
Математическая логика
и логическое программирование

mk.cs.msu.ru → Лекционные курсы
→ Математическая логика и логическое программирование (3-й поток)

Блок 50

Проверка правильности распределённых систем
Пара слов о методе проверки моделей

Лектор:
Подымов Владислав Васильевич

E-mail:
valdus@yandex.ru

ВМК МГУ, 2025, сентябрь–декабрь
Математическая логика и логическое программирование, Блок 50 1/9

https://mk.cs.msu.ru


Проверка правильности распределённых систем
Начнём с примера: рассмотрим две процедуры в синтаксисе языка C:

void стипендия() {
счёт += 1 000;
}

void надбавка() {
счёт += 1 000 000;
}

Если они выполняются последовательно в каком-либо порядке,
то можно легко убедиться (например, при помощи логики Хоара),
что стипендия с надбавкой начисляются корректно:

{счёт = x}
счёт := счёт + 1 000;
счёт := счёт + 1 000 000;
{счёт = x+ 1 001 000}

{счёт = x}
счёт := счёт + 1 000 000;
счёт := счёт + 1 000;
{счёт = x+ 1 001 000}

Математическая логика и логическое программирование, Блок 50 2/9



Проверка правильности распределённых систем
Начнём с примера: рассмотрим две процедуры в синтаксисе языка C:

void стипендия() {
счёт += 1 000;
}

void надбавка() {
счёт += 1 000 000;
}

На практике каждое из присваиваний может выполняться
и за несколько шагов (действий) — например:

1. Чтение значения аргумента-переменной

2. Прибавление константы к прочитанному значению

3. Запись результата в переменную

Для последовательно выполняющихся процедур
степень детализации семантики неважна, и ответ о корректности,
полученный при помощи логики Хоара, можно считать правильным

Математическая логика и логическое программирование, Блок 50 3/9



Проверка правильности распределённых систем
Начнём с примера: рассмотрим две процедуры в синтаксисе языка C:

void стипендия() {
счёт += 1 000;
}

void надбавка() {
счёт += 1 000 000;
}

Но если эти процедуры будут выполняться параллельно,
то ответ, полученный при помощи логики Хоара,
окажется не соответствующим реальности:

0
счёт

счёт = счёт + 1000
стипендия

счёт = счёт + 1000000
надбавка

счёт = 0 + 1000000

счёт = 0 + 1000

счёт = 1000000

счёт = 1000

1000000

1000

Честно заработанная надбавка исчезла со счёта
из-за неудачного редкого стечения технических обстоятельств
Математическая логика и логическое программирование, Блок 50 4/9



Проверка правильности распределённых систем
Такую ошибку нетрудно «проглядеть» при разработке программы

При этом её можно считать невоспроизводимой
и практически необнаружимой при помощи тестирования:

I Чтобы ошибка возникла, присваивания должны выполниться
почти одновременно — настолько, чтобы третий шаг одного из них
выполнился строго между первым и третьим шагами другого

I Разработчик программы обычно не может контролировать
время выполнения шагов присваиваний настолько точно,
чтобы можно было перемешивать шаги заранее заданным способом

I Даже если есть подходящие средства контроля точности,
параллельно выполняющихся действий обычно настолько много,
что нельзя считать разумным тестовое покрытие,
содержащее всевозможные порядки выполнения
I Например, для 70-ти параллельных независимых действий

существует 70! порядков их выполнения, а это больше чем гугол

Математическая логика и логическое программирование, Блок 50 5/9



Проверка правильности распределённых систем
Ещё один пример

Представим себе сетевой принтер, с которым могут
взаимодействовать пользователи при помощи удалённых компьютеров
и находясь непосредственно у принтера

Как протестировать такую систему?

Можно ли, как-нибудь «разумно» протестировав систему,
заключить, что в ней нет критичных ошибок?

Как могут быть устроены ошибки в такой системе?
Математическая логика и логическое программирование, Блок 50 6/9



Проверка правильности распределённых систем

Для проверки правильности распределённых систем, то есть таких,
в которых компоненты выполняются параллельно,
взаимодействуя между собой для достижения общей цели,
одного только тестирования оказывается недостаточно:
I Достаточно полное тестирование зачастую

чересчур трудоёмко или даже невозможно
I Протестировав каждую часть системы, как правило, нельзя

быть уверенным в том, что система в целом будет работать верно
I Некоторые критичные ошибки в работе системы возникают

при настолько специфичных обстоятельствах,
что обнаружить их тестированием практически невозможно

Поэтому для полноценной проверки правильности
распределённых систем следует уметь применять и другие подходы —
например, формальную верификацию

Математическая логика и логическое программирование, Блок 50 7/9



Пара слов о методе проверки моделей
Для формальной верификации распределённых систем успешно
применяется метод проверки моделей
(верификации моделей программ; model checking)

Согласно этому методу:

1. Описывается модель системы,
I достаточно детальная, чтобы интересующие свойства модели

можно было перенести на исследуемую систему, и при этом
I достаточно простая для эффективного построения и анализа

2. Выбирается язык спецификаций,
I соответствующий устройству модели и при этом
I достаточно выразительный для записи желаемых требований

3. Разработчик создаёт и пользователи применяют
средства автоматической проверки того,
что модель соответствует её спецификации

Математическая логика и логическое программирование, Блок 50 8/9



Пара слов о методе проверки моделей

Краткая схема применения метода проверки моделей

Система Требования

Модель Спецификация

Алгоритм проверки моделей

Ответ на вопрос «соответствует ли модель спецификации?»

Напоследок обсу́дим одну из «базовых» конкретных
постановок задачи проверки моделей и решение этой задачи

Математическая логика и логическое программирование, Блок 50 9/9


