось 𝜇 = 𝜇 𝐶 = 2 − 𝜀. Для каждого
действительного 𝑧 обозначим через 𝐶𝑧 множество точек
𝑧1, … , 𝑧𝑛−1 ∈ ℝ𝑛−1 таких, что 𝑧1, … , 𝑧𝑛−1, 𝑧 ∈ 𝐶, и пусть

𝜇 𝐶𝑧 ― обычная мера 𝑛 − 1 − мерного множества 𝐶𝑧 . Из
измеримости по Риману следует, что

lim
𝛾→0

෍

𝑚∈ℤ

𝜇(𝐶𝑚𝛾) 𝛾 = 𝜇 𝐶 .
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Эффективная упаковка

Доказательство (продолжение).

Обозначим через 𝐾 целое число, для которого выполняется
неравенство

෍

𝑚∈ℤ

𝜇(𝐶𝑚𝐾−(𝑛−1)) 𝐾−(𝑛−1) < 2

и, более того, все точки множества 𝐶 имеют координаты,
меньшие 𝐾/2.

Для 1 ≤ 𝑖 ≤ 𝑛 − 1 обозначим через 𝑣𝑖 ∈ ℝ𝑛 вектор, все
координаты которого равны нулю, а 𝑖-я координата равна 𝐾.
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Эффективная упаковка

Доказательство (продолжение). Пусть 𝑣 = 𝑧1, … , 𝑧𝑛−1, 𝐾−(𝑛−1) ,

где действительные числа 𝑧1, … , 𝑧𝑛−1 выбраны независимо в
соответствии с равномерным распределением на интервале
[0, 𝐾).

Обозначим через Λ𝑣 решётку, образованную векторами 𝑣:

Λ𝑣 = 𝑚1𝑣1 + ⋯ + 𝑚𝑛−1𝑣𝑛−1 + 𝑚𝑣 ∶ 𝑚1, … , 𝑚𝑛−1, 𝑚 ∈ ℤ =

= (𝑚𝑧1 + 𝑚1𝐾, … , 𝑚𝑧𝑛−1 + 𝑚𝑛−1𝐾, 𝑚𝐾− 𝑛−1 ) ∶ 𝑚1, … , 𝑚𝑛−1, 𝑚 ∈ ℤ .

Обозначим через 𝜃(𝑥) число 𝑥′ ∈ (−
𝐾

2
,

𝐾

2
], для которого при

некотором 𝑚 ∈ ℤ выполнено 𝑥 − 𝑚𝐾 = 𝑥′. Существует только
одно такое число.
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Эффективная упаковка

Доказательство (продолжение). Для 𝑚 ∈ ℤ обозначим через
𝐴𝑚 событие «некоторая сумма 𝑚1𝑣1 + ⋯ + 𝑚𝑛−1𝑣𝑛−1 + 𝑚𝑣 ∈ 𝐶».

Так как все координаты точек множества 𝐶 меньше 𝐾/2 ,
событие 𝐴𝑚 происходит тогда и только тогда, когда

𝜃 𝑚𝑧1 , … , 𝜃 𝑚𝑧𝑛−1 , 𝑚𝐾−(𝑛−1) ∈ 𝐶,

что верно лишь в случае 𝜃 𝑚𝑧1 , … , 𝜃 𝑚𝑧𝑛−1 ∈ 𝐶𝑚𝐾−(𝑛−1) . Из

независимости и равномерности выбора чисел 𝑧𝑖 на интервале
[0, 𝐾) вытекает независимость и равномерность распределе-

ния величин 𝜃(𝑧𝑖) на интервале (−
𝐾

2
,

𝐾

2
].
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Эффективная упаковка

Доказательство (продолжение). Следовательно,

Pr 𝐴𝑚 = 𝐾− 𝑛−1 𝜇 𝐶𝑚𝐾− 𝑛−1 .

Суммируя по всем положительным 𝑚 и используя
центральную симметрию, получаем, что

෍

𝑚>0

Pr[𝐴𝑚] <
1

2
෍

𝑚∈ℤ

𝜇(𝐶𝑚𝐾−(𝑛−1)) 𝐾−(𝑛−1) <
1

2
∙ 2 = 1.

Следовательно, существует вектор 𝑣, для которого ни одно из
событий 𝐴𝑚, 𝑚 > 0 не произошло.
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Эффективная упаковка

Доказательство (продолжение). Из центральной симметрии
следует, что события 𝐴𝑚 и 𝐴−𝑚 происходят или не происходят
одновременно. Следовательно, не произошло ни одно из
событий 𝐴𝑚 при 𝑚 ≠ 0. Теперь рассмотрим случай 𝑚 = 0.

Все точки 𝑚1𝑣1 + ⋯ + 𝑚𝑛−1𝑣𝑛−1 = 𝐾 ∙ 𝑚1, … , 𝑚𝑛−1, 0 , за
исключением начала координат, лежат вне множества 𝐶. Для
этого 𝑣 имеем

Λ𝑣 ∩ 𝐶 = 0 .

Рассмотрим множество копий 𝐶 + 2𝑤, 𝑤 ∈ Λ𝑣. Пусть

𝑧 = 𝑐1 + 2𝑤1 = 𝑐2 + 2𝑤2 при   𝑐1, 𝑐2 ∈ 𝐶, 𝑤1, 𝑤2 ∈ Λ𝑣 .
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Эффективная упаковка

Доказательство (окончание). Тогда Τ𝑐1 − 𝑐2 2 = 𝑤2 − 𝑤1 . Из
выпуклости и центральной симметрии следует, что

Τ𝑐1 − 𝑐2 2 ∈ 𝐶 . Так как разность 𝑤2 − 𝑤1 ∈ Λ𝑣 , а значит, равна
нулевому вектору, то 𝑐1 = 𝑐2 и 𝑤1 = 𝑤2 . Следовательно,
данное множество копий образует упаковку пространства
ℝ𝑛. Из того, что det 2Λ𝑣 = 2𝑛det Λ𝑣 = 2𝑛, следует, что эта
упаковка имеет плотность, равную 2−𝑛𝜇 = 2−𝑛(2 − 𝜀).

Поскольку 𝜀 > 0 выбирался произвольно, то 𝛿𝑛 𝐶 ≥ 2−(𝑛−1). █
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