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Abstract
Functional MSO transductions, deterministic two-way transducers,
as well as streaming string transducers are all equivalent models
for regular functions. In this paper, we show that every regular
function, either on finite words or on infinite words, captured by a
deterministic two-way transducer, can be described with a regular
transducer expression (RTE). For infinite words, the transducer uses
Muller acceptance and ω-regular look-ahead. RTEs are constructed
from constant functions using the combinators if-then-else (deter-
ministic choice), Hadamard product, and unambiguous versions
of the Cauchy product, the 2-chained Kleene-iteration and the 2-
chained omega-iteration. Our proof works for transformations of
both finite and infinite words, extending the result on finite words
of Alur et al. in LICS’14. In order to construct an RTE associated
with a deterministic two-way Muller transducer with look-ahead,
we introduce the notion of transition monoid for such two-way
transducers where the look-ahead is captured by some backward
deterministic Büchi automaton. Then, we use an unambiguous
version of Imre Simon’s famous forest factorization theorem in
order to derive a “good” (ω-)regular expression for the domain of
the two-way transducer. “Good” expressions are unambiguous and
Kleene-plus as well asω-iterations are only used on subexpressions
corresponding to idempotent elements of the transition monoid.
The combinator expressions are finally constructed by structural in-
duction on the “good” (ω-)regular expression describing the domain
of the transducer.

CCS Concepts • Theory of computation → Models of com-
putation;

Keywords Transducers; Transition monoid; Unambiguity
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1 Introduction
One of the most fundamental results in theoretical computer sci-
ence is that the class of regular languages corresponds to the class
of languages recognised by finite state automata, to the class of
languages definable in MSO, and to the class of languages whose
syntactic monoid is finite. Regular languages are also those that
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can be expressed using a regular expression; this equivalence is
given by Kleene’s theorem. This beautiful correspondence between
machines, logics and algebra in the case of regular languages paved
the way to generalizations of this fundamental theory to regular
transformations [14], where, it was shown that regular transforma-
tions are those which are captured by two-way transducers and
by MSO transductions a la Courcelle. Much later, streaming string
transducers (SSTs) were introduced [1] as a model which makes
a single pass through the input string and uses a finite set of vari-
ables that range over strings from the output alphabet. In [1], the
equivalence between SSTs and MSO transductions was established,
thereby showing that regular transformations are those which are
captured by either SSTs, two-way transducers or MSO transduc-
tions. This theory was further extended to work for infinite string
transformations [4]; the restriction fromMSO transductions to first-
order definable transductions, and their equivalence with aperiodic
SSTs and aperiodic two-way transducers has also been established
over finite and infinite strings [15], [12]. Other generalizations such
as [2], extend this theory to trees. Most recently, this equivalence
between SSTs and logical transductions are also shown to hold
good even when one works with the origin semantics [6].

Moving on, an interesting generalization pertains to the char-
acterization of the output computed by two-way transducers or
SSTs (over finite and infinite words) using regular-like expressions.
For the strictly lesser expressive case of sequential one-way trans-
ducers, this regex characterization of the output is obtained as a
special case of Schützenberger’s famous equivalence [13] between
weighted automata and regular weighted expressions. The question
is much harder when one looks at two-way transducers, due to the
fact that the output is generated in a one-way fashion, while the
input is read in a two-way manner. The most recent result known in
this direction is [5], which provides a set of combinators, analogous
to the operators used in forming regular expressions. These combi-
nators are used to form combinator expressions which compute the
output of an additive cost register automaton (ACRA) over finite
words. ACRAs are generalizations of SSTs and compute a partial
function from finite words over a finite alphabet to values from a
monoid (D,+, 0) (SSTs are ACRAswhere (D,+, 0) is the free monoid
(Γ∗, ., ϵ) for some finite output alphabet Γ). The combinators intro-
duced in [5] form the basis for a declarative language DReX [3]
over finite words, which can express all regular string-to-string
transformations, and can also be efficiently evaluated.
Our Contributions. We generalize the result of [5]. Over finite
words, we work with two-way deterministic transducers (denoted
2DFT, see Figure 1 left) while over infinite words, the model consid-
ered is a deterministic two-way transducer with regular look-ahead,
equipped with the Muller acceptance condition. For example, Fig-
ure 1 right gives an ω-2DMTla (la stands for look-ahead andM in
the 2DMT for Muller acceptance).

In both cases of finite words and infinite words, we come up
with a set of combinators which we use to form regular transducer
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Figure 1. On the left, a 2DFT A with [[A]](bam1bam2b . . . amkb) = am2bm1am3bm2 . . . amkbmk−1 . On the right, an ω-2DMTla A ′ with
[[A ′]](u1#u2# . . . #un#v) = uR1 u1#u

R
2 u2# . . . #u

R
nun#v where u1, . . . ,un ∈ (a + b)∗, v ∈ (a + b)ω and uR denotes the reverse of u. The Muller

acceptance set is {{q5}}. The look-ahead expressions Σ∗#Σω and (Σ\{#})ω are used to check if there is a # in the remaining suffix.

expressions (RTE) characterizing two-way transducers (2DFT/ω-
2DMTla).
The Combinators. We describe our basic combinators for RTEs.
The semantics of an RTE is a partial function f : Σ∞ → Γ∞ whose
domain is denoted dom(f ).
•We first look at the case of finite words. The constant function d
maps all strings in Σ∗ to some fixed value d . The unambiguous ver-
sion of union is the if-then-else combinator K ? f : д which checks
ifw ∈ Σ∗ is in the regular language K or not, and produces f (w) if
w ∈ K andд(w) otherwise. The unambiguous Cauchy product f ⊡д
when applied onw ∈ Σ∗ produces f (u) ·д(v) ifw = u ·v is an unam-
biguous decomposition ofw withu ∈ dom(f ) andv ∈ dom(д). The
unambiguous Kleene-plus f ⊞ when applied to w ∈ Σ∗ produces
f (u1) · · · f (un ) ifw = u1 · · ·un is an unambiguous factorization of
w , with each ui ∈ dom(f ). The Hadamard product f ⊙ д when ap-
plied tow produces f (w) ·д(w). Finally, the unambiguous 2-chained
Kleene-plus [K , f ]2⊞ when applied to a stringw produces as output
f (u1u2) · f (u2u3) · · · f (un−1un ) ifw can be unambiguously written
as u1u2 · · ·un , with each ui ∈ K , for the regular language K . We

also have the reverses f
←−
⊡ д, f

←−
⊞ and [K , f ]

←−−
2⊞: [f

←−
⊡ д](w) pro-

duces д(v) · f (u) ifw is the unambiguous concatenation u · v with

u ∈ dom(f ) and v ∈ dom(д), f
←−
⊞(w) produces f (un ) · · · f (u1) ifw

is the unambiguous concatenation u1 · · ·un with ui ∈ dom(f ) for

all i , and, [K , f ]
←−−
2⊞(w) produces f (un−1un ) · · · f (u1u2) if w is the

unambiguous catenation u1 · · ·un with ui ∈ K for all i .
• In the case of infinite words, the Cauchy product f ⊡ д works
on w ∈ Σω if w can be written unambiguously as u · v with u ∈
dom(f )∩Σ∗ andv ∈ dom(д)∩Σω . Another difference is in the use
of the Hadamard product: forw ∈ Σω , f ⊙д produces f (w) ·д(w) if
f (w) is a finite string. Note that these are sound with respect to the
concatenation semantics for infinite words. Indeed, we also have
ω-iteration and two-chained ω-iteration: f ω (w) = f (u1)f (u2) · · ·
if w ∈ Σω can be unambiguously decomposed as w = u1u2 · · ·
with ui ∈ dom(f ) ∩ Σ∗ for all i ≥ 1. Moreover, [K , f ]2ω (w) =
f (u1u2)f (u2u3) · · · ifw ∈ Σω can be unambiguously decomposed
asw = u1u2 · · · with ui ∈ K for all i ≥ 1, where K ⊆ Σ∗ is regular.
• An RTE is formed using the above basic combinators. Consider

the RTE C = C4⊞ ⊡Cω
2 with C4 = ((a + b)∗#) ? (C3

←−
⊞ ⊙ C1⊞) :

⊥, C2 = a ?a : (b ?b : ⊥). C1 = a ?a : (b ?b : (# ? # : ⊥)), C3 =
a ?a : (b ?b : (# ? ϵ : ⊥)). Then dom(C1) = dom(C3) = (a + b + #),
dom(C2) = (a + b), dom(C4) = (a + b)∗# and, for u ∈ (a + b)∗,
[[C4]](u#) = uRu# where uR denotes the reverse of u. This gives

dom(C) = [(a + b)∗#]+(a + b)ω and when ui ∈ (a + b)
∗ and v ∈

(a+b)ω we have [[C]](u1#u2# · · ·un#v) = uR1 u1#u
R
2 u2# · · · #u

R
nun#v .

The RTE C ′ = (a + b)ω ?Cω
2 : C corresponds to the ω-2DMTla A ′

in Figure 1: [[C ′]] = [[A ′]].
• The combinators proposed in [5] also require unambiguity in
concatenation and iteration. The base function L/d in [5] maps
all strings in language L to the constant d , and is undefined for
strings not in L. This can be written using our if-then-else L ?d : ⊥.
The conditional choice combinator f ▷ д of [5] maps an input σ
to f (σ ) if it is in dom(f ), and otherwise it maps it to д(σ ). This
can be written in our if-then-else as dom(f ) ? f : д. The split-sum
combinator f ⊕ д of [5] is our Cauchy product f ⊡ д. The iterated
sum Σf of [5] is our Kleene-plus f ⊞. The left-split-sum and left-
iterated sum of [5] are counterparts of our reverse Cauchy product

f
←−
⊡ д and reverse Kleene-plus f

←−
⊞. The sum f +д of two functions

in [5] is our Hadamard product f ⊙ д. Finally, the chained sum
Σ(f ,L) of [5] is our two-chained Kleene-plus [L, f ]2⊞. In our case,
notations and terminologies are directly inherited from the well-
established theory of weighted automata. We believe it is more
natural and reflects both the parsing of the input word with usual
(unambiguous) rational expressions and how the output is produced.
We also extend RTEs to infinite words.

Our main result is that two-way deterministic transducers and
regular transducer expressions are effectively equivalent, both for
finite words (see [11]) and infinite words.

Theorem 1.1. (1) Given an RTE (resp. ω-RTE) we can effectively
construct an equivalent 2DFT (resp. an ω-2DMTla).

(2) Given a 2DFT (resp. an ω-2DMTla) we can effectively construct
an equivalent RTE (resp. ω-RTE).

The proof of (1) is by structural induction on the RTE. The con-
struction of an RTE starting from a two-way deterministic trans-
ducer A is quite involved. It is based on the transition monoid
TrM(A) of the transducer. This is a classical notion for two-way
transducers over finite words, but not for two-way transducers with
look-ahead on infinite words (to the best of our knowledge). So we
introduce the notion of transition monoid forω-2DMTla. We handle
the look-ahead with a backward deterministic Büchi automaton
(BDBA), also called complete unambiguous or strongly unambiguous
Büchi automata [8, 19]. The translation of A to an RTE is crucially
guided by a “good” rational expression induced by the transition
monoid of A. These “good” expressions are obtained thanks to
an unambiguous version [16] of the celebrated forest factorization
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theorem due to Imre Simon [18] (see also [9]). The unambiguous
forest factorization theorem implies that, given a two-way trans-
ducer A, any input wordw in the domain of A can be factorized
unambiguously following a “good” rational expression induced by
the transition monoid of A. This unambiguous factorization then
guides the construction of the RTE corresponding to A. This alge-
braic backdrop facilitates a uniform treatment in the case of infinite
words and finite words. As a remark, it is not a priori clear how the
result of [5] extends to infinite words using the techniques therein.

Goodness of Rational Expressions. The goodness of a rational
expression over alphabet Σ is defined using a morphism φ from
Σ∗ to a monoid (S, ., 1S ). A rational expression F is good iff (i) it
is unambiguous and (ii) for each subexpression E of F , the image
of all strings in L(E) maps to a single monoid element sE , and (iii)
for each subexpression E+ of F , sE is an idempotent. Note that
unambiguity ensures the functionality of the output computed. The
other two conditions are used to define inductively the RTEs. Good
rational expressions might be useful in settings beyond two-way
transducers.

Computing the RTE. As an example, we now show how one
computes an RTE equivalent to the 2DFT A on the left of Figure 1.
1. We work with the morphism Tr : Σ∗ → TrM which maps words
w ∈ Σ∗ to the transitionmonoid TrM ofA. An elementX ∈ TrM is a
set consisting of triples (p,d,q), whered is a direction { ↷ , ↶,→,←}.
Given a wordw ∈ Σ∗, a triple (p, ↷ ,q) ∈ Tr(w) iff when starting in
state p on the left most symbol ofw , the run of A leavesw on the
left in state q. The other directions ↶ (start at the rightmost symbol
of w in state p and leave w on the right in state q),← and→ are
similar. In general, we havew ∈ dom(A) iff on input ⊢w ⊣, starting
on ⊢ in the initial state ofA, the run exits on the right of ⊣ in some
final state of A. With the automaton A on the left of Figure 1 we
havew ∈ dom(A) iff (q0,→,q2) ∈ Tr(w).
2. For each X ∈ TrM such that (q0,→,q2) ∈ X , we find an RTE CX
whose domain is Tr−1(X ) and such that [[A]](w) = [[CX ]](w) for all
w ∈ Tr−1(X ). The RTE corresponding to [[A]] is the disjoint union
of all these RTEs and is written using the if-then-else construct
iterating over for all such elements X . For instance, if the monoid
elements containing (q0,→,q2) are X1,X2,X3 then we set C =
Tr−1(X1) ?CX1 : (Tr−1(X2) ?CX2 : (Tr

−1(X3) ?CX3 : ⊥)) where ⊥
stands for a nowhere defined function, i.e., dom(⊥) = ∅.
3. Consider the language L = (ba+)+b ⊆ dom(A). Notice that the
regular expression (ba+)+b is not “good”. For instance, condition
(ii) is violated since Tr(bab) , Tr(babab). Indeed, we can see in
Figure 2 that if we start on the right of bab in state q3 then we exit
on the left in state q5: (q3,←,q5) ∈ Tr(bab). On the other hand, if
we start on the right of babab in state q3 then we exit on the right in
state q2: (q3, ↶,q2) ∈ Tr(babab). Also, (q5,→,q1) ∈ Tr(bab) while
(q5,→,q2) ∈ Tr(babab). It can be seen that Tr(a) is an idempotent,
hence Tr(a+) = Tr(a). We deduce also Tr(ba+b) = Tr(bab). Finally,
we have Tr((ba+)nb) = Tr(babab) for all n ≥ 2. Therefore, to obtain
the RTE corresponding to L, we compute RTEs corresponding to
ba+b and (ba+)+ba+b satisfying conditions (i) and (ii) of “good”
rational expressions.
4. While ba+b is good (Tr(a) is idempotent), (ba+)+ba+b is not
good, the reason being that Tr(ba+) is not an idempotent. We can
check that Tr(ba+ba+) is still not idempotent, while Tr((ba+)i ) =

Tr((ba+)3)1 for all i ≥ 3, (see Figure 2: we only need to argue
for (q0,→,q3), (q5,→,q3) and (q6,→,q3) in Tr((ba)i ), i ≥ 3, all
other entries trivially carry over). In particular, Tr((ba+)3) is an
idempotent. Thus, to compute the RTE for L = (ba+)+b, we consider
the RTEs corresponding to the “good” regular expressions E1 =
ba+b, E2 = ba+ba+b, E3 = [(ba+)3]+b, E4 = [(ba+)3]+ba+b and
E5 = [(ba+)3]+ba+ba+b.
5. We define by induction, for each “good” expression E and “step”
x = (p,d,q) in the monoid element X = Tr(E) associated with
E, an RTE CE (x) whose domain is E and, given a word w ∈ E, it
computes [[CE (x)]](w) the output of A when running step x onw .
For instance, if E = a and x = (q5,←,q5) the output is b so we
set Ca (q5,←,q5) = (a ?b : ⊥). The if-then-else ensures that the
domain is a. Similarly, we get the RTE associated with all atomic
expressions and steps. For instance, Cb (q1,→,q2) = (b ? ε : ⊥) =
Cb (q3,

↷

,q4). Foru,v ∈ Σ∗, we introduce the macrou/v = u ?v : ⊥.
We have dom(u/v) = {u} and [[u/v]](u) = v .

We turn to the good expression a+. If we start on the right of
a wordw ∈ a+ from state q5 then we read the word from right to
left using always the step (q5,←,q5). Therefore, Ca+ (q5,←,q5) =

(Ca (q5,←,q5))
←−
⊞ = (a/b)

←−
⊞. Similarly, Ca+ (q4,←,q4) = (a/a)

←−
⊞,

Ca+ (q1,→,q1) = (a/ε)
⊞ = Ca+ (q6,→,q6). Now if we start on the

left of a wordw ∈ a+ from stateq2 then we first take the step (q2,→
,q3) and then we iterate the step (q3,→,q3). Therefore, Ca+ (q2,→
,q3) = a ?Ca (q2,→,q3) : (Ca (q2,→,q3)⊡ (Ca (q3,→,q3))⊞) =
a ? (a/ε) :

(
(a/ε)⊡ (a/ε)⊞

)
, which is equivalent to the RTE (a/ε)⊞.

We consider now E = ba+ba+ and the step x = (q0,→,q3). We
have (see Figure 2) CE (x) = Cb (q0,→,q1) ⊡ Ca+ (q1,→,q1) ⊡
Cb (q1,→,q2)⊡Ca+ (q2,→,q3) = (b/ε)⊡(a/ε)

⊞⊡(b/ε)⊡(a/ε)⊞ ≈
(ba+ba+ ? ε : ⊥). More interesting is y = (q4, ↶,q1) since on a
word w ∈ E, the run which starts on the right in state q4 goes
all the way to the left until it reads the first b in state q5 and
then moves to the right until it exits in state q1 (see Figure 2):
CE (y) =

(
(b/ε)

←−
⊡ Ca+ (q5,←,q5)

←−
⊡ Cb (q4,←,q5)

←−
⊡ Ca+ (q4,←

,q4)
)
⊙
(
Cb (q5,→,q6)⊡Ca+ (q6,→,q6)⊡Cb (q6,→,q1)⊡Ca+ (q1,→

,q1)
)
which is equal to the Hadamard product of

(
(b/ε)

←−
⊡ (a/b)

←−
⊞←−⊡

(b/ε)
←−
⊡ (a/a)

←−
⊞)

and
(
(b/ε) ⊡ (a/ε)⊞ ⊡ (b/ε) ⊡ (a/ε)⊞

)
. Hence,

CE (y) ≈ (b/ε)
←−
⊡ (a/b)

←−
⊞ ←−⊡ (b/ε)

←−
⊡ (a/a)

←−
⊞. The leftmost (b/ε)

1Tr((ba+)3) = {(q0,→, q3), (q1,

↷

, q5), (q1, ↶, q1), (q2, ↷ , q4),
(q2, ↶, q3), (q3, ↷ , q4), (q3, ↶, q3), (q4, ↷ , q5), (q4, ↶, q1), (q5,→, q3),
(q5, ↶, q6), (q6,→, q3), (q6, ↶, q6)}

Figure 2. Run of A on an input word in (ba+)+b.
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in the above RTEs is used to make sure that the input word be-
longs to E = ba+ba+. Composing these steps on the right with
b, we obtain C2 = CE2 (q0,→,q2) which describes the behaviour
of A on E2 = ba+ba+b ⊆ dom(A): C2 =

(
CE (x) ⊡ Cb (q3,

↷

,q4)
)
⊙

(
CE (y) ⊡ Cb (q1,→,q2)

)
=

(
CE (x) ⊡ (b/ε)

)
⊙

(
CE (y) ⊡

(b/ε)
)
≈

(
(b/ε)

←−
⊡ (a/b)

←−
⊞ ←−⊡ (b/ε)

←−
⊡ (a/a)

←−
⊞)

⊡ (b/ε). Therefore,
[[C2]](bam1bam2b) = am2bm1 = [[A]](bam1bam2b).

Full proofs of all the results can be found in [11].

2 Two-way transducers over ω-words
We consider regular functions on infinite words. We restrict our
attention to two way transducers as the model for computing reg-
ular functions. Given a finite alphabet Σ, let Σω denote the set of
infinite words over Σ, and let Σ∞ = Σ∗ ∪ Σω be the set of all finite
or infinite words over Σ.

We fix a finite input alphabet Σ and a finite output alphabet Γ.
Let ⊢ be a left end marker symbol not in Σ and let Σ⊢ = Σ ∪ {⊢}.
The input word is presented as ⊢w wherew ∈ Σω .

Let R be a finite set of look-ahead ω-regular languages. For theω-
regular languages in R, we may use any finite descriptions such as
ω-regular expressions or automata. A deterministic two-way trans-
ducer (ω-2DMTla) overω-words is a tupleA = (Q, Σ, Γ,q0,δ ,F ,R),
where Q is a finite set of states, q0 ∈ Q is a unique initial state, and
δ : Q×Σ⊢×R 7→ Q×Γ∗×{−1,+1} is the partial transition function.
We request that for every pair (q,a) ∈ Q × Σ⊢, the subset R(q,a) of
languages R ∈ R such that δ (q,a,R) is defined forms a partition of
Σω . This ensures that A is complete and behaves deterministically.
The set F ⊆ 2Q specifies the Muller acceptance condition. As in
the finite case, the reading head cannot move left while on ⊢. A con-
figuration is represented by w ′qaw ′′ where w ′a ∈ ⊢Σ∗, w ′′ ∈ Σω
and q is the current state, scanning letter a. From configuration
w ′qaw ′′, let R be the unique ω-regular language in R(q,a) such
thatw ′′ ∈ R, the automaton outputs γ and moves to{

w ′aq′w ′′ if δ (q,a,R) = (q′,γ ,+1)
w ′1q

′baw ′′ if δ (q,a,R) = (q′,γ ,−1) andw ′ = w ′1b .

The output γ ∈ Γ∗ is appended at the end of the output produced
so far. A run ρ ofA onw ∈ Σω is a sequence of transitions starting
from the initial configuration q0⊢w where the reading head is on ⊢:

q0⊢w
γ1
−−→ w ′1q1w

′′
1

γ2
−−→ w ′2q2w

′′
2

γ3
−−→ w ′3q3w

′′
3

γ4
−−→ w ′4q4w

′′
4 · · ·

We say that ρ reads the whole word w if sup{|w ′n | | n > 0} = ∞.
The set of states visited by ρ infinitely often is denoted inf(ρ) ⊆ Q .
The wordw is accepted byA, i.e.,w ∈ dom(A) if ρ reads the whole
wordw and inf(ρ) ∈ F . In this case, we let [[A]](w) = γ1γ2γ3γ4 · · ·
be the output produced by ρ.

The notation ω-2DMTla signifies the use of the look-ahead (la)
using the ω-regular languages in R. It must be noted that without
look-ahead, the expressive power of two-way transducers over
infinite words is lesser than regular transformations over infinite
words [4]. A classical example of this is given in Example 2.1, where
the look-ahead is necessary to obtain the required transformation.

Example 2.1. The ω-2DMTla A ′ over Σ = {a,b, #} on the right
of Figure 1 defines the transformation [[A ′]](u1#u2# · · · #un#v) =
uR1 u1#u

R
2 u2# · · · #u

R
nun#v where u1, . . . ,un ∈ (a +b)∗,v ∈ (a +b)ω

anduR denotes the reverse ofu. TheMuller acceptance set is {{q5}}.
From state q1 reading ⊢, or state q4 reading #, A ′ uses the look

ahead partition R(q1, ⊢) = R(q4, #) = {Σ∗#Σω , (Σ \ {#})ω }, which
indicates the presence or absence of a # in the remaining suffix
of the word being read. For all other transitions, the look-ahead
langage is Σω , hence it is omitted. Also, to keep the picture light,
the automaton is not complete, i.e., we have omitted the transitions
going to a sink state. It can be seen that any maximal string u
between two consecutive occurrences of # is replaced with uRu;
the infinite suffix over {a,b}ω is then reproduced as it is.

Remark 2.2. Equivalently, two-way transducers over ω-words can
be defined using look-behind and look-ahead automata [4]. We believe
that using ω-regular languages for the look-ahead constraints is more
convenient, resulting in more readable transducers. As explained in
Section 6, these look-ahead languages can be replaced with automata.

3 Regular Transducer Expressions
We define regular transducer expressions for both finite and infinite
words. Let Σ and Γ be finite input and output alphabets and let ⊥
stand for undefined. We define the output domain asD = Γ∞∪{⊥},
with the usual concatenation of a finite word on the left with a
finite or infinite word on the right. Here, ⊥ acts as zero and the
unit is the empty word 1D = ε .

The syntax of Regular Transducer Expressions (RTEs and ω-RTEs)
from Σ∞ to D is defined by:

E ::= d | K ?E : E | E ⊙ E | E ⊡ E | E⊞ | E
←−
⊞ | [K ,E]2⊞ | [K ,E]

←−−
2⊞

C ::= L ?C : C | C ⊙ C | E ⊡C | Eω | [K ,E]2ω

where d ∈ Γ∗ ∪ {⊥}, K ⊆ Σ∗ ranges over regular languages of finite
words and L ⊆ Σω ranges overω-regular languages of infinite words.
Here, E is an RTE over finite words with semantics [[E]] : Σ∗ →
Γ∗∪{⊥}, whereasC is anω-RTE over infinite words with semantics
[[C]] : Σω → D. The semantics is defined inductively.
Constants. For d ∈ Γ∗ ∪ {⊥}, we let [[d]] be the constant map
defined by [[d]](w) = d for all w ∈ Σ∗. We have dom([[d]]) = Σ∗ if
d , ⊥ and dom([[⊥]]) = ∅.

Given regular languagesK ⊆ Σ∗,L ⊆ Σ∞, and functions f : Σ∗ →
Γ∗ ∪ {⊥}, д,h : Σ∞ → D, we define
If then else.We have dom(L ?д : h) = (dom(д)∩L)∪ (dom(h) \L).
Moreover, (L ?д : h)(w) is defined as д(w) forw ∈ dom(д) ∩ L, and
h(w) forw ∈ dom(h) \ L.
Hadamard product. We have dom(д ⊙ h) = д−1(Γ∗) ∩ dom(h).
Moreover, (д ⊙ h)(w) = д(w) · h(w) forw ∈ dom(д) ∩ dom(h) with
д(w) ∈ Γ∗.
Unambiguous Cauchy product. Ifw ∈ Σ∞ admits a unique fac-
torizationw = u · v with u ∈ dom(f ) and v ∈ dom(д) then we set
(f ⊡ д)(w) = f (u) · д(v). Otherwise, (f ⊡ д)(w) = ⊥.
Unambiguous Kleene-plus and its reverse. Ifw ∈ Σ∗ admits a
unique factorizationw = u1u2 · · ·un with n ≥ 1 and ui ∈ dom(f )
for all 1 ≤ i ≤ n then we set f ⊞(w) = f (u1)f (u2) · · · f (un ) and

f
←−
⊞(w) = f (un ) · · · f (u2)f (u1). Otherwise, we set f ⊞(w) = ⊥ =

f
←−
⊞(w). We have dom(f ⊞) = dom(f

←−
⊞) ⊆ dom(f )+. Notice that

dom(f ⊞) = ∅ when ε ∈ dom(f ).
Unambiguous 2-chained Kleene-plus and its reverse. If w ∈
Σ∗ admits a unique factorization w = u1u2 · · ·un with n ≥ 1 and
ui ∈ K for all 1 ≤ i ≤ n then we set [K , f ]2⊞(w) = f (u1u2)f (u2u3)

· · · f (un−1un ) and [K , f ]
←−−
2⊞(w) = f (un−1un ) · · · f (u2u3)f (u1u2) (if

n = 1, the empty product gives the unit of D: [K , f ]2⊞(w) = 1D =

[K , f ]
←−−
2⊞(w)). Otherwise, we set [K , f ]2⊞(w) = ⊥ = [K , f ]

←−−
2⊞(w).
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Again, we have dom([K , f ]2⊞) = dom([K , f ]
←−−
2⊞) ⊆ K+ and we

have equality when K+ is unambiguous and K2 ⊆ dom(f ).
Unambiguous ω-iteration. If w ∈ Σω admits a unique infinite
factorization w = u1u2u3 · · · with ui ∈ dom(f ) for all i ≥ 1 then
we set f ω (w) = f (u1)f (u2)f (u3) · · · ∈ Γ∞. Otherwise, f ω (w) = ⊥.
Unambiguous 2-chainedω-iteration. Ifw ∈ Σω admits a unique
factorizationw = u1u2u3 · · · with ui ∈ K for all i ≥ 1 and if more-
over uiui+1 ∈ dom(f ) for all i ≥ 1 then we set [K , f ]2ω (w) =
f (u1u2)f (u2u3)f (u3u4) · · · . Otherwise, we set [K , f ]2ω (w) = ⊥.

Remark 3.1. Let Cε = (Σ ? ε : ⊥)ω . We have dom(Cε ) = Σω and
[[Cε ]](w) = ε for all w ∈ Σω . Now, for γ ∈ Γ+, let Cγ = (Σ ?γ :
⊥)⊡Cε . We have dom(Cγ ) = Σω and [[Cγ ]](w) = γ for allw ∈ Σω .
Therefore, we can freely use constants γ ∈ Γ∗ when defining ω-RTEs.

Remark 3.2. We can express the ω-iteration with the 2-chained
ω-iteration: f ω = [dom(f ), f ⊡ (dom(f ) ? ε : ⊥)]2ω .

Example 3.3. We now give the ω-RTE for the transformation
given in Example 2.1. Let E1 = a ?a : (b ?b : (# ? # : ⊥)), E2 = a ?a :
(b ?b : ⊥) and E3 = a ?a : (b ?b : (# ? ε : ⊥)). Then dom(E1) =
dom(E3) = (a + b + #) and dom(E2) = (a + b). Also, we let E4 =

((a + b)∗#) ? (E3
←−
⊞ ⊙ E1⊞) : ⊥. We have dom(E4) = (a + b)∗# and,

for u ∈ (a + b)∗, [[E4]](u#) = uRu# where uR denotes the reverse of
u. Next, letC1 = E4⊞ ⊡ Eω2 . Then, dom(C1) = [(a+b)∗#]+(a+b)ω ,
and [[C1]](u1#u2# · · ·un#v) = uR1 u1#u

R
2 u2# · · · #u

R
nun#v when ui ∈

(a + b)∗ and v ∈ (a + b)ω . Finally, let C = (a + b)ω ?Eω2 : C1. We
have dom(C) = [(a + b)∗#]∗(a + b)ω and [[C]] = [[A ′]] whereA ′ is
the transducer on the right of Figure 1.

Theorem 3.4. ω-2DMTla and ω-RTEs define the same class of func-
tions. More precisely, (1) given an ω-RTE C , we can construct an
ω-2DMTla A such that [[A]] = [[C]], and (2) given an ω-2DMTla A,
we can construct an ω-RTE C such that [[A]] = [[C]],

The proof of (1) is given in the next section, while the proof of (2)
will be given in Section 8 after some preparatory work on backward
deterministic Büchi automata (Section 5) which are used to remove
the look-ahead ofω-2DMTla (Section 6), and the notion of transition
monoid for ω-2DMTla (Section 7) used in the unambiguous forest
factorization theorem extended to infinite words (Theorem 8.1).

4 ω-RTE to ω-2DMTla
In this section, we prove one direction of Theorem 3.4: given an
ω-RTE C , we can construct an ω-2DMTla A such that [[A]] = [[C]].
The proof is by structural induction and follows immediately from

Lemma 4.1. Let K ⊆ Σ∗ be regular and L ⊆ Σω be ω-regular. Let
f be an RTE with [[f ]] = [[Mf ]] for some 2DFT Mf . Let д,h be ω-
RTEs with [[д]] = [[Mд]] and [[h]] = [[Mh ]] for ω-2DMTla Mд andMh
respectively. Then, one can construct

1. an ω-2DMTla A such that [[L ?д : h]] = [[A]],
2. an ω-2DMTla A such that [[A]] = [[д ⊙ h]],
3. an ω-2DMTla A such that [[A]] = [[д ⊡ h]],
4. an ω-2DMTla A such that [[A]] = [[f ω ]],
5. an ω-2DMTla A such that [[A]] = [[[K , f ]2ω ]].

Proof. Throughout the proof, we letMд = (Qд , Σ, Γ, sд ,δдFд ,Rд)
and Mh = (Qh , Σ, Γ, sh ,δh ,Fh ,Rh ) be the be the ω-2DMTla such
that [[Mд]] = [[д]] and [[Mh ]] = [[h]].

(1) If then else. The set of states ofA isQA = {q0}∪Qд∪Qh with
q0 < Qд ∪ Qh . In state q0, we have the transitions δA (q0, (⊢,R ∩

L)) = (q,γ ,+1) if δд(sд , (⊢,R)) = (q,γ ,+1) and δA (q0, (⊢,R′ \ L)) =
(q′,γ ′,+1) if δh (sh , (⊢,R′)) = (q′,γ ′,+1). This invokesMд (Mh ) iff
the input w is in L (not in L). The Muller set F is simply a union
Fд ∪ Fh of the respective Muller sets ofMд andMh . It is clear that
[[A]] coincides with [[Mд]] iff the input string is in L, and otherwise,
[[A]] coincides with [[Mh ]].

(2) Hadamard product. We create a look ahead which indicates
the position where we can stop reading the input wordw for the
transducerMд . The look ahead should satisfy two conditions: (a)
we cannot visit any position to the left of the current position in
the remaining run ofMд onw , (b) the output produced by running
Mд on the suffix should be ε .

To accommodate these conditions, we create look ahead au-
tomata Aq for each state q ∈ Qд and let Lq = dom(Aq ). The
structure of Aq is the same asMд except that we
• add a new initial state ιq and set δq (ιq , ⊢, Σω ) = (q, ε,+1),
• remove transitions fromMд where the output is γ , ε ,
• remove transitions fromMд where the input symbol is ⊢.
We explain the construction of the ω-2DMTla A such that [[д ⊙
h]] = [[A]]. The set of states of A are QA = Qд ∪ Qh ∪ {reset}.
Backward transitions in A and Mд are the same: δA (q,a,R) =
(q′,γ ,−1) iff δд(q,a,R) = (q

′,γ ,−1). Forward transitions of Mд
are divided into two depending on the look ahead. If we have
δд(q,a,R) = (q

′,γ ,+1) inMд for an a ∈ Σ⊢, then δA (q,a,R \Lq′) =
(q′,γ ,+1) and δA (q,a,R∩Lq′) = (reset,γ ,+1). From the reset state,
we go to the left until ⊢ is reached and then start runningMh . So,
δA (reset,a, Σω ) = (reset, ε,−1) for all a ∈ Σ and δA (reset, ⊢,R) =
(q′′,γ ,+1) if δh (sh , ⊢,R) = (q′′,γ ,+1). The accepting set is the same
as the Muller accepting set Fh ofMh .

(3) Cauchy product. From the transducers Mf and Mд , we can
construct a DFADf = (Qf , Σ,δf , sf , Ff ) that accepts dom(Mf ) and
a deterministic Muller automaton (DMA) Dд = (Qд , Σ,δд , sд ,Fд)
that accepts dom(Mд).

Now, the set L of words w having at least two factorizations
w = u1v1 = u2v2 with u1,u2 ∈ dom(f ), v1,v2 ∈ dom(д) and
u1 , u2 is ω-regular. This is easy since L can be written as L =⋃

p∈Ff ,q∈Qд Lp ·Mp,q · Rq where
• Lp ⊆ Σ∗ is the regular set of words which admit a run inDf
from its initial state to state p,
• Mp,q ⊆ Σ∗ is the regular set of words which admit a run in
Df from state p to some final state in Df , and also admit a
run in Dд from the initial state to some state q in Dд ,
• Rq ⊆ Σω is the ω-regular set of words which (i) admit an ac-
cepting run from stateq inDд and also (ii) admit an accepting
run in Dд from its initial state sд .

Therefore, dom(f ⊡ д) = (dom(f ) · dom(д)) \ L is ω-regular.
First we construct anω-1DMTlaD such that dom(D) = dom(f⊡

д) and on an input wordw = uv with u ∈ dom(f ) and v ∈ dom(д),
it produces the output u#v where # < Σ is a new symbol. From
its initial state while reading ⊢, D uses the look-ahead to check
whether the input wordw is in dom(f ⊡ д) or not. If yes, it moves
right and enters the initial state of Df . If not, it goes to a sink
state and rejects. While running Df , D copies each input letter to
output. Upon reaching a final state of Df , we use the look-ahead
dom(д) to see whether we should continue running Df or we
should switch to Dд . Formally, if δf (q,a) = q′ ∈ Ff the corre-
sponding transitions of D are δD (q,a, dom(д)) = (sд ,a#,+1) and
δD (q,a, Σ

ω \ dom(д)) = (q′,a,+1).
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While runningDд ,D copies each input letter to output. Accepting
sets ofD are the accepting sets of the DMADд . Thus,D produces
an output u#v for an input stringw = uv which is in dom(f ⊡ д)
such that u ∈ dom(f ) and v ∈ dom(д).

Next we construct an ω-2DMTla T which takes input words of
the form u#v with u ∈ Σ∗ and v ∈ Σω , runsMf on u andMд on v .
To do so, u is traversed in either direction depending on Mf and
the symbol # is interpreted as right end marker ⊣ for Mf . While
simulating a transition of Mf moving right of ⊣, producing the
output γ and reaching state q, there are two possibilities. If q is not
a final state of Mf then T moves to the right of #, goes to some
sink state and rejects. If q is a final state ofMf , then T stays on #
producing the output γ and goes to the initial state ofMд . Then, T
runsMд on v interpreting # as ⊢. The Muller accepting set of T is
same asMд .

We construct an ω-2DMTla A as the composition of D and
T . Regular transformations are definable by ω-2DMTla [4] and
are closed under composition [10]. Thus the composition of an
ω-1DMTla and an ω-2DMTla is an ω-2DMTla. We deduce thatA is
an ω-2DMTla. Moreover [[A]] = [[f ⊡ д]].

(4) ω-iteration. By the Remark 3.2, this is a derived operator and
hence the result follows from the next case.

(5) 2-chained ω-iteration. First we show that the set of wordsw
in Σω having an unambiguous decomposition w = u1u2 · · · with
ui ∈ K for each i is ω-regular. As in case (3) above, the language
L of words w having at least two factorizations w = u1v1 = u2v2
with u1,u2 ∈ K , v1,v2 ∈ Kω and u1 , u2 is ω-regular. Hence,
L′ = K∗ ·L isω-regular and contains all words in Σω having several
factorizations as products of words in K . We deduce that Σω \ L′ is
ω-regular.

As in case (3) above, we construct an ω-1DMTla D which takes
as input w and outputs u1#u2# · · · iff there is an unambiguous
decomposition ofw asu1u2 · · · with eachui ∈ K . We then construct
an ω-2DMT D ′ that takes as input words of the form u1#u2# · · ·
with each ui ∈ Σ∗ and produces u1u2#u2u3# · · · .

Next we construct an ω-2DMT T that takes as input words of
the form w1#w2# · · · with each wi ∈ Σ

∗ and runs Mf on each wi
from left to right. The transducer T interprets # as ⊢ (resp. ⊣) when
it is reached from the right (resp. from left). While simulating a
transition ofMf moving right of ⊣, we proceed as in case (3) above,
except that T goes to the initial state ofMf instead.

The ω-2DMTla A is obtained as the composition of D, D ′ and
T . The output produced by A is [[Mf ]](u1u2)[[Mf ]](u2u3) · · · . □

5 Backward deterministic Büchi automata
A Büchi automaton over the input alphabet Σ is a tuple B =
(P , Σ,∆, Fin) where P is a finite set of states, Fin ⊆ P is the set
of final (accepting) states, and ∆ ⊆ P × Σ × P is the transition rela-
tion. A run of B over an infinite wordw = a1a2a3 · · · is a sequence
ρ = p0,a1,p1,a2,p2, . . . such that (pi−1,ai ,pi ) ∈ ∆ for all i ≥ 1.
The run is final (accepting) if inf(ρ) ∩ Fin , ∅ where inf(ρ) is the
set of states visited infinitely often by ρ.

The Büchi automaton B is complete unambiguous (CUBA) [8]
also called backward deterministic (BDBA) in [19] if for all infinite
wordsw ∈ Σω , there is exactly one run ρ of B overw which is final,
this run is denoted B(w). The fact that we request at least/most
one final run on w explains why the automaton is called com-
plete/unambiguous. Wlog, we may assume that all states of B are

useful, i.e., for all p ∈ P there exists somew ∈ Σω such that B(w)
starts from state p. In that case, it is easy to check that the transition
relation is backward deterministic and complete: for all (p,a) ∈ P ×Σ
there is exactly one statep′ such that (p′,a,p) ∈ ∆. Wewritep′

a
←− p

and state p′ is denoted ∆−1(p,a). In other words, the inverse of the
transition relation ∆−1 : P × Σ→ P is a total function.

For each state p ∈ P , we let L(B,p) be the set of infinite words
w ∈ Σω such that B(w) starts from p. For every subset I ⊆ P of
initial states, the language L(B, I ) =

⋃
p∈I L(B,p) is ω-regular.

Example 5.1. For instance, the automaton B below is a BDBA.
Morover, we have L(B,p2) = (Σ \ {#})ω , L(B,p4) = (#Σ∗)ω , and
L(B, {p1,p3,p4}) = Σ∗#Σω .

p1 p2

Σ Σ \ {#}

#
p3 p4

Σ \ {#} #

Σ \ {#}

#

Deterministic Büchi automata (DBA) are strictly weaker than
non-deterministic Büchi automata (NBA) but backward determin-
ism keeps the full expressive power.

Theorem 5.2 (Carton & Michel [8]). A language L ⊆ Σω is ω-
regular iff L = L(B, I ) for some BDBA B and initial set I .

The proof in [8] is constructive, starting with an NBA withm
states, they construct an equivalent BDBA with (3m)m states.

A crucial fact on BDBA is that they are easily closed under
boolean operations. In particular, the complement, which is quite
difficult for NBAs, becomes trivial with BDBAs: L(B, P \ I ) = Σω \
L(B, I ). For intersection and union, we simply use the classical
cartesian product of two automataB1 andB2. This clearly preserves
the backward determinism. For intersection, we use a generalized
Büchi acceptance condition, i.e., a conjunction of Büchi acceptance
conditions. For BDBAs, generalized and classical Büchi acceptance
conditions are equivalent [8]. We obtain immediately

Corollary 5.3. Let R be a finite family of ω-regular languages.
There is a BDBA B and a tuple of initial sets (IR )R∈R such that
R = L(B, IR ) for all R ∈ R.

6 Replace the look-ahead with BDBA
Let A = (Q, Σ, Γ,q0,δ ,F ,R) be an ω-2DMTla. By Corollary 5.3
there is a BDBA B = (P , Σ,∆, Fin) and a tuple (IR )R∈R of initial
sets for the family R of ω-regular languages used as look-ahead by
the automatonA. For every pair (q,a) ∈ Q × Σ⊢, the subset R(q,a)
of languages R ∈ R such that δ (q,a,R) is defined forms a partition
of Σω . We deduce that (IR )R∈R(q,a) is a partition of P .

We generalize to two-way transducers on infinite words the
notion of bimachine introduced in [17] for one-way transducers on
finite words and studied in [7] for one-way transducers on infinite
words. We construct an ω-2DMT Ã = (Q, Σ̃, Γ,q0, δ̃ ,F ) without
look-ahead over the extended alphabet Σ̃ = Σ×P which is equivalent
toA in some sense made precise below. Intuitively, in a pair (a,p) ∈
Σ̃⊢, the state p of B gives the look-ahead information required by
A. Formally, the deterministic transition function δ̃ : Q × Σ̃⊢ →

Q×Γ∗×{−1,+1} is defined forq ∈ Q and (a,p) ∈ Σ̃⊢ by δ̃ (q, (a,p)) =
δ (q,a,R) for the unique R ∈ R(q,a) such that p ∈ IR .
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Example 6.1. For instance, the automaton Ã constructed from the
automaton on the right of Figure 1 and the BDBA B of Example 5.1
is depicted bellow (• stands for an arbitrary state of B).

q1 q2 q3

q4q5

(⊢, p1)/ε, +1

(⊢, p3)/ε, +1

(⊢, p4)/ε, +1

(⊢, p2)/ε, +1

(a, •)/ε, +1

(b, •)/ε, +1

(#, •)/ε, −1

(a, •)/a, −1

(b, •)/b, −1

(#, •)/ε, +1

(⊢, •)/ε, +1

(a, •)/a, +1

(b, •)/b, +1

(#, p1)/#, +1

(#, p3)/#, +1

(#, p4)/#, +1

(#, p2)/#, +1

(a, •)/a, +1

(b, •)/b, +1

Letw = a1a2a3 · · · ∈ Σω and B(w) = p0,a1,p1,a2,p2, . . . be the
unique final run of B on w . Let ⊢̃w = (⊢,p0)(a1,p1)(a2,p2) · · · ∈
Σ̃⊢

ω . We easily check by induction that the unique run of A onw

q0⊢w
γ1
−−→ w ′1q1w

′′
1

γ2
−−→ w ′2q2w

′′
2

γ3
−−→ w ′3q3w

′′
3

γ4
−−→ w ′4q4w

′′
4 · · ·

corresponds to the unique run of Ã on ⊢̃w

q0⊢̃w
γ1
−−→ w̃ ′1q1w̃

′′
1

γ2
−−→ w̃ ′2q2w̃

′′
2

γ3
−−→ w̃ ′3q3w̃

′′
3

γ4
−−→ w̃ ′4q4w̃

′′
4 · · ·

where for all i > 0 we have ⊢̃w = w̃ ′iw̃
′′
i and |w ′i | = |w̃

′
i |. Indeed,

assume that in a configuration w ′qaw ′′ with ⊢w = w ′aw ′′ the

transducer A takes the transition q
(a,R)
−−−−→ (q′,γ ,+1) and reaches

configurationw ′aq′w ′′. Then,w ′′ ∈ R and the corresponding con-
figuration w̃ ′q(a,p)w̃ ′′ with ⊢̃w = w̃ ′(a,p)w̃ ′′ and |w ′ | = |w̃ ′ | is
such that p ∈ IR . Therefore, the transducer Ã takes the transition

q
(a,p)
−−−−→ (q′,γ ,+1) and reaches configuration w̃ ′(a,p)q′w̃ ′′. The

proof is similar for backward transitions. We have shown that A
and Ã are equivalent in the following sense:

Lemma 6.2. For all wordsw ∈ Σω , the transducer A starting from
⊢w accepts iff the transducer Ã starting from ⊢̃w accepts, and in this
case they compute the same output in Γ∞.

7 Transition monoid of an ω-2DMTla
We use the notations of the previous sections, in particular for the
ω-2DMTla A, the BDBA B and the corresponding ω-2DMT Ã. As
in the case of 2NFAs over finite words, we will define a congruence
on Σ+ such that two words u,v ∈ Σ+ are equivalent iff they behave
the same in the ω-2DMTla A, when placed in an arbitrary right
context w ∈ Σω . The right context w is abstracted with the first
state p of the unique final run B(w).

The ω-2DMT Ã does not use look-ahead, hence, we may use
for Ã the classical notion of transition monoid. Actually, in order
to handle the Muller acceptance condition of Ã, we need a slight
extension of this classical transition monoid. More precisely, the
abstraction of a finite word ũ ∈ Σ̃+ will be the set T̃r(ũ) of tuples
(q,d,X ,q′) with q,q′ ∈ Q , X ⊆ Q and d ∈ {→, ↷ , ↶,←} such that
the unique run of Ã on ũ starting in state q on the left of ũ if
d ∈ {→,

↷

} (resp. on the right if d ∈ { ↶,←}) exits in state q′ on
the left of ũ if d ∈ { ↷ ,←} (resp. on the right if d ∈ {→, ↶}) and
visits the set of statesX while in ũ (i.e., including q but not q′ unless
q′ is also visited before the run exits ũ).

For instance, with the automaton Ã of Example 6.1, we have
(q4,→, {q2,q3,q4},q5) ∈ T̃r(ũ) when the word ũ belongs to
((a,p1) + (b,p1))∗(#,p1)((a,p1) + (b,p1))∗(#,p2).

We denote by T̃rM = {T̃r(ũ) | ũ ∈ Σ̃+} ∪ {1T̃rM} the tran-
sition monoid of Ã with unit 1T̃rM. The classical product is ex-
tended by taking the union of the sets X occurring in a sequence of
steps. For instance, if we have steps (q0,→,X1,q1), (q2, ↶,X3,q3),
. . . , (qi−1, ↶,Xi ,qi ) in T̃r(ũ) and (q1,

↷
,X2,q2), (q3,

↷

,X4,q4), . . . ,
(qi ,→,Xi+1,qi+1) in T̃r(ṽ) then there is a step (q0,→,X1 ∪ · · · ∪
Xi+1,qi+1) in T̃r(ũ · ṽ) = T̃r(ũ) · T̃r(ṽ). We denote by T̃r : Σ̃∗ → T̃rM
the canonical morphism.

Let u = a1 · · ·an ∈ Σ+ be a finite word of length n > 0 and let
p ∈ P . We define the sequence of states p0,p1, . . . ,pn by pn = p

and for all 0 ≤ i < n we have pi
ai+1
←−−− pi+1 in B. Notice that for

all infinite words w ∈ L(B,p), the unique run B(uw) starts with
p0,a1,p1, . . . ,an ,pn . Define ũp = (a1,p1)(a2,p2) · · · (an ,pn ) ∈ Σ̃+.

We are now ready to define the finite abstraction Tr(u) of a
finite word u ∈ Σ+ with respect to the pair (A,B): we let Tr(u) =
(rp ,bp , sp )p∈P where for each p ∈ P , sp = T̃r(ũp ) ∈ T̃rM is the
abstraction of ũp with respect to Ã, rp ∈ P is the unique state of
B such that rp

u
←− p, bp = 1 if the word ũp contains a final state of

B and bp = 0 otherwise.
The transition monoid of (A,B) is the set TrM = {Tr(u) |

u ∈ Σ+} ∪ {1TrM} where 1TrM is the unit. The product of σ1 =
(r
p
1 ,b

p
1 , s

p
1 )p∈P and σ = (rp ,bp , sp )p∈P is defined to be σ1 · σ =

(r r
p

1 ,b
rp
1 ∨ b

p , sr
p

1 · s
p )p∈P . We can check that this product is asso-

ciative, so that (TrM, ·, 1TrM) is a monoid. Moreover, let u,v ∈ Σ+
be such that Tr(u) = σ1 and Tr(v) = σ . For each p ∈ P , we can
check that ũvp = ũr

p
· ṽp . We deduce easily that Tr(uv) = σ1 · σ =

Tr(u) · Tr(v). Therefore, Tr : Σ∗ → TrM is a morphism.

8 ω-2DMTla to ω-RTE
We prove that from anω-2DMTla A we can construct an equivalent
ω-RTE. We use the fact that any word in the domain of A can
be factorized unambiguously into a good rational expression. For
rational expressions we use the syntax: F ::= ∅ | ε | a | F ∪ F |
F · F | F+ where a ∈ Σ. An expression is ε-free if it does not use ε .

Let (S, ·, 1S ) be a finite monoid and φ : Σ∗ → S be a morphism.
We say that a rational expression F is φ-good (or simply good when
φ is clear from the context) when (1) the rational expression F is
unambiguous, (2) for each subexpression E of F we have φ(L(E)) =
{sE } is a singleton set, and (3) for each subexpression E+ of F we
have sE · sE = sE is an idempotent. Notice that ∅ cannot be used in
a good expression since it does not satisfy the second condition.

Theorem 8.1 (Unambiguous Forest Factorization [16]).
Let φ : Σ∗ → S be a morphism to a finite monoid (S, ·, 1S ). There is
an unambiguous rational expression G =

⋃m
k=1 Fk ·G

ω
k over Σ such

that L(G) = Σω and for all 1 ≤ k ≤ m, Fk andGk are ε-free φ-good
rational expressions and sGk is an idempotent, where φ(Gk ) = {sGk }.

Theorem 8.1 can be seen as an unambiguous version of Imre
Simon’s forest factorization theorem [18]. Its proof follows the same
lines of the recent proofs of Simon’s theorem, see e.g. [9].

We will apply this theorem to the morphism Tr : Σ∗ → TrM
defined in Section 7. We use the unambiguous expression G =⋃m
k=1 Fk ·G

ω
k as a guidewhen constructingω-RTEs corresponding to

theω-2DMTlaA. The first condition of good expressions ensures an
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unambiguous parsing of the input word, and therefore functionality
of the transformation. As will be clear from the lemma below and
its proof, the second and third conditions are essential to compute
the RTEs, especially when dealing with the Kleene-plus.

Lemma 8.2. Let G be an ε-free Tr-good rational expression and
let Tr(G) = σG = (r

p
G ,b

p
G , s

p
G )p∈P be the corresponding element

of the transition monoid TrM of (A,B). For each state p ∈ P , we
can construct a map C

p
G : spG → RTE such that for each step x =

(q,d,X ,q′) ∈ s
p
G the following invariants hold:

(J1) dom(CpG (x)) = L(G),
(J2) for each u ∈ L(G), [[C

p
G (x)]](u) is the output produced by Ã

when running step x on ũp (i.e., running Ã on ũp from q to
q′ following direction d).

Proof. The proof is by induction on the rational expression. For
each subexpression E of G we let Tr(E) = σE = (r

p
E ,b

p
E , s

p
E )p∈P be

the corresponding element of the transition monoid TrM of (A,B).
We start with atomic regular expressions. Since G is ε-free and
∅-free, we do not need to consider E = ε or E = ∅. The interesting
cases are concatenation and Kleene-plus.
Atomic. Assume that E = a ∈ Σ is an atomic subexpression. Notice
that ãp = (a,p) for all p ∈ P . Since the ω-2DMT Ã is deterministic
and complete, for each state q ∈ Q we have
• either δ̃ (q, (a,p)) = (q′,γ , 1) and we letCpa ((q,→, {q},q′)) =
C
p
a ((q, ↶, {q},q′)) = a ?γ : ⊥,

• or δ̃ (q, (a,p)) = (q′,γ ,−1) and we let Cpa ((q,
↷

, {q},q′)) =

C
p
a ((q,←, {q},q

′)) = a ?γ : ⊥.
Clearly, invariants (J1) and (J2) hold for all x ∈ spE .
Union. Assume that E = E1 ∪ E2. Since E is good, we deduce
that σE = σE1 = σE2 . For each p ∈ P and x ∈ s

p
E we define

C
p
E (x) = E1 ?C

p
E1
(x) : CpE2 (x). Since E is unambiguous we have

L(E1) ∩ L(E2) = ∅. We can prove easily that invariants (J1) and
(J2) hold for all x ∈ spE .
Concatenation. Assume that E = E1 · E2 is a concatenation. Since
E is good, we deduce that σE = σE1 · σE2 . Let p ∈ P and p1 = r

p
E2
.

We have spE = s
p1
E1
· s
p
E2
. Let x ∈ spE .

If x = (q,→,X ,q′) then, by definition of the product in T̃rM,
there is a unique sequence of steps x1 = (q,→,X1,q1), x2 = (q1,

↷

,X2,q2), x3 = (q2, ↶,X3,q3), x4 = (q3,

↷

,X4,q4), . . . , xi = (qi−1, ↶

,Xi ,qi ), xi+1 = (qi ,→,Xi+1,q′) with i ≥ 1, x1,x3, . . . ,xi ∈ s
p1
E1

and x2,x4, . . . ,xi+1 ∈ s
p
E2

and X = X1 ∪ · · · ∪ Xi+1 (Figure 3 top
left). We defineCpE (x) = (C

p1
E1
(x1)⊡C

p
E2
(x2))⊙(C

p1
E1
(x3)⊡C

p
E2
(x4))⊙

· · · ⊙ (C
p1
E1
(xi )⊡C

p
E2
(xi+1)) . Note that when i = 1, we haveCpE (x) =

C
p1
E1
(x1)⊡C

p
E2
(x2) with x2 = (q1,→,X2,q′).

The concatenation L(E) = L(E1) · L(E2) is unambiguous. We
obtain dom(Cp1E1 (y) ⊡ C

p
E2
(z)) = L(E) for all y ∈ s

p1
E1

and z ∈ s
p
E2
,

using (J1) for E1 and E2. We deduce dom(CE (x)) = L(E) and (J1)
holds for E and x = (q,→,X ,q′).

Now, let u ∈ L(E) and let u = u1u2 be its unique factoriza-
tion with u1 ∈ L(E1) and u2 ∈ L(E2). We have ũ1u2p = ũ1

p1 ·

ũ2
p . Hence, the step x = (q,→,X ,q′) performed by Ã on ũp is

actually the concatenation of steps x1 on ũ1
p1 , followed by x2

on ũ2
p , followed by x3 on ũ1

p1 , followed by x4 on ũ2
p , . . . , un-

til xi+1 on ũ2
p . Using (J2) for E1 and E2, we deduce that the out-

put produced by Ã while making step x on ũp is [[Cp1E1 (x1)]](u1) ·

[[C
p
E2
(x2)]](u2) · · · [[C

p1
E1
(xi )]](u1) · [[C

p
E2
(xi+1)]](u2) = [[C

p
E (x)]](u) .

Therefore, (J2) holds for E and step x = (q,→,X ,q′). The proof is
obtained mutatis mutandis for the other cases x = (q, ↷ ,X ,q′) or
x = (q, ↶,X ,q′) or x = (q,←,X ,q′).
Kleene-plus. Assume that E = F+. Since E is good, we deduce that
σE = σF = σ = (rp ,bp , sp )p∈P is an idempotent of the transition
monoid TrM. Notice that for all p ∈ P , since σ is an idempotent, we
have r r

p
= rp .

We first define CpE for states p ∈ P with p = rp . Let x ∈ sp .
• If x = (q, ↷ ,X ,q′). Since F+ is unambiguous, a word u ∈ L(F+)
admits a unique factorization u = u1 · · ·un with n ≥ 1 and ui ∈
L(F ). Now, Tr(ui ) = σ for all 1 ≤ i ≤ n and since p = rp we deduce
that ũp = ũ1

pũ2
p · · · ũn

p . Since x = (q, ↷ ,X ,q′) ∈ sp , the unique
run ρ of Ã starting in state q on the left of ũ1p exits on the left
in state q′. Therefore, the unique run of Ã starting in state q on
the left of ũp only visits ũ1p and is actually ρ itself. Hence, we set
C
p
E (x) = C

p
F (x)⊡ (F

∗ ? ε : ⊥) and we can easily check that (J1–J2)
are satisfied.
• For x = (q, ↶,X ,q′) we set CpE (x) = (F ∗ ? ε : ⊥)⊡C

p
F (x).

• If x = (q,→,X ,q′). Since σ is an idempotent, we have x ∈ sp · sp .
We distinguish two cases depending on whether the step y ∈ sp
starting in state q′ from the left goes to the right or goes back to
the left.

First, if y = (q′,→,X2,q2) ∈ sp goes to the right. Since sp is
an idempotent, following x in sp · sp is the same as following x
in (the first) sp an then y in (the second) sp . Therefore, we must
have q2 = q′ and X2 ⊆ X . In this case, we set CpE (x) = F ?CpF (x) :(
C
p
F (x)⊡ (C

p
F (y))

⊞)
.

Second, if y = (q′, ↷ ,X2,q2) ∈ sp goes to the left. Since sp is an
idempotent, there exists a unique sequence of steps in sp : x1 = x ,
x2 = y, x3 = (q2, ↶,X3,q3), x4 = (q3,

↷

,X4,q4), . . . , xi = (qi−1, ↶

,Xi ,qi ), xi+1 = (qi ,→,Xi+1,q′) with i ≥ 3 (see Figure 3 bottom
left). Let CpE (x) =

(
C
p
F (x)⊡ (F

∗ ? ε : ⊥)
)
⊙ [F ,C ′]2⊞, C ′ =

(
(F ? ε :

⊥)⊡C
p
F (x2)

)
⊙ (C

p
F (x3)⊡C

p
F (x4)) ⊙ · · · ⊙ (C

p
F (xi )⊡C

p
F (xi+1)). The

proof of correctness, i.e., that (J1–J2) are satisfied for E, can be found
in [11].
• If x = (q,←,X ,q′), the proof is the same, using the backward

unambiguous (2-chained) Kleene-plus C
←−
⊞ and [K ,C]

←−−
2⊞.

Now, we consider p ∈ P with rp , p. We let p′ = rp . We
have already noticed that since σ is idempotent we have rp

′

= p′.
Consider a word u ∈ L(F+). Since F+ is unambiguous, u admits a
unique factorization u = u1 · · ·un−1un with n ≥ 1 and ui ∈ L(F ).
Now, Tr(ui ) = σ for all 1 ≤ i ≤ n. Using rp = p′ and rp

′

= p′ we
deduce that ũp = ũ1p

′

· · ·�un−1p′ũnp . So whenn > 1, the expression
C
p
E that we need to compute is like the concatenation ofCp

′

E on the
first n − 1 factors withCpF on the last factor. Since rp

′

= p′ we have
already seen how to compute Cp

′

E . We also know how to handle
concatenation. So it should be no surprise that we can compute CpE
when p , rp . We define now formally CpE (x) for x ∈ s

p .
• If x = (q, ↷ ,X ,q′) ∈ sp . There are two cases depending on
whether the step y ∈ sp

′

starting in state q from the left goes
back to the left or goes to the right.

If it goes back to the left, then y = (q,

↷

,X ,q′) = x since
sp = sp

′

· sp (recall that σ is idempotent) and we define CpE (x) =
F ?CpF (x) : (Cp

′

F (x)⊡ (F
+ ? ε : ⊥)) . If it goes to the right, then
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Figure 3

y = (q,→,X1,q1) and there exists a unique sequence of steps:
x1 = y, x2 = (q1,

↷

,X2,q2), x3 = (q2, ↶,X3,q3), x4 = (q3,

↷

,X4,q4),
. . . , xi = (qi−1,←,Xi ,q′) with i ≥ 3, x1,x3, . . . ,xi ∈ sp

′

and
x2, . . . ,xi−1 ∈ sp (see Figure 3 top right). Notice that X = X1 ∪

· · · ∪ Xi . We define CpE (x) = F ?CpF (x) : C
′ where C ′ = (Cp

′

E (x1)⊡

C
p
F (x2)) ⊙ · · · ⊙ (C

p′

E (xi−2)⊡C
p
F (xi−1)) ⊙

(
C
p′

E (xi )⊡ (F ? ε : ⊥)
)
. We

can check that (J1–J2) are satisfied for (E,p,x).
• If x = (q,←,X ,q′) ∈ sp . There are two cases depending on
whether the step y ∈ sp

′

starting in state q′ from the right goes to
the left or goes back to the right.

If it goes to the left, then y = (q′,←,X ′,q′) with X ′ ⊆ X and
we define CpE (x) = F ?CpF (x) : (C

p′

E (y)
←−
⊡ C

p
F (x)).

If it goes back to the right, then y = (q′, ↶,X2,q2) and there is a
unique sequence of steps: x1 = x , x2 = y, x3 = (q2,

↷

,X3,q3), x4 =
(q3, ↶,X4,q4), . . . , xi = (qi−1,

↷

,Xi ,qi ) xi+1 = (qi ,←,Xi+1,q′)
with i ≥ 3, x1,x3, . . . ,xi ∈ sp and x2, . . . ,xi+1 ∈ sp

′

. Note that
X2 ∪ · · · ∪ Xi+1 ⊆ X . Define CpE (x) = F ?CpF (x) : C

′ where C ′ =

(C
p′

E (x2)
←−
⊡ C

p
F (x1)) ⊙ · · · ⊙ (C

p′

E (xi−1)
←−
⊡ C

p
F (xi−2)) ⊙ (C

p′

E (xi+1)
←−
⊡

C
p
F (xi )). We can check that (J1–J2) are satisfied for (E,p,x).
• The cases x = (q,→,X ,q′) ∈ sp and x = (q, ↶,X ,q′) ∈ sp can be
handled similarly. □

We now define RTEs corresponding to the left part of the compu-
tation of the ω-2DMTla A, i.e., on some input ⊢u consisting of the
left end-marker and some finite word u ∈ Σ+ (see Figure 3 middle
and bottom right). As before, the look-ahead is determined by the
state of the BDBA B. Proof of Lemma 8.3 can be found in [11].

Lemma 8.3. Let F be an ε-free Tr-good rational expression. For each
state p ∈ P and q ∈ Q , there is a unique state q′ ∈ Q and an RTE

C
p
⊢F (q,→,q

′) (resp. Cp
⊢F (q, ↶,q′)) such that the following invariants

hold: (i) L(F ) = dom(Cp
⊢F (q,→,q

′)) (resp. L(F ) = dom(Cp
⊢F (q, ↶

,q′))), (ii) for each u ∈ L(F ), [[Cp
⊢F (q,→,q

′)]](u) (resp. [[Cp
⊢F (q, ↶

,q′)]](u)) is the output produced by Ã on ⊢̃up when starting on the
left (resp. right) in state q until it exists on the right in state q′.

Lemma 8.4. Let F ·Gω be an unambiguous rational expression such
that F and G are ε-free Tr-good rational expresions and Tr(G) = σ =
(rp ,bp , sp )p∈P is an idempotent in the transition monoid TrM of
(A,B). We construct an ω-RTECFGω s.t. dom(CFGω ) = L(FGω ) ∩

dom(A) and [[CFGω ]](w) = [[A]](w) for allw ∈ dom(CFGω ).

Proof. We first show that there exists one and only one state p ∈ P
such that rp = p and bp = 1. For the existence, consider a word
w = u1u2u3 · · · ∈ L(FGω ) with u1 ∈ L(F ) and un ∈ L(G) for all
n ≥ 2. By definition of BDBA there is a unique final run of B over
w : p0,u1,p1,u2,p2, . . .. Let us show first that pn = p1 for all n ≥ 1.
Since σ is idempotent, we have Tr(u2 · · ·un+1) = Tr(un+1). Since
p1

u2 · · ·un+1
←−−−−−−−− pn+1 and pn

un+1
←−−−− pn+1, we deduce that p1 = rpn+1 =

pn . This implies p1 = rp2 = rp1 . Let p = p1 so that p = rp and the
final run of B onw is p0,u1,p,u2,p, . . .. Now, for all n ≥ 2 we have
Tr(un ) = σ and we deduce that p

un
←−− p visits a final state from

Fin iff bp = 1. Since the run is accepting, we deduce that indeed
bp = 1. To prove the unicity, let p ∈ P with p = rp , bp = 1 and
v ∈ L(G). We have p

v
←− p and this run visits a final state from Fin.

Therefore, p,v,p,v,p,v,p, . . . is a final run of B on vω . Since B is
BDBA, there is a unique final run of B on vω , proving unicity of p.

We apply Lemma 8.3. Denote by s ′
⊢F the set of triples (q,d,q′) ∈

Q × {→, ↶} ×Q such that the RTE Cp
⊢F (q,d,q

′) is defined.
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Starting from the initial state q0 of A, there exists a unique se-
quence of steps x ′1 = (q0,→,q

′
1), x

′
2 = (q

′
1,

↷

,X ′2,q
′
2), x

′
3 = (q

′
2, ↶

,q′3), x
′
4 = (q

′
3,

↷

,X ′4,q
′
4), . . . , x

′
i = (q

′
i−1, ↶,q′i ), x ′i+1 = (q′i ,→

,X ′i+1,q) with i ≥ 1, x ′1,x
′
3, . . . ,x

′
i ∈ s

′
⊢F and x ′2,x

′
4, . . . ,x

′
i+1 ∈ s

p .
We define

C1 =
(
C
p
⊢F (x

′
1)⊡C

p
G (x
′
2)
)
⊙
(
C
p
⊢F (x

′
3)⊡C

p
G (x
′
4)
)
⊙ · · ·

⊙
(
C
p
⊢F (x

′
i )⊡C

p
G (x
′
i+1)

)
,

C2 = C1 ⊡ (G
ω ? ε : ⊥) .

We have dom(C1) = FG and �⊢u1u2p = ⊢̃u1pũ2p for all u1 ∈ F and
u2 ∈ G. Moreover, [[C1]](u1u2) is the output produced by Ã on�⊢u1u2p when starting on the left in the initial state q0 until it exists
on the right in state q. Now, C2 is an ω-RTE with dom(C2) = FGω

and for all w = u1u2u3 . . . ∈ FGω with u1 ∈ F and un ∈ G for all
n > 1, we have [[C2]](w) = [[C1]](u1u2) ∈ Γ∗.

Now, we distinguish two cases. First, assume that there is a step
x = (q,→,X ,q′) ∈ sp . Since σ is idempotent, so is sp , and since
x ′i+1 = (q

′
i ,→,X

′
i+1,q) ∈ sp we deduce that q′ = q. Therefore,

the unique run of Ã on ⊢̃w = ⊢̃u1pũ2pũ3p · · · follows the steps
x ′1x
′
2 · · · x

′
ix
′
i+1xxx · · · . Hence, the set of states visited infinitely

often along this run is X and the run is accepting iff X ∈ F is a
Muller set. Therefore, ifX < F we have FGω ∩dom(A) = ∅ and we
setCFGω = ⊥. Now, if X ∈ F we have FGω ⊆ dom(A) and we set
CFGω = C2⊙

(
(FG ? ε : ⊥)⊡CpG (x)

ω ) . We have dom(CFGω ) = FGω

and forw = u1u2u3 . . . ∈ FGω withu1 ∈ F andun ∈ G for all n > 1,
we have [[CFGω ]](w) = [[C1]](u1u2)[[C

p
G (x)]](u3)[[C

p
G (x)]](u4) · · · .

By (J2), we know that for all n ≥ 3, [[CpG (x)]](un ) is the output
produced by Ã when running step x = (q,→,X ,q) on ũn

p . We
deduce that [[CFGω ]](w) = [[Ã]](⊢̃w) = [[A]](w) as desired.

The second case is when the unique step x1 = (q,

↷

,X1,q1) in sp
which starts from the left in state q exits on the left. Since sp is idem-
potent and x ′i+1 = (q

′
i ,→,X

′
i+1,q) ∈ s

p , by definition of the product
sp · sp , there is a unique sequence of steps x2 = (q1, ↶,X2,q2), x3 =
(q2,

↷

,X3,q3), . . . , x j = (qj−1, ↶,X j ,qj ), x j+1 = (qj ,→,X j+1,q) in
sp with j ≥ 2. Therefore, for all w = u1u2u3 . . . ∈ FGω with
u1 ∈ F and un ∈ G for all n > 1, the unique run of Ã on ⊢̃w =
⊢̃u1

pũ2
pũ3

p · · · follows the steps x ′1x
′
2 · · · x

′
ix
′
i+1(x1x2 · · · x jx j+1)

ω .
Hence, the set of states visited infinitely often along this run is
X = X1 ∪ X2 ∪ · · · ∪ X j+1. We deduce that the run is accepting iff
X ∈ F . Therefore, if X < F we have FGω ∩ dom(A) = ∅ and we
setCFGω = ⊥. Now, if X ∈ F we have FGω ⊆ dom(A) and we set

C3 =
(
(G ? ε : ⊥)⊡C

p
G (x1)

)
⊙
(
C
p
G (x2)⊡C

p
G (x3)

)
⊙ · · ·

⊙
(
C
p
G (x j )⊡C

p
G (x j+1)

)
,

CFGω = C2 ⊙
(
(F ? ε : ⊥)⊡ [G,C3]

2ω ) .
We have dom(CFGω ) = FGω and for all w = u1u2u3 . . . ∈ FGω

with u1 ∈ F and un ∈ G for all n > 1, we have

[[CFGω ]](w) = [[C1]](u1u2)[[C3]](u2u3)[[C3]](u3u4) · · · .

Using (J2), we can check that this is the output produced by Ã when
running on ⊢̃w . Therefore, [[CFGω ]](w) = [[Ã]](⊢̃w) = [[A]](w). □

We prove that ω-2DMTla are no more expressive than ω-RTEs.

Proof of Theorem 3.4 (2). We use the notations of the previous sec-
tions, in particular for the ω-2DMTla A, the BDBA B. We apply
Theorem 8.1 to the canonical morphism Tr from Σ∗ to the transi-
tion monoid TrM of (A,B). We obtain an unambiguous rational

expressionG =
⋃m
k=1 Fk ·G

ω
k over Σ such that L(G) = Σω and for

all 1 ≤ k ≤ m the expressions Fk andGk are ε-free Tr-good rational
expressions and σGk is an idempotent, where Tr(Gk ) = {σGk }. For
each 1 ≤ k ≤ m, letCk = CFkGω

k
be theω-RTE given by Lemma 8.4.

We define the final ω-RTE as

C = F1G
ω
1 ?C1 : (F2Gω

2 ?C2 : · · · (Fm−1Gω
m−1 ?Cm−1 : Cm )) .

From Lemma 8.4, we can easily check that dom(C) = dom(A) and
[[C]](w) = [[A]](w) for allw ∈ dom(C). □

9 Conclusion
The main contribution of the paper is to give a characterisation
of regular string transductions using some combinators, giving
rise to regular transducer expressions (RTE). Our proof uniformly
works well for finite and infinite string transformations. RTE are a
succint specification mechanism for regular transformations just
like regular expressions are for regular languages. It is worthwhile
to consider extensions of our technique to regular tree transforma-
tions, or in other settings where more involved primitives such as
sorting or counting are needed. For readability and convenience
we decided to keep some redundancy in the current set of com-
binators for RTEs, see e.g., Remark 3.2. Finding a minimal set of
combinators achieving expressive completeness, as well as com-
puting complexity measures for the conversion between RTEs and
two-way transducers are open.
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