Logics for Word Transductions with Synthesis

Luc Dartois
Université Libre de Bruxelles
Belgium
luc.dartois@ulb.ac.be

Abstract

We introduce a logic, called L, to express properties of transduc-
tions, ie. binary relations from input to output (finite) words. In L,
the input/output dependencies are modelled via an origin function
which associates to any position of the output word, the input posi-
tion from which it originates. L7 is well-suited to express relations
(which are not necessarily functional), and can express all regular
functional transductions, i.e. transductions definable for instance
by deterministic two-way transducers.

Despite its high expressive power, £7 has decidable satisfia-
bility and equivalence problems, with tight non-elementary and
elementary complexities, depending on specific representation of
Lr-formulas. Our main contribution is a synthesis result: from
any transduction R defined in L, it is possible to synthesise a
regular functional transduction f such that for all input words u
in the domain of R, f is defined and (u, f(u)) € R. As a conse-
quence, we obtain that any functional transduction is regular iff it
is Lr-definable.

We also investigate the algorithmic and expressiveness prop-
erties of several extensions of L7, and explicit a correspondence
between transductions and data words. As a side-result, we obtain
a new decidable logic for data words.

*.KeywordsTransductions, Origin, Logic, Synthesis, Data words

Acknowledgments

This work was supported by the French ANR project ExStream
(ANR-13-JS02-0010), the Belgian FNRS CDR project Flare (J013116)
and the ARC project Transform (Fédération Wallonie Bruxelles).

We are also grateful to Jean-Fran cois Raskin from fruitful dis-
cussions on this work.

1 Introduction

The theory of regular languages of finite and infinite words is rich
and robust, founded on the equivalence of a descriptive model
(monadic second-order logic, MSO) and a computational one (finite
automata), due the works of Biichi, Elgot, McNaughton and Traht-
enbrot [33]. Since then, many logics have been designed and studied
to describe languages (see for instance [13, 32]), among which tem-
poral logics, with notable applications in model-checking [34].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

LICS 18, July 9-12, 2018, Oxford, United Kingdom

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07...$15.00
https://doi.org/10.1145/3209108.3209181

Emmanuel Filiot
Université Libre de Bruxelles
Belgium
efiliot@ulb.ac.be

Nathan Lhote
Université Libre de Bruxelles
Belgium
LaBRI, Université de Bordeaux
France
nlhote@labri.fr

In this paper, we consider transductions, i.e. binary relations
relating input to output words. E.g. the transduction zghyfe asso-
ciates with a word all its permutations - (ab, ab), (ab, ba) € Tghuffle-
Operational models, namely extensions of automata with outputs,
called transducers, have been studied for computing transductions.
This includes finite transducers, i.e. finite automata with outputs,
which have been studied since the 60s [23, 29] and two-way trans-
ducers (two-way automata with a one-way output tape). When
restricted to transducers defining functions (called functional trans-
ducers), the latter model has recently received a lot of attention
due to its appealing algorithmic properties, its expressive power
and its many equivalent models: deterministic two-way transduc-
ers [12], reversible two-way transducers [11], deterministic (one-
way) transducers with registers [2] (also known as streaming string
transducers), regular combinator expressions [4] and Courcelle’s
MSO-transducers [15] (MSOT), a model we will come back to in the
related work section. Because of these many characterisations, the
class defined by these models has been coined regular transductions,
or regular functions.

However, much less is known about logics to describe trans-
ductions (see for instance [18] for a brief overview). Recently, Bo-
janczyk, Daviaud, Guillon and Penelle have considered an expres-
sive logic, namely MSO over origin graphs (o-graphs) [6]. Such
graphs encode pairs of words together with an origin mapping,
relating any output position to an input position, as depicted in
Fig. 1. Intuitively, if one thinks of an operational model for trans-
ductions, the origin of an output position is the input position from
which it has been produced. As noticed in [5], most known trans-

input a—>ph—>c—>a a—>h—>cC a
orgn | T
output a—>c—>a—>p) a=—>c—>ph—>a

Figure 1. Possible o-graphs for zghyfle

ducer models not only define transductions, but origin transductions
(o-transductions), i.e. sets of o-graphs, and can thus be naturally
interpreted in both origin-free semantics (i.e. usual semantics) or the
richer origin semantics. We denote by MSO,, monadic second-order
logic over o-graphs. Precisely, it is MSO equipped with monadic
predicates o (x) for position labels, a linear order <j, (resp. <out)
over input (resp. output) positions, and an origin function o. We
denote by [¢]l, the origin-transduction defined by ¢, i.e. the set of
o-graphs satisfying ¢, and by [¢] the transduction defined by ¢
(obtained by projecting away the origin mapping of [¢]l,). While
[6] was mostly concerned with characterising classes of o-graphs
generated by particular classes of transducers, the authors have
shown another interesting result, namely the decidability of model-
checking regular functions with origin against MSO, properties: it
is decidable, given an MSO,, sentence ¢ and a deterministic two-way
transducer T, whether all o-graphs of T satisfy ¢.

https://doi.org/10.1145/3209108.3209181

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

Satisfiability and synthesis. Important and natural verification-
oriented questions are not considered in [6]. The first is the sat-
isfiability problem for MSO,: given a sentence ¢, is it satisfied by
some o-graph? While being one of the most fundamental problem
in logic, its decidability would also entail the decidability of the
equivalence problem, a fundamental problem in transducer theory:
given two sentences ¢, ¢ of MSO,, does [¢1], = [¢21, hold?
The second problem is the regular synthesis problem: given an
MSO,-sentence ¢, does there exist a deterministic two-way trans-
ducer T such that (1) T has the same domain as [#] (the set of
words which have some image by [¢]) and (2) for all u in the
domain of T, its image T(u) satisfies (u, T(u)) € [#]. Note that
without requirement (1), any transducer T with empty domain
would satisfy (2). So, instead of designing a transducer and then
verifying a posteriori that it satisfies some MSO, properties, the
goal is to check whether some transducer can be automatically
generated from these properties (and to synthesise it), making it
correct by construction. Unsurprisingly, we show that both these
problems are undecidable for MSOy,.

Contribution: The fragment £1. We define a fragment of MSO,,
called L1 for which, amongst other interesting properties, the
two problems mentioned before are decidable. Before stating our
precise results on L7, let us intuitively define it and provide ex-
amples. L is the two-variable fragment1 of first-order logic -
FO?. The predicates in its signature are the output labels, the lin-
ear order <q,¢ for the output positions, the origin function o,
and any binary MSO predicate restricted to input positions, us-
ing input label predicates and the input order <j,. We write it
LT = FOz[F, <outs 0, MSOpin[<in, =]] where T is the output al-
phabet and X the input alphabet.

As an example, let us define the transduction rghyfe in L7. We
express that (1) o preserves the labelling: V°'*x Agero(x) -
{o(o(x))}, and (2) o is bijective, ie. injective: ¥°'*x, y {o(x) =
o(y)} — x = y and surjective: meEIOUty {x = o(y)}. The
notation V" is a macro which restricts quantification over out-
put positions, and we use brackets {, } to distinguish the binary
MSO predicates. Extending this, suppose we have some alphabetic
linear order < over ¥ and we want to sort the input labels by
increasing order. This can be done by adding the requirement
v, y No<ot o(x) A o'(y) = x <out y. This simply defined
transduction can be realised by a two-way transducer, which would
make one pass per symbol o (in increasing order), during which it
copies the o-symbols on the output tape and not the others.

Results. We show the following results on L:

e it is expressive: any regular functional transduction is defin-
able in L. Beyond functions, L1 is incomparable with non-
deterministic two-way transducers and non-deterministic stream-
ing string transducers (it can express Tshufle Which is definable
in none of these models).

e it characterises the regular functional transductions: a functional
transduction is regular iff it is L7-definable. Moreover, given
an Lr-formula, it is decidable whether it defines a functional
transduction.

o the satisfiability problem is decidable (in non-elementary time,
which is unavoidable because of the binary MSO predicates), and

1Only two variable names can be used (and reused) in a formula, see e.g. [32]

Luc Dartois, Emmanuel Filiot, and Nathan Lhote

ExPSpPACE-c if the binary MSO predicates are given by automata.
Since L7 is closed under negation, we obtain as a consequence
the decidability of the equivalence problem for Lr-definable
o-transductions.

e it admits regular synthesis: from any Lr-sentence ¢, one can
always synthesise a deterministic two-way transducer which has
the same domain as [¢] and whose o-graphs all satisfy ¢.

Finally, we provide two strictly more expressive extensions of
L7, shown to admit regular synthesis, and hence decidable sat-
isfiability problem. The first one L7 extends any Lr-formula
with a block of existential monadic second-order quantifiers and
it captures all transductions defined by non-deterministic MSO-
transducers or equivalently non-deterministic streaming string
transducers [3]. Then, we introduce Elﬁf'ro which extends L1 with
unary predicates L(x) called single-origin predicates, where L is a
regular language, which holds in an input position x if the word
formed by the positions having origin x belongs to L. For instance
one could express that any input position labelled by a has to pro-
duce a word in (bc)*, which cannot be done with a FO’ formula.
This extension allows us to additionally capture any rational rela-
tion, ie. the transductions defined by (nondeterministic) one-way
transducers [23].

Our main and most technical result is regular synthesis. Indeed, it
entails satisfiability (test domain emptiness of the constructed trans-
ducer), and, since no automata/transducer model is known to be
equivalent to MSO, nor L7, we could not directly rely on automata-
based techniques. The techniques of [6] for model-checking do not
apply either because the target model is not given when consider-
ing satisfiability and synthesis. Instead, we introduce a sound and
complete bounded abstraction of the o-graphs satisfying a given
Lr-formula. This abstraction was inspired by techniques used in
data word logics [30], although we could not directly reuse known
results, since they were only concerned with the satisfiability prob-
lem. Nonetheless, we exhibit a tight connection between o-graphs
and data words.

A consequence on data words. As a side contribution, we explicit
a bijection between non-erasing origin graphs (the origin mapping
is surjective) and words over an infinite alphabet of totally ordered
symbols, called data words. Briefly, the origin becomes the data and
conversely the data becomes the origin. We show that this bijection
carries over to the logical level, and we obtain a new decidable
logic for data words, which strictly extends the logic FOZ[S, <
,S<] (linear position order and linear order and successor over
data), known to be decidable from [30], with any binary MSO[<]
predicate talking only about the data.

Related Work. First, let us mention some known logical way of
defining transductions. Synchronised (binary) relations, also known
as automatic relations, are relations defined by automata running
over word convolutions [29]. A convolution u ® v is obtained by
overlapping two words u, v and by using a padding symbol L if they
do not have the same length. E.g. aba ® bc = (a,b)(b,c)(a, L). By
taking MSO over word convolutions, one obtains a logic to define
transductions. It is however quite weak in expressive power, as
it cannot even express all functional transductions definable by
one-way input-deterministic finite transducers.

Courcelle has introduced MSO-transducers to define graph trans-
ductions [9] and which, casted to words, gives a logic-based for-
malism to define word transductions. Roughly, the predicates of

Logics for Word Transductions with Synthesis

the output word are defined by several MSO-formulas with free
variables, interpreted over a bounded number of copies of the input
structure. Additionally, several free parameters can be used to add a
form of non-determinism. Functional MSO-transducers correspond
exactly to functional regular transduction [15]. However, they have
a relatively limited expressive power when it comes to relations,
because, unlike £, the number of images of a word is always finite.
For instance, the universal transduction 3* X =* is not definable
in this formalism, while it is simply definable by the Lr-formula
T, nor is 7ghufe (this can be shown using cardinality arguments).

Finally, there is a number of recent works on reactive synthe-
sis [22], since the seminal problem raised by Church [1], and studied
by Pnueli and Rosner for LTL specifications [28]. In these works
however, the specification is always a synchronised relation and the
target implementation is a Mealy machine (an input-deterministic
finite transducer alternatively reading and producing exactly one
symbol at a time). While £7 does not make any synchronicity
assumption, the target implementations in this paper are deter-
ministic two-way transducer which are, computationally speaking,
more powerful. We leave open the question of whether the fol-
lowing synthesis problem is decidable: given an Lr-formula ¢, is
there a (one-way) input-deterministic (also known as sequential)
transducer realising ¢?

Transducer synthesis is also equivalently known as uniformi-
sation in transducer theory [29]. This problem has been studied
in the origin-free semantics for the class of rational relations. It is
known that from any rational relation one can synthesise a ratio-
nal function [14], and that checking whether it is realisable by a
sequential function is undecidable [8, 17]. The former result is a
consequence of our results on the extension £ : we show that any
rational relation defined by a one-way transducer is £ -definable
(while preserving the origin mappings) and moreover, any trans-
duction defined in L7 is realisable by a regular function . Hence,
from rational relation given as a one-way transducer T we obtain an
order-preserving and functional regular o-transduction that realises
the relation defined by T. Such o-transductions are easily seen to
be equivalent to rational functions [5, 16]. Finally, we mention that
transducer synthesis has also been recently studied in the context
of trees, where the specification is a tree automatic relation [24].

Due to the lack of space, some proofs are omitted or only sketched
in the body of the paper. The full proofs are given in the appendix.

2 Logics with origin for transductions

Words and transductions. We denote by 3™ the set of finite words
over some alphabet X, and by € the empty word. The length of a
word u € 3% is denoted by |u|, in particular |e| = 0. The set of
positions of u is dom(u) = {1,..., |u|}, an element i € dom(u)
denoting the ith position of u, whose symbol is denoted u(i) € 3.

Let X and I be two alphabets, without loss of generality assumed
to be disjoint. A transduction is a subset of »txr* of pairs (u, v),
where u is called the input word and v the output word. An origin

mapping from a word v € I"toawordu € 3% isa mapping
o0 : dom(v) — dom(u). Intuitively, it means that position i was
produced when processing position o(i) in the input word u. We
exclude the empty input word from the definition of transductions,
because we require every output position to have some origin. This
does not weaken the modelling power of the logics we consider,
up to putting some starting marker for instance. Following the

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

terminology of [6], an origin-graph (o-graph for short) is a pair
(u, (v,0)) such that (u,v) € =¥ x T™ and o is an origin mapping
from v to u. We denote by OG(Z, T) the set of o-graphs from 3 to T.
A transduction with origin (or just o-transduction) r from ¥ to I’ is
a set of o-graphs. We say that 7 is functional (or is a function) if for
all u, there is at most one pair (v, 0) such that (u, (v,0)) € 7, and
rather denote it by f instead of 7. The domain of an o-transduction
7 is the set dom(7) = {u | I(u, (v,0)) € r}. Finally, the origin-free
projection of T is the transduction {(u,v) | 3(u, (v,0)) € 7}. Many
results of this paper hold with or without origins. We always state
them in their strongest version, usually without origin.

Regular functional transductions. Regular functional transduc-
tions (or regular functions) have many characterisations, as men-
tioned in the introduction. We will briefly define them as the trans-
ductions definable by deterministic two-way transducers, which
are pairs (A, p) such that A is a deterministic two-way automaton
with set of transitions A, and p is a morphism of type A" - TF.
The transduction defined by (A, p) has domain L(A) (the language
recognised by A) and for all words u in its domain, the output of u
is the word p(r), where r is the accepting sequence of transitions
of A on u. Such transducers (as well as other known equivalent
models) can be naturally equipped with an origin semantics [5] and
we say that a functional o-transduction is regular if it is equal to
the set of o-graphs of some deterministic two-way transducer.

FO and MSO logics for transductions. We consider FO and MSO
over particular signatures. Without defining their syntax formally
(we refer the reader e.g. to [32]), recall that MSO over a set of
predicates S allows for first-order quantification dx over elements,
second-order quantification 3X over element sets, membership
predicates x € X, predicates of S and all Boolean operators. We use
the notation MSO[S] (or FO[S]) to emphasise that formulas are
built over a particular signature S. As usual, ¢(x1, ..., x,) denotes
a formula with n free first-order variables, and we call sentence a
formula without free variables. Finally, F denotes the satisfiability
relation.

Origin-graphs (u, (v,0)) of OG(Z,T) are seen as structures with
domain dom(u) & dom(v) over the signature Sy, composed of
unary predicates §(x), for all § € ZUT, holding true on all positions
labelled 8, <j,, a linear-order on the positions of u, <q,¢ a linear-
order on the positions of v, and o a unary function for the origin,
which is naturally interpreted by o over dom(v), and as the identity
function’ over dom(u). We also use the predicates =, <j, and
<out, Which are all definable in the logics we consider. We denote
by MSO, the logic MSO[Ss, r]. Any MSO, sentence ¢ defines an
o-transduction [¢], = {(u, (v,0)) € OG(Z,T) | (u,(v,0)) F
¢} and its origin-free counterpart [¢]. An o-transduction (resp.
transduction) 7 is MSO,-definable if 7 = [¢]l, (resp. 7 = [#]]) for
some sentence ¢ € MSO,.

Example 1. First, we define the transduction 7.q mapping a"b" to
(ab)", as the origin-free projection of the set of o-graphs defined by
some MSO,-sentence @.q, which expresses that (1) the domain is in
a*v*, (2) the codomain in (ab)* (both properties are regular and,
hence, respectively MSO[3, <j,,]- and MSO[T, <,]-definable),
and (3) the origin-mapping is bijective and label-preserving (see
introduction).

% As functional symbols must be interpreted by total functions, we need to interpret o
over dom(u) as well.

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

Satisfiability and synthesis problems. The satisfiability prob-
lem asks, given an MSO,-sentence ¢, whether it is satisfied by
some o-graph, i.e. whether [¢], # @ (or equivalently [¢] # @)
holds. By encoding the Post Correspondence Problem, we show that
MSO, has undecidable satisfiability problem, even if restricted to
the two-variable fragment of FO with the Syt predicate, denoting
the successor relation over output positions:

Proposition 2. Over o-graphs, the logicFO2 [Z,T, =in, <out»Sout» 0]
has undecidable satisfiability problem.

Given a transduction 7 and a functional transduction f, we
say that f realises t if dom(f) = dom(r), and for all input u,
(u, f(u)) € 7. The regular synthesis problem asks whether given an
o-transduction 7, there exists a regular functional o-transduction
f which realises it. As claimed in the introduction, this problem is
undecidable when 7 is defined in MSO,.

Proposition 3. The regular synthesis problem is undecidable for
MSO,-definable transductions.

Sketch. We reduce the MSO,, satisfiability problem. First, consider
the MSO,-sentence ¢.q of Ex. 1 defining a transduction with non-
regular domain. Then, given an MSO,-formula ¢ of which one
wants to check satisfiability, we define in MSO,, using and ¢4,
the transduction 7 mapping any word u;#u; to v1#v; such that
(u1,v1) € [¥] and (uz,v2) € [Penll. Then, dom(7) is non-regular
iff it is nonempty. Since regular functions have regular domains, 7
is realisable by a regular function iff dom(r) = @ iff [¥] = @ iff
yl, = @. o

The logic L1 for transductions. Informally, the logic L1 ex-
tends the two-variable logic FOZ[Z, T, <in, <out, 0] with any bi-
nary predicate definable in MSO[<i,, 2], i.e. any binary MSO pred-
icate that is only allowed to talk about the input positions, in
order to capture regular input properties. Formally, we denote
by MSOpin[<in, 2] the set of n-ary predicates, n € {0,1,2}, de-
noted by {¢}, where ¢ is an MSO[<i,,, >]-formula with at most
n free first-order variables. Over a word u, such a formula ¢ de-
fines an n-ary relation Ry ,, on its position, and over an o-graph
(u,(v,0)), we interpret {¢} by Rg ;. The logic L is the two-
variable fragment of first-order logic over the output symbol predi-
cates, the linear-order <, and all predicates in MSOp,[<ip, 2],
ie Lt := FOZ[T, <out» 9, MSOpin[<in> =]]. Modulo removing the
brackets {, }, it is a proper fragment of MSO.

Examples of Lr-transductions. The true formula T is satisfied
by any o-graph. Hence [T] = 3% X T'*. Let us now define sev-
eral macros that will be useful throughout the paper. The formula
in(x) = x <jp x (resp. out(x) = x <yt x) holds true if x belongs
to the input word (resp. output word). Now for & € {in,out}, we
define the guarded quantifiers 3%x ¢ and V% x ¢ as shortcuts for
Jx a(x) A ¢ and Vx a(x) — ¢ (note that =3%x ¢ is equivalent to
Vax —|¢)

Preservation of the input/output orders is expressed by the Lr-
formula V" x, y (x <out y) — {x' =in y’}(o(x), o(y)). Note
that we could equivalently replace x' and y' by any variable (even
x and y), without changing the semantics: the formula x <in y'
defines a binary relation on the input word, which is used as an
interpretation of the predicate {x’ <in y'} in o-graphs. To ease the
notations, any predicate {¢}(t1, t2) where ¢ has two free variables

Luc Dartois, Emmanuel Filiot, and Nathan Lhote

x1 and x, may be sometimes written {@[x;/t;,x2/t2]}, i.e. ¢ in
which #; has been substituted for x;. We keep the brackets { and }
to emphasise the fact that it is a binary MSO formula which speaks
about the input word. Hence, the previous formula may also be
written @pres = VOUtxyy (x =out y) = {o(x) <in o(y)}.

The fact that o is a bijective mapping is expressible by some Lr-
formula ¢y, as seen in the introduction. Then, the shuffle transduc-

tion Zehuffle is defined by dshuffie = Pbij A VO Noero(o(x)) =
o (x). If the origin mapping is also required to be order-preserving,
we get a formula defining identity: ¢id = dshuffle A Ppres-

Let us now consider the transduction 7 : (ab)" ~ a"b". By
taking any bijective and label-preserving origin mapping, e.g. as
follows: 4 b a b a b a b

b =50

a a a a” b b b b4)
one can define 7, as long as the input word is in (ab)", which

is regular, hence definable by some MSO[<y, X]-formula $(4p)*.
Then, 7 is defined by: {$(ap)*} A Pij A /\ae{a,b} vty

a(x) = {a(o(x))} A V™", y a(x) A b(y) — x <out y. More
generally, one could associate with any word (ab)" the set of all
well-parenthesised words of length n over T.

Remark 4. According to the previous examples, one can express
in L1 the transduction 7; defined as the shuffle over the language
a*b*, and also 7, : (ab)" +~ a"b". Hence the composition 7, o
n;n n;n .
71 ta b = a b hasanon-regular domain. However, as we
will see in Section 3, the domain of an L7-transduction is always
regular, which means that Lr-transductions are not closed under
composition.

3 Expressiveness, satisfiability and synthesis
3.1 Expressiveness of Lt

Our first result is that L7 can express all regular functions. To
show this result, we use their characterisation as deterministic
MSO-transducers [15]. We briefly recall that an MSO-transducer is
defined by some MSO[<i,, 2]-formulas interpreted over the input
word structure (with linear order denoted here by <j,), which spec-
ify the predicates of the output word structure, the domain of which
are copies of the input nodes. More precisely, a constant k speci-
fies the number of copies of the input word structure, MSO[<1,]-
formulas gzﬁlc,os (x) specify whether the cth copy of node x is kept
in the output structure, monadic formulas ¢)C, (x) for each copy
c € {1,...,k} and y € T, specify whether the cth copy of input
node x is labelled y in the output structure, and ordering formulas

¢§’jt (x,y), say if the cth copy of x is before the dth copy of y in
the output.

Theorem 5. Any regular function is L1-definable.

Sketch of proof. Let f be a regular function. Since it is regular, there
exists an MSO-transducer defining it. We convert it into an Lr-
formula. First, it is not difficult to define an MSO[<i,,, >]-formula
beyooneno(x)c1,..oep € {1,...,k}and v € T'™, which holds
true if and only if in the output structure generated by the MSO-
transducer, the copies of x that are used are exactly cy, . .., cj, they
occur in this order in the output structure, and they are respectively
labelled v(1), .. .,v(l). In other words, input position x generates
the subword v in the output structure. Then, we define L7-formulas
Ci(x),foralli € {1,...,k} and x an output node (in the o-graph),

Logics for Word Transductions with Synthesis

which hold, respectively, iff x is the ith node (in the output order)
whose origin is o(x). This can be done using only two variables:
Ci(x) = out(x) A VOUty, y <out ¥ — {o(x) # o(y)} and for
i21,Ciyi(x) =

3%y (y <out x A {o(x)=0(y)} A Ci(y)) A (Vy (y < xA
{o(x)=0(y)}) = ~(3"*x (x <out y A {0(x)=0(y)} A C;(x)))

Finally, we construct the final £7-formula (omitting some minor
details) as a conjunction, for all m,l < k, all copies cy, .. .,c; and
di,...,dn, all words v € Fl andw e T, alli < land j < m, of
the formulas:

VOUtx,y

(62" (0(x). 0(1)) A fr.....cr.0(0(x)) A ... (0(y)))
ACi(x) A Cj(1)) = (x Sout y A v(i)(x) A w(j)(y))
O

MSO-transducers have been extended with nondeterminism
(NMSO-transducers or just NMSOT) to express non-functional
transductions, by using a set of monadic second-order parame-
ters X, ..., Xy [15]. Each formula of an NMSO-transduction can
use Xj, ..., Xy as free variables. Once an interpretation for these
variables as sets of positions has been fixed, the transduction be-
comes functional. Therefore, the maximal number of output words
for the same input word is bounded by the number of interpreta-
tions for X, ..., X,. NMSO-transducers are linear-size increase
(the length of any output word is linearly bounded by the length
of the input word), hence the universal transduction stxr*is
not definable in NMSO, while it is £7-definable by T. The shuffle
transduction is not definable in NMSOT as well (this can be shown
by cardinality arguments). Conversely, it turns out that a transduc-
tion like (u,vv) where v is a subword of u of even length is not
L1-definable whereas is it in NMSOT.

Rational relations are transductions defined by (non-deterministic)
finite transducers (finite automata over the product monoid »* x
F*), denoted INFT [23]. This class is incomparable with Lr: the
shuffle is not a rational relation, while the relation {a} X L, where
L is a non-FO*-definable regular language is not Lr-definable. In-
deed, when all inputs are restricted to the word a, the expressive
power of L7 is then restricted to FO’[<u¢, I'] over the output.

Non-deterministic two-way transducers (2NFT), are incompa-
rable to NMSO [15], and also to L, since they extend INFT and
cannot define the shuffle transduction. Fig. 2 depicts these compar-
isons, summarised by the following proposition:

Proposition 6. The classes of L1, 2NFT (resp. INFT), and NMSOT-
definable transductions are pairwise incomparable.

3.2 Satisfiability and equivalence problems

Our first main contribution is the following result, whose proof is
sketched in Section 4. Here and throughout the paper, by effectively
we mean that the proof effectively constructs a finite object.

Proposition 7. The input domain of any Lt-transduction is (effec-
tively) regular.

Theorem 8. Over o-graphs, the logic L1 has decidable satisfiability
problem.

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

MSO,
T4

&)
v

Figure 2. Expressiveness of Lr, compared to MSO,, non-
deterministic MSO transductions, non-deterministic one-way and
two-way transducers and regular functions. Here, 7; = {(u,vv) |
vis a subword of u of even length}, 7, = {a} x (ab)*, 73 =
{(w,u) | n 20} and 74 = {a"b", (ab)" | n > 0}.

This latter theorem is a consequence of Thm 9. We point out that
it holds also for origin-free transductions, because given an Lr-
formula ¢, [¢] = @ iff [#]l, = @. The equivalence problem asks,
given two formulas @1, ¢o, whether [¢11, = [P21o, i.e. whether
¢1 < ¢y isuniversally true. As a consequence of Thm. 8 and closure
under negation of L7 we have the decidability of the equivalence
problem for L.

With respect to satisfiability, L1 seems to lie at the decidability
frontier. Adding just the successor relation over outputs already
leads to undecidability, by Prop. 2.

3.3 Regular synthesis of L7 and consequences

Our main result is the regular synthesis of L7-transductions.

Theorem 9 (Regular synthesis of £7). Let ¢ be an L1 formula.
The transduction defined by ¢ is (effectively) realisable by a regular
function.

In other words, from any specification ¢ written in £, one can
synthesise a functional transduction f, in the proof represented
by an MSO-transducer T, such that dom(f) = dom([¢]) and f =
[T] < [¢]. Moreover, it turns out that the constructed transducer T
defines a functional o-transduction [T], such that [T], € [¢1lo-In
other words, T does not change the origins specified in ¢. Since we
rely on MSO-to-automata translation in the construction, the size of
the constructed MSO-transducer is non-elementary in the size of ¢.
One of the main consequences of the synthesis and expressiveness
results is a new characterisation of the class of regular functions.

Theorem 10 (New characterisation of regular functions). Let f :
5% > T*. Then, f is regular iff f is LT-definable.

Proof. By Thm. 5, f regular implies f is L7-definable, which im-
plies by Thm. 9 that f is regular. O

A consequence of synthesis is the following positive result on
functionality:

Corollary 11 (Functionality). Given an L1 -sentence @, it is decid-
able whether the o-transduction [§], is functional.

Proof. To test whether [¢]], is functional, first realise it by a reg-
ular function (Thm. 9), defined e.g. by a deterministic two-way

LICS ’18, July 9-12, 2018, Oxford, United Kingdom

transducer T, and then test whether [¢], € [T],. The latter is de-
cidable since T can be converted (while preserving origins) into an
equivalent L7-formula ¢ (Thm. 5) and test that ¢ — ¢ is satisfiable
(Thm.8). O

4 Domain regularity and synthesis: sketch of
proofs

In this section, we sketch the proofs of Prop. 7 (domain regularity
of Lr-transductions) and Thm. 9 (regular synthesis). These two
results are based on common tools which we now describe. We let
¢ be an L1-sentence over input and output alphabets X, T" respec-
tively. We assume that £7 defines a non-erasing o-transduction, i.e.
an o-transduction which uses every input position at least once (the
origin mapping is surjective). This can be done without loss of gen-
erality, i.e. one can transform in polynomial time any Lr-sentence
into a non-erasing one (by adding dummy output positions the
origins of which are the erased input positions), while preserving
the domain and set of regular functions realising it (modulo the
previous encoding).

Scott normal form. The £7 formula ¢ is then transformed into a
Scott normal form (SNF), a standard transformation when dealing
with two-variable logics (see for instance [19]). By enriching the
alphabet, the transformation allows to restrain ourself to the easier
setting of formulas of quantifier-depth two. Precisely, we obtain a
formula of the form:

m
VU y (e y) A\ VORI Y g(xy)

i=1
where the formulas ¢ and ¢;, i = 1,...,m, are quantifier free,
but over an extended output alphabet T' X r (where r may be
exponential in ¢). These subformulas can also still contain binary
MSO predicates over the input, which are not restricted in any way.
Up to projection over T, the SNF formula accepts the same models
as ¢, and hence we now just assume that ¢ is a formula of the above
form over an input alphabet ¥ and output alphabet T. In the full
proof (Appendix), the SNF is further equivalently transformed into
what we call a system of universal and existential constraints (in
the vein of [30]), which are easier to manipulate in the proofs than
the formulas ¢ and ¢;, but are not necessary at a conceptual level,
so we do not include them in the sketch.

The profile abstraction. We define an abstraction which maps
any o-graph (u, (v, 0)) to a sequence of |u] tuples A; ... A, called
profiles, one for each input position. A profile contains bounded
information (bounded in the size of ¢) about the binary input MSO
predicates, the input symbol and some output positions. To explain
this abstraction, we first informally define what we call the full
graph of an o-graph (u, (v, 0)). Intuitively, the full graph contains
a node for each pair (p,p') € dom(u) X dom(v), labelled by some
information called clause about the “effect” of position p’ at position
p. To understand it, it is convenient to see the full graph as a two-
dimensional structure with the input position as x-axis (ordered by
<in) and the output position as the y-axis (ordered by <q¢). Fig-
ure 3 shows such a representation. E.g. the top-left figure represents
the full graph of an o-graph which translates o7 . . . o5 into (ﬁy)3
(for instance, the origin of the last output position, labelled y, is the
third input position, labelled o3), plus some additional information
which we now detail.

Luc Dartois, Emmanuel Filiot, and Nathan Lhote

Each row contains a single node labelled in T, corresponding to
an output position, and placed according to its origin. Let (p, p')

(output position p’ with origin p) be such a node, labelled by some
y € I'. This node generates an horizontal trace around it, whose

elements are of the form y(}? or)/7('). The arrows indicate in which
direction the y-labelled node is. The elements R, say at coordinates
(s,p"), are MSO[Z, <,]-types (of bounded quantifier rank) talk-
ing about the input word u with the positions s and p marked. In
the proof, we represent these MSO-types as state information of
node selecting automata (or query automata, see e.g. [27]). The
idea behind this information is that, by looking independently
at each column of the full graph of an o-graph, it is possible to
decide whether this o-graph satisfies ¢. Suppose for instance we
want to check whether the o-graph satisfies a formula of the form
VORI y -y (x) = ¥ (9) Ay <out x A {E}(0(y). 0(x)). Then,
for every column containing a y-labelled node, say at coordinate
(p, p'), one has to check that there exists a node in the same col-
umn, say at position (p, p"), labelled by some (y'(l?) or some (y’?),
such that p” < p' and R satisfies £. Suppose that in the SNF we also
have a conjunct of the form vy, y-(y(x)A y'(y) A {o(x) <out
o(y))} - {f'}(o(x), o(y)), then we must additionally checks that

for every column, for every y-labelled node in this column and

every y’i—labelled node on the same column, R satisfies £ ' We call
a column which satisfies the SNF formula ¢ a valid column.

A key property we now use is that, if on a column there exists
at least three nodes with the same label, then removing all but
the smallest and greatest (in output order) of these nodes does not
influence the validity of the column. It is easy to see for subfor-
mulas of ¢ of the form vy, y ¥(x,y) (removing nodes makes
such a formula “easier” to satisfy). For subformulas of the form
VOUtEIOUty Vi(x,y), it is due to the fact that ¢/; is quantifier-free,
and therefore it is safe to keep only the extremal witnesses y for x.

This observation leads us to the notion of abstract graph, the
subgraph of the full graph obtained by keeping only the extremal
occurrences of every node with same labels. Figure 3 illustrates this
abstraction, on hypothetical full graphs where label equalities have
been underlined. Each column indexed by position p of this abstract
graph, together with the input symbol, is what we call the profile
of p. Note that this is a bounded object. Then, to any o-graph one
can associate a sequence of profiles this way, but this association is
not injective in general since we may lose information, as shown
in the figure. Put differently, the abstract graph can in general be
concretised in more than one full graph.

Properties of profile sequences. The key ingredient of the proof
is to define properties on profile sequences s (which are nothing but
words over the finite alphabet of profiles), that can be checked in a
regular manner (by an automaton) so that there exists at least one
o-graph g such that (1) s is the profile sequence of g and (2) g F ¢.
Property (2) is ensured by the notion of validity defined before, and
by a notion of maximality for the MSO-types R (no information can
be withheld). Property (1) is ensured by a notion of consistency
between profiles. Intuitively, it asks that the information declared in
one profile is consis