
Formal methods for
software and hardware

verification

LECTURES:
Vladimir Anatolyevich Zakharov,
Vladislav Vasilyevich Podymov

http://mk.cs.msu.ru/



Lecture 3.

Modeling programs and circuits

Model Checking
The main principles of modeling

Kripke structures
First-order representation
Granularity of models

Translation of programs into Kripke
structures



Model Checking

Model Checking consists in an exhaustive traversal of the state
space of the system. If sufficient resources are available, this
procedure always terminates and can be implemented by a rather
efficient algorithm.

In some cases, systems with an infinite number of states can be
checked by this method in combination with abstraction/refinement
and induction techniques.

Since Model Checking can be applied purely automatically, it is
preferable to proof-theoretic approach in those cases where it is
applicable.



Model Checking

�
�
�
�

correctness
requirements

?

�
�
�
�

program
(circuit)

?
Formalization
of requirements

?

Modeling
of a system

?�
�

�
�

Formal
specification

-

�
�
�
�

Formal
model

�Model
Checking
? ?�� ��Satisfied
�� ��Not satisfied,
counter-example

?

6

Simulation
@
@R

�
�

�
�Localization

of an error

�The bug is fixed

�
��

�
�
�
�No

errors

�Refining of the model



Model Checking

The efficiency
of model checking
depends on how much
concise and precise
is a program model.

Overly simplistic models yield
useless results.

Overly detailed models yield no
results at all.



The main principles of modeling

The first step in checking the correctness of the system is
discussion and formal specification of properties to be checked.

As soon as it becomes known what properties are crucial, the
next step is to build a formal model of the systems.

A model is suitable for verification if it displays all those
properties that need to be checked to establish its correctness.

At the same time, a model should be free of insignificant
details that do not affect properties to be analyzed, but only
hinder verification.



The main principles of modeling

For example, for modeling digital circuits, it is advisable to
reason in terms of logical cells and boolean values, not in
terms of levels voltage.

And when checking communication protocols, it is reasonable
to focus on the message exchange scenario, while ignoring the
processing of their payload.



The main principles of modeling

When designing microelectronic hardware, one deals with reactive
systems ; the behavior of such systems displays itself in the
interaction of a systems with the environment.
The first characteristic feature of a reactive system is its state — a
"snapshot" of the system, which captures the values of all variables
at a given moment in time.
One also needs to know how the states of the system change as a
result of performing the computing actions of the system. These
changes can be described by specifying the state of the system
before the action was taken and its state after performing the
action. This pair of states defines a transition of the system.
The computations (run) of a reactive system is defined in terms of
system transitions. A run is an infinite sequence of states, such that
every next state in this sequence is reachable from the previous one
by some transition.



The main principles of modeling

To formalize behaviors of reactive systems we will use a certain
kind of labeled graphs which are called the Kripke structures
(or, Kripke models , or Labeled Transtion Systems (LTSs)).

Typically, a Kripke structure consists of
a set of states,
a set of transitions, and
a labeling function which marks every state with a set of
basic properties that are true in this state.

Paths in the Kripke model correspond to runs of the system.



Kripke structures

Let AP be a set of atomic propositions (basic state properties).

A Kripke structure M over a set of atomic propositions AP is a
quadruple M = (S , S0,R, L) , where:
1) S is a finite set of states ;
2) S0 ⊆ S is a subset of initial states ;
3) R ⊆ S × S is a transition relation which is a total binary

relation, i. e. for every state s ∈ S there exists such a state
s ′ ∈ S that R(s, s ′) holds;

4) L : S → 2AP is a labeling function which assigns to every state
s ∈ S a set L(s) ⊆ AP of atomic propositions which are
regarded true at this state.



Kripke structures

A path in a model M from a state s is such an infinite sequence of
states π = s0, s1, s2, . . . that s0 = s and R(si , si+1) holds for every
i > 0 .

A state s is called a reachable state of a model if some path from
an initial state of the model goes through s .

A state s is called deadlock state of a model if every path from s
goes only through the state s .

Sometimes transitions in Kripke model are labeled with the names
of those program actions that fire these transitions. In this case a
set of actions Act is introduced and the transitions of the model
are defined as triples R ⊆ S × Act × S .



Kripke structures: Ferry.



Kripke structures: Ferry.



Kripke structures: Ferry.



Kripke structures: Ferry.



Kripke structures: Ferry.



Kripke structures: Ferry.

The boatsmsan can cross the river

alone



Kripke structures: Ferry.

The boatsmsan can cross the river

alone



Kripke structures: Ferry.

or with a passanger



Kripke structures: Ferry.

or with a passanger



Kripke structures: Ferry.

Some passengers may get hurt

without the boatman’s supervision



Kripke structures: Ferry.

Some passengers may get hurt

without the boatman’s supervision



Kripke structures: Ferry.

What is important to know?

It is important to know

whether the person is alive or not,

where is the person.



Kripke structures: Ferry.

The set of states in the Kripke structure Ferry

S = {−1, 0, 1}4 .

For every state (x1, x2, x3, x4)

xi = −1 means that the person i is on the left side,

xi = 1 means that the person i is on the right side.

xi = 0 means that the person i no longer lives.

The set of imitial states

S0 = {(−1,−1,−1,−1)}



Kripke structures: Ferry.

The set of states in the Kripke structure Ferry

S = {−1, 0, 1}4 .

For every state (x1, x2, x3, x4)

xi = −1 means that the person i is on the left side,

xi = 1 means that the person i is on the right side.

xi = 0 means that the person i no longer lives.

The set of imitial states

S0 = {(−1,−1,−1,−1)}



Kripke structures: Ferry.

Transition relation R :
(-1,-1,-1,-1)

�������)(-1,-1,-1,1)

�
�

�
�	

(1,-1,-1,1)

@
@
@
@R

(-1,1,-1,1)

PPPPPPPq(-1,-1,1,1)
��

��
��

�1

�
�

�
�	

(-1,0,-1,1)
?

(-1,-1,0,1)
�
�

�
�	

(-1,0,0,1)

@
@
@
@R
(-1,-1,0,-1)

?
(1,-1,0,1)

? e.t.c.



Kripke structures: Ferry.

Transition relation R :
(-1,-1,-1,-1)�������)(-1,-1,-1,1)

�
�

�
�	

(1,-1,-1,1)

@
@
@
@R

(-1,1,-1,1)

PPPPPPPq(-1,-1,1,1)
��

��
��

�1

�
�

�
�	

(-1,0,-1,1)
?

(-1,-1,0,1)
�
�

�
�	

(-1,0,0,1)

@
@
@
@R
(-1,-1,0,-1)

?
(1,-1,0,1)

? e.t.c.



Kripke structures: Ferry.

Transition relation R :
(-1,-1,-1,-1)�������)(-1,-1,-1,1)

�
�

�
�	

(1,-1,-1,1)

@
@
@
@R

(-1,1,-1,1)

PPPPPPPq(-1,-1,1,1)
��

��
��

�1

�
�

�
�	

(-1,0,-1,1)
?

(-1,-1,0,1)
�
�

�
�	

(-1,0,0,1)

@
@
@
@R
(-1,-1,0,-1)

?
(1,-1,0,1)

? e.t.c.



Kripke structures: Ferry.

Transition relation R :
(-1,-1,-1,-1)�������)(-1,-1,-1,1)

�
�

�
�	

(1,-1,-1,1)

@
@
@
@R

(-1,1,-1,1)

PPPPPPPq(-1,-1,1,1)
��

��
��

�1

�
�

�
�	

(-1,0,-1,1)
?

(-1,-1,0,1)
�
�

�
�	

(-1,0,0,1)

@
@
@
@R
(-1,-1,0,-1)

?
(1,-1,0,1)

? e.t.c.



Kripke structures: Ferry.

Transition relation R :
(-1,-1,-1,-1)�������)(-1,-1,-1,1)

�
�

�
�	

(1,-1,-1,1)

@
@
@
@R

(-1,1,-1,1)

PPPPPPPq(-1,-1,1,1)

��
��
��

�1

�
�

�
�	

(-1,0,-1,1)
?

(-1,-1,0,1)
�
�

�
�	

(-1,0,0,1)

@
@
@
@R
(-1,-1,0,-1)

?
(1,-1,0,1)

? e.t.c.



Kripke structures: Ferry.

Transition relation R :
(-1,-1,-1,-1)�������)(-1,-1,-1,1)

�
�

�
�	

(1,-1,-1,1)

@
@
@
@R

(-1,1,-1,1)

PPPPPPPq(-1,-1,1,1)
��

��
��

�1

�
�

�
�	

(-1,0,-1,1)
?

(-1,-1,0,1)
�
�

�
�	

(-1,0,0,1)

@
@
@
@R
(-1,-1,0,-1)

?
(1,-1,0,1)

? e.t.c.



Kripke structures: Ferry.

Transition relation R :
(-1,-1,-1,-1)�������)(-1,-1,-1,1)

�
�

�
�	

(1,-1,-1,1)

@
@
@
@R

(-1,1,-1,1)

PPPPPPPq(-1,-1,1,1)
��

��
��

�1

�
�

�
�	

(-1,0,-1,1)

?
(-1,-1,0,1)
�
�

�
�	

(-1,0,0,1)

@
@
@
@R
(-1,-1,0,-1)

?
(1,-1,0,1)

? e.t.c.



Kripke structures: Ferry.

Transition relation R :
(-1,-1,-1,-1)�������)(-1,-1,-1,1)

�
�

�
�	

(1,-1,-1,1)

@
@
@
@R

(-1,1,-1,1)

PPPPPPPq(-1,-1,1,1)
��

��
��

�1

�
�

�
�	

(-1,0,-1,1)
?

(-1,-1,0,1)

�
�

�
�	

(-1,0,0,1)

@
@
@
@R
(-1,-1,0,-1)

?
(1,-1,0,1)

? e.t.c.



Kripke structures: Ferry.

Transition relation R :
(-1,-1,-1,-1)�������)(-1,-1,-1,1)

�
�

�
�	

(1,-1,-1,1)

@
@
@
@R

(-1,1,-1,1)

PPPPPPPq(-1,-1,1,1)
��

��
��

�1

�
�

�
�	

(-1,0,-1,1)
?

(-1,-1,0,1)
�
�

�
�	

(-1,0,0,1)

@
@
@
@R
(-1,-1,0,-1)

?
(1,-1,0,1)

? e.t.c.



Kripke structures: Ferry.

Transition relation R :
(-1,-1,-1,-1)�������)(-1,-1,-1,1)

�
�

�
�	

(1,-1,-1,1)

@
@
@
@R

(-1,1,-1,1)

PPPPPPPq(-1,-1,1,1)
��

��
��

�1

�
�

�
�	

(-1,0,-1,1)
?

(-1,-1,0,1)
�
�

�
�	

(-1,0,0,1)

@
@
@
@R
(-1,-1,0,-1)

?
(1,-1,0,1)

? e.t.c.



Kripke structures: Ferry.

Transition relation R :
(-1,-1,-1,-1)�������)(-1,-1,-1,1)

�
�

�
�	

(1,-1,-1,1)

@
@
@
@R

(-1,1,-1,1)

PPPPPPPq(-1,-1,1,1)
��

��
��

�1

�
�

�
�	

(-1,0,-1,1)
?

(-1,-1,0,1)
�
�

�
�	

(-1,0,0,1)

@
@
@
@R
(-1,-1,0,-1)

?
(1,-1,0,1)

? e.t.c.



Kripke structures: Ferry.

Transition relation R :
(-1,-1,-1,-1)�������)(-1,-1,-1,1)

�
�

�
�	

(1,-1,-1,1)

@
@
@
@R

(-1,1,-1,1)

PPPPPPPq(-1,-1,1,1)
��

��
��

�1

�
�

�
�	

(-1,0,-1,1)
?

(-1,-1,0,1)
�
�

�
�	

(-1,0,0,1)

@
@
@
@R
(-1,-1,0,-1)

?
(1,-1,0,1)

? e.t.c.



Kripke structures: Ferry.

Consider a set of atomic propositions

AP = {alivei , lefti : i = 1, 2, 3, 4}

Функция разметки L :

L((−1,−1,−1,−1)) = AP ,

L((−1, 0, 1, 1)) = {alive1, alive3, alive4, left1},

e.t.c.



Kripke structures: Ferry.

Consider a set of atomic propositions

AP = {alivei , lefti : i = 1, 2, 3, 4}

Функция разметки L :

L((−1,−1,−1,−1)) = AP ,

L((−1, 0, 1, 1)) = {alive1, alive3, alive4, left1},

e.t.c.



The main principles of modeling

There are different types of parallel systems (synchronous and
asynchronous circuits, programs with shared variables,
programs interacting via message exchange, etc.). Due to this
diversity, one needs a universal formalism, within which it
would be possible to represent a parallel system of any type.

First-order logic formulas are very well suited for this purpose.
Having such a formula that defines some parallel system, one
can construct a corresponding Kripke structure that serves as
an adequate model of the system.



First-order representations

Only those first-order formulas are suitable for describing formally
parallel systems which are interpreted in some fixed first-order
structure.
This means that predicate and function symbols occurred in these
formulas have some predefined meaning.

Let V = {u1, . . . , un} be a set of the variables of a system.
We assume that the variables from V take values from some finite
set D , which is called a domain of the interpretation.

A valuation of V is any function which maps V to D .



First-order representations

A state of a parallel system is completely specified by the values of
all variables in V . In other words, a state is a valuation s : V → D
of the set of variables V .

For a given valuation one can write a formula, which is true exactly
on this valuation. For example, for the set of variables
V = {u1, u2, u3} a valuation 〈u1 ← 2, u2 ← 3, u3 ← 5〉 is
characterized by the formula (u1 = 2) ∧ (u2 = 3) ∧ (u3 = 5) .

The same formula can be true on many valuations.
We may assume that any first-order formula Φ specifies the set of
valuations (states)

SΦ = {s : s |= Φ}

which make this formula true.
In particular, we denote by S0 any formula over a set of variables V
which specifies the set of initial states S0 of a system.



First-order representations

To specify transitions between states we use formulas to represent
the set of ordered pairs of states.
Given a set of variables V , we create another set of variables V ′

which are the copies of the variables in V . Every variable u in V
corresponds to some variable in V ′ which will be denoted u′ . A
valuation of variables from V will be regarded as a source state of
a transition, whereas a valuation of variables from V ′ as a target
state of the same transition.
Every valuation of variables from both sets V and V ′ may be
viewed as a description of an ordered pair of states (s, s ′) , i.e. a
transition from a state s to a state s ′ . Sets of transitions can be
specified in the same way as sets of states — by means of first-order
formulas.
Any set of ordered pairs of states will be called a transition relation
. If R is a transition relation, then we write R(V ,V ′) to denote a
first-order formula which specifies R .



First-order representations

To write formal specifications of the system’s properties one needs
to choose a set of basic properties as atomic propositions AP .
The most simple basic properties are expressed usually by such
formulas as u = d , where u ∈ V and d ∈ D .
An atomic proposition u = d is true at a state s if s(u) = d .
If u is a variable over the Boolean domain {0, 1} (Boolean
variable) then there is no need to write the equalities u = 0 and
u = 1 . Instead of writing u = 0 we will use a notation ¬u , and
instead of u = 1 we will write u .
More generally, any relation over a domain D

P(ui1 , ui2 , . . . , uik ) ⊆ D × D × · · · × D

can be an atomic statement.



First-order representations

Now let us see what is a Kripke model M = (S ,S0,R, L) which is
defined by first-order formulas S0 and R .
I The set of states S is the set of all valuations of variables V
I The set of initial states S0 is the set of all those valuations s0

of V , which satisfy the formula S0 .
I For every pair of states s and s ′ , a relation R(s, s ′) holds iff

the formula R is evaluated to True whenever each variable
u ∈ V takes the value s(u) and each variable u′ ∈ V ′ takes
the value s ′(u′) .

I A labeling function L : S → 2AP is defined so that L(s) is the
set of all those basic propositions which are true at the state s
. If a formula P(xi1 , . . . , xik ) stands for a basic proposition P ,
then P ∈ L(s) iff this formula evaluates to True on the tuple
(s(ui1), . . . , s(uik )) . If u is a Boolean variable, then u ∈ L(s)
means that s(u) = 1 , and u /∈ L(s) means that s(u) = 0 .



First-order representations

Example.
Consider a simple system which has 2 variables x and y , and these
variables take values from the set D = {0, 1} .
Hence, the valuations of x and y are all pairs (d1, d2) ∈ D × D ,
where d1 is a value of x , and d2 is a value of y .
The system has the only transition which is defined by the action

x := (x + y)(mod 2) ,
and the initial values x = 1 and y = 1 .



First-order representations

Example.
The system is characterized by 2 first-order formulas.

S0(x , y) ≡ x ∧ y ,
R(x , y , x ′, y ′) ≡ x ′ = (x + y)(mod2) ∧ y ′ = y .

A Kripke structure M = (S , S0,R, L) is as follows:
I S = D × D ;
I S0 = {(1, 1)} ;
I R = {〈(1, 1), (0, 1)〉, 〈(0, 1), (1, 1)〉,

〈(1, 0), (1, 0)〉, 〈(0, 0), (0, 0)〉} ;
I L((1, 1)) = {x , y}, L((0, 1)) = {¬x , y} ,

L((1, 0)) = {x , ¬y}, L((0, 0)) = {¬x , ¬y} .
The only initial path in this Kripke structure is
(1, 1), (0, 1), (1, 1), (0, 1), . . .



Granularity of a model description

The crucial aspect of modeling parallel systems is granularity of
operations. It is important to achieve such atomicity of transitions
that no state of the system can be observed as the result of
performing only some part of a single transitions.

When a single transition models an execution of a whole sequence
of actions, a Kripke model does not allow one to observe the results
obtained after every step of such execution. Therefore, it may be so
that such a Kripke model hides some errors of computation by
making invisible those intermediate states where these errors occur.

The problems arise also when a description of a model is overly
detailed, and an atomic action of a program is represented by a
sequence of transitions. In this case parallel composition of such
chains of micro-transition may bring a system into some states
which never appear in real computations of the system.



Kripke model: Forge.

Is it reasonable to represent

by separate transitions such actions as

river sailing?

embarking?

disembarking?

What happens if we regard

as atomic such action as

boatman sailing in both directions?



Kripke model: Forge.

Is it reasonable to represent

by separate transitions such actions as

river sailing?

embarking?

disembarking?

What happens if we regard

as atomic such action as

boatman sailing in both directions?



Kripke model: Forge.

Is it reasonable to represent

by separate transitions such actions as

river sailing?

embarking?

disembarking?

What happens if we regard

as atomic such action as

boatman sailing in both directions?



Kripke model: Forge.

Is it reasonable to represent

by separate transitions such actions as

river sailing?

embarking?

disembarking?

What happens if we regard

as atomic such action as

boatman sailing in both directions?



Kripke model: Forge.

Is it reasonable to represent

by separate transitions such actions as

river sailing?

embarking?

disembarking?

What happens if we regard

as atomic such action as

boatman sailing in both directions?



Granularity of a model description

Consider a system with two variables x and y and two transitions
α and β which can be executed in parallel:

α : x :=x + y , ‖ β : y :=y + x

The set of initial states is specified by x = 1 ∧ y = 2 .

Also consider a more detailed implementation of these transitions in
assembly language:

α ‖ β

α0 : load R1, x β0 : load R2, y

α1 : add R1, y β1 : add R2, x

α2 : store R1, x β2 : store R2, y



Granularity of a model description

Consider a system with two variables x and y and two transitions
α and β which can be executed in parallel:

α : x :=x + y , ‖ β : y :=y + x

The set of initial states is specified by x = 1 ∧ y = 2 .
Also consider a more detailed implementation of these transitions in
assembly language:

α ‖ β

α0 : load R1, x β0 : load R2, y

α1 : add R1, y β1 : add R2, x

α2 : store R1, x β2 : store R2, y



Granularity of a model description

A run α , β brings the program to a state x = 3 ∧ y = 5 .
And a run β , α brings the program to a state x = 4 ∧ y = 3 .

A more detailed implementation of the same program can have
such run as

α0, β0, α1, β1, α2, β2,
and it brings a program to a state x = 3 ∧ y = 3 .

The correctness of the system depends on which model of parallel
computing this program is implemented in.



Granularity of a model description

A run α , β brings the program to a state x = 3 ∧ y = 5 .
And a run β , α brings the program to a state x = 4 ∧ y = 3 .
A more detailed implementation of the same program can have
such run as

α0, β0, α1, β1, α2, β2,
and it brings a program to a state x = 3 ∧ y = 3 .

The correctness of the system depends on which model of parallel
computing this program is implemented in.



Parallel syatems

Parallel systems are composed of sequential programs which are
executed simultaneously. Usually the components of parallel
systems are supplied with certain means for interaction. The
princples of parallel execution and the interaction machinary varies
in different parallel systems.

There are parallel executions of two types: asynchronous , or
interleaving execution , when every time only one component
executes its computing action, and synchronous execution , when
every time all components execute their computing actions
simultaneously.

Two types of interaction are the most common: by reading and
updating the values of shared variables , or by message passing .



Synchronous circuits
At every step of execution a synchronous electronic circuit receives
signals at its input. After a synchronizing pulse passes through the
circuit, these signals act on the circuit elements and transfer them
from one state to another.

- s
��
HH cu0

s- su1
��

��s -

- u2
��



Synchronous circuits

Transitions of the counter are specified by a system of equations
u′0 = ¬u0 ,
u′1 = u0 ⊕ u1 ,
u′2 = (u0 ∧ u1)⊕ u2 ,

These equation can be used to define the following relationships
R0(V ,V ′) ≡ (u′0 ⇔ ¬u0) ,
R1(V ,V ′) ≡ (u′1 ⇔ u0 ⊕ v1) ,
R2(V ,V ′) ≡ (u′2 ⇔ (u0 ∧ u1)⊕ u2) ,

which specify the constraints on the variables in any admissible
transition. Since the values of all variables change simultaneously
during the passage of synchronization pulse, to build a formula R
which formally specifies the transition relation these constraints are
joined by means of conjunctions:
R(V ,V ′) ≡ R0(V ,V ′) ∧R1(V ,V ′) ∧R2(V ,V ′) .



Asynchronous circuits
Transition relations for asynchronous systems are expressed with
the help of disjunction. Suppose that every component of a system
has a single input and does not have internal state variables. In this
case the computing capability of every such component can be
characterized by a function fi (u) ; at every state by the curent
values of variables u this component outputs fi (u) .
Since the components of asynchronous systems operate
independently and with a high performance it is practically
impossible for any two components to change their states
simultaneously. Therefore, it is suitable to use the interleaving
semantics which is based on the following principal assumption: at
every step of computation only one component (process) of a
parallel system changes its state. This can be expressed by means
of the disjunction

R(V ,V ′) ≡ R0(V ,V ′) ∨ · · · ∨ Rn−1(V ,V ′) ,
где Ri (V ,V

′) ≡
(
u′i ⇔ fi (V )

)
∧
∧

j 6=i (u
′
j ⇔ uj) .



Translation of programs to Kripke models

Let us define the main rules of a translation C of sequential and
parallel programs P into first-order formula R which specifies the
set of transitions of the program.

The syntax of our programs:

I x := e, skip, wait(b);
I π = π1;π2;
I π = if b then π1 else π2 fi,
I π = while b do π1 od,
I cobegin π1 ‖ π2 ‖ · · · ‖ πm coend.



Translation of programs to Kripke models

Without loss of generality we will assume that every program
statement has the only entry and the only exit . All labels are
pairwise different. Translation merges exit of one statement and
entry of the next statement. As the result we obtain the
unambiguous labeling of entries and exits of all statements.

x:=y; if x>0 then y:=z else z:=x fi; x:=z;

0: x:=y;:1 2: if x>0 then 3: y:=z:4 else 5: z:=x:6 fi;:7 8: x:=z;:9

0: x:=y;:1 1: if x>0 then 3: y:=z:4 else 5: z:=x:4 fi;:4 4: x:=z;:9



Translation of programs to Kripke models

Without loss of generality we will assume that every program
statement has the only entry and the only exit . All labels are
pairwise different. Translation merges exit of one statement and
entry of the next statement. As the result we obtain the
unambiguous labeling of entries and exits of all statements.

x:=y; if x>0 then y:=z else z:=x fi; x:=z;

0: x:=y;:1 2: if x>0 then 3: y:=z:4 else 5: z:=x:6 fi;:7 8: x:=z;:9

0: x:=y;:1 1: if x>0 then 3: y:=z:4 else 5: z:=x:4 fi;:4 4: x:=z;:9



Translation of programs to Kripke models

Without loss of generality we will assume that every program
statement has the only entry and the only exit . All labels are
pairwise different. Translation merges exit of one statement and
entry of the next statement. As the result we obtain the
unambiguous labeling of entries and exits of all statements.

x:=y; if x>0 then y:=z else z:=x fi; x:=z;

0: x:=y;:1 2: if x>0 then 3: y:=z:4 else 5: z:=x:6 fi;:7 8: x:=z;:9

0: x:=y;:1 1: if x>0 then 3: y:=z:4 else 5: z:=x:4 fi;:4 4: x:=z;:9



Translation of programs to Kripke models

Without loss of generality we will assume that every program
statement has the only entry and the only exit . All labels are
pairwise different. Translation merges exit of one statement and
entry of the next statement. As the result we obtain the
unambiguous labeling of entries and exits of all statements.

x:=y; if x>0 then y:=z else z:=x fi; x:=z;

0: x:=y;:1 2: if x>0 then 3: y:=z:4 else 5: z:=x:6 fi;:7 8: x:=z;:9

0: x:=y;:1 1: if x>0 then 3: y:=z:4 else 5: z:=x:4 fi;:4 4: x:=z;:9



Translation of programs to Kripke models

We introduce a variable pc of special type which is called
command counter ; its domain is the set of all program labels and a
special element ⊥ (undefined value ). The undefined value is used
when we deal with parallel programs. In this case pc = ⊥ means
that the program is not active yet.
Let V be the set of all program variables. This set is accompanied
with the set V ′ of primed variables u′ which are in one-to-one
correspondence with the variables u ∈ V , the set of primed varibles
also includes pc ′ as a counterpart of command counter pc .
Since every transition usually updates only a small fraction of
program variables, we will write same(Y ) to denote a formula∧

y∈Y (y ′ = y) .



Translation of programs to Kripke models

First, we build a formula which specifies the set of initial states of a
program P . Given a certain pre-condition pre(V ) , which specifies
the initial values of variables of the program P , this formula looks
as follows

S0(V , pc) ≡ pre(V ) ∧ pc = m .
Translation C depends on three parameters: an entry label ` , a
labeled statement P and an exit label `′ . This is a recursive
procedure which uses one rule per every type of program
statements. A predicate C(`,P, `′) describes the set of transitions
of the program P as a disjunction of subformulas which specify
transitions from this set.



Translation of programs to Kripke models

Assignment statement:

C(`, u := e, `′) ≡
pc = ` ∧ pc ′ = `′ ∧ u′ = e ∧ same(V \ {u}) .

Instruction skip:

C(`, skip, `′) ≡ pc = ` ∧ pc ′ = ` ∧ same(V ) .

Sequential composition of statements:

C(`, P1; `′′ : P2, `
′) ≡ C(`,P1, `

′′) ∨ C(`′′,P2, `
′) .



Translation of programs to Kripke models

Assignment statement:

C(`, u := e, `′) ≡
pc = ` ∧ pc ′ = `′ ∧ u′ = e ∧ same(V \ {u}) .

Instruction skip:

C(`, skip, `′) ≡ pc = ` ∧ pc ′ = ` ∧ same(V ) .

Sequential composition of statements:

C(`, P1; `′′ : P2, `
′) ≡ C(`,P1, `

′′) ∨ C(`′′,P2, `
′) .



Translation of programs to Kripke models

Assignment statement:

C(`, u := e, `′) ≡
pc = ` ∧ pc ′ = `′ ∧ u′ = e ∧ same(V \ {u}) .

Instruction skip:

C(`, skip, `′) ≡ pc = ` ∧ pc ′ = ` ∧ same(V ) .

Sequential composition of statements:

C(`, P1; `′′ : P2, `
′) ≡ C(`,P1, `

′′) ∨ C(`′′,P2, `
′) .



Translation of programs to Kripke models

Branching statement if-then-else:

C(`, if b then `1 : P1 else `2 : P2 end if, `′)
is a disjunction of the following four formulas:
I pc = ` ∧ pc ′ = `1 ∧ b ∧ same(V ) ,
I pc = ` ∧ pc ′ = `2 ∧ ¬b ∧ same(V ) ,
I C(`1,P1, `

′) ,
I C(`2,P2, `

′) .
The first subformula covers the case when the condition b is true.
In this case the statement P1 is executed. The second subformula
corresponds to the case when the condition b is false. In this case
the control passes to the statement P2 . Both subformulas change
the value of command counter only. The third and the forth
subformulas specify the transitions of the statements P1 and P2 .



Translation of programs to Kripke models

Loop statement while-do:

C(`, while b do `1 : P1 end while, `′)
is a dijunction of three subformulas:
I pc = ` ∧ pc ′ = `1 ∧ b ∧ same(V ) ,
I pc = ` ∧ pc ′ = `′ ∧ ¬b ∧ same(V ) ,
I C(`1,P1, `) .

The first subformula specifies the case when the condition b is
true. In this case at the next step the statement P1 is executed.
The second subformula corresponds to the case when b is false.
Then the execution of the loop statements terminates. The third
subformula specifies the transitions of the statement P1 . It should
be noted that the exit from the statement P1 is joined with the
entry to the loop statement. Thus as soon as the execution of the
statement P1 ends the loop statement is started again.



Translation of programs to Kripke models

Parallel composition P :
P = ` : cobegin `1 : PL1 `

′
1 ‖ `2 : PL2 `

′
2 ‖ . . . ‖ `n : PLn `

′
n coend : L′.

The formula
C(`, cobegin P1 ‖ P2 ‖ . . . ‖ Pn coend, `′)
is a disjunction of three subformulas:
I pc = ` ∧ pc ′1 = `1 ∧ . . . ∧ pc ′n = `n ∧ pc ′ = ⊥ ,
I pc = ⊥ ∧ pc1 = `′1 ∧ . . . ∧ pcn = `′n ∧ pc ′ = `′ ∧
∧
∧n

i=1(pc ′i = ⊥) ,
I
∨n

i=1

(
C(`i ,Pi , `

′
i ) ∧ same(V \ Vi ) ∧ same(PC \ {pci})

)
.

The first subformula specifies initialization of parallel processes.
The second subformula specifies completion of the execution of
parallel program. and the third subformula specifies the execution
of parallel processes.



Translation of programs to Kripke models

Parallel composition P :
P = ` : cobegin `1 : PL1 `

′
1 ‖ `2 : PL2 `

′
2 ‖ . . . ‖ `n : PLn `

′
n coend : L′.

The formula
C(`, cobegin P1 ‖ P2 ‖ . . . ‖ Pn coend, `′)
is a disjunction of three subformulas:
I pc = ` ∧ pc ′1 = `1 ∧ . . . ∧ pc ′n = `n ∧ pc ′ = ⊥ ,
I pc = ⊥ ∧ pc1 = `′1 ∧ . . . ∧ pcn = `′n ∧ pc ′ = `′ ∧
∧
∧n

i=1(pc ′i = ⊥) ,
I
∨n

i=1

(
C(`i ,Pi , `

′
i ) ∧ same(V \ Vi ) ∧ same(PC \ {pci})

)
.

The first subformula specifies initialization of parallel processes.
The second subformula specifies completion of the execution of
parallel program. and the third subformula specifies the execution
of parallel processes.



Translation of programs to Kripke models

Instruction wait.

The instruction wait(b) permanently checks the value of Boolean
variable b until it finds that b is evaluated to true. As soon as b
becomes true, the instruction passes the control to the next
statement in the program.

Formula C(`, wait(b), `′) is a disjunction of two subformulas:
pci = ` ∧ pc ′i = ` ∧ ¬b ∧ same(Vi ) ,
pci = ` ∧ pc ′i = `′ ∧ b ∧ same(Vi ) .



Example of a program

Task
There are several computers and only one printer. No computer is
aware of the existence of other computers. How to organize their
interaction correctly so that they can all use this printer?

HH

��
w
$'



Example of a program

Task
It is assumed that the printer has a single 1-bit shared CRCW
memory R (Concurrent Read — Concurrent Write). This memory
can be either in the state busy (the printer is occupied), or free
(the printer is free).

HH

��
w

R

$'



Example of a program

Before writing a program (driver) that ensures the interaction of
each computer with a printer, one needs to formulate the
requirements to this program.

1. Whenever the printer is free and at least one computer is
about to send data to print, the printer will eventually be busy;

2. Whenever the printer is busy, it must start printing sometime
3. The computer that has finished printing must free the printer

sometime;
4. Data to the printer is always sent by no more than one

computer.



Example of a program

Before writing a program (driver) that ensures the interaction of
each computer with a printer, one needs to formulate the
requirements to this program.
1. Whenever the printer is free and at least one computer is

about to send data to print, the printer will eventually be busy;

2. Whenever the printer is busy, it must start printing sometime
3. The computer that has finished printing must free the printer

sometime;
4. Data to the printer is always sent by no more than one

computer.



Example of a program

Before writing a program (driver) that ensures the interaction of
each computer with a printer, one needs to formulate the
requirements to this program.
1. Whenever the printer is free and at least one computer is

about to send data to print, the printer will eventually be busy;
2. Whenever the printer is busy, it must start printing sometime

3. The computer that has finished printing must free the printer
sometime;

4. Data to the printer is always sent by no more than one
computer.



Example of a program

Before writing a program (driver) that ensures the interaction of
each computer with a printer, one needs to formulate the
requirements to this program.
1. Whenever the printer is free and at least one computer is

about to send data to print, the printer will eventually be busy;
2. Whenever the printer is busy, it must start printing sometime
3. The computer that has finished printing must free the printer

sometime;

4. Data to the printer is always sent by no more than one
computer.



Example of a program

Before writing a program (driver) that ensures the interaction of
each computer with a printer, one needs to formulate the
requirements to this program.
1. Whenever the printer is free and at least one computer is

about to send data to print, the printer will eventually be busy;
2. Whenever the printer is busy, it must start printing sometime
3. The computer that has finished printing must free the printer

sometime;
4. Data to the printer is always sent by no more than one

computer.



Example of a program

To communicate with the printer, the programmer suggested to
supply each computer with the same program

π : while true do
wait (R=free);
R:=busy;
output(X,printer);
R:=free

od

This program seems both simple and reasonable.
But will the system of computers equipped with this program
behave in accordance with the specified requirements?



Example of a program

To communicate with the printer, the programmer suggested to
supply each computer with the same program

π : while true do
wait (R=free);
R:=busy;
output(X,printer);
R:=free

od

This program seems both simple and reasonable.
But will the system of computers equipped with this program
behave in accordance with the specified requirements?



Пример программы

Consider a parallel composition of these programs

cobegin
π′ : while true

do wait (R=free); R:=busy; skip; R:=free; od
‖
π′′ : while true

do wait (R=free); R:=busy; skip; R:=free; od
coend



Example of a program

Kripke model for the program π′it (L1, {R/free})

?i(L2, {R/free})

?i� �	�
(L3, {R/busy})

?i(L4, {R/busy})

'

&

- it� �	�

(L1, {R/busy})



Example of a program
Kripke model for the programs π′ and π′′

it (L′1, free)

?i(L′2, free)

?i� �	�
(L′3, busy)

?i(L′4, busy)

'

&

- it� �	�

(L′1, busy)

it (L′′1 , free)

?i(L′′2 , free)

?i� �	�
(L′′3 , busy)

?i(L′′4 , busy)

'

&

- it� �	�

(L′′1 , busy)



Example of a program
Kripke model for the program π′ ‖ π′′it(L′1, L′′1 , free)

�
�	

@
@Rt(L′2, L

′′
1 , free)'

?

@
@R

t(L′3, L
′′
1 , busy)��� -

?t(L′4, L
′′
1 , busy)

'

&

-

t(L′1, L′′2 , free)

�
�	

$
?t(L′1, L′′3 , busy)� ���

?t(L′1, L′′4 , busy)

$

%

�

t(L′2, L
′′
2 , free)

�
�	
@
@Rt(L′2, L

′′
3 , busy)

�� �
?'

?t(L′2, L′′4 , busy)��

� 	6
$
?t(L′4, L

′′
2 , busy) ��

�
6
@
@R

t(L′3, L′′2 , busy)

�
�
?

�
�	t (L′3, L′′3 , busy)��� -

?t(L′3, L
′′
4 , busy)��� - %�� -

?t(L′4, L′′3 , busy)� ���& -��
?t(L′3, L

′′
1 , free)��� - - ?t(L′1, L′′3 , free)� ����

t(L′
4, L′′

4 , busy)�� � -t(L′4, L′′1 , free)

'-

t(L′1, L
′′
4 , free)

$�

?t(L′3, L
′′
2 , free)��� -

�

?t(L′2, L′′3 , free)� ���

I

-?t(L′4, L′′2 , free)��
��

�
��
�
��
�
�*

-

�?t(L′2, L
′′
4 , free)HH
HH

H
HH

H
HH

H
HY

�

it(L′1, L′′1 , busy)� �	�



Peterson’s Algorithm

Look at the pareallel composition of programs

cobegin
π1 : while true

do 〈 b1:=true; x:=2〉;
wait (x=1 ∨ ¬b2); skip; b1:=false;

od
‖
π2 : while true

do 〈 b2:=true; x:=1〉;
wait (x=2 ∨ ¬b1); skip; b2:=false;

od
coend

Is it possible that two processes enter simultaneously into the
critical section?



Peterson’s Algorithm

Look at the pareallel composition of programs

cobegin
π1 : while true

do 〈 b1:=true; x:=2〉;
wait (x=1 ∨ ¬b2); skip; b1:=false;

od
‖
π2 : while true

do 〈 b2:=true; x:=1〉;
wait (x=2 ∨ ¬b1); skip; b2:=false;

od
coend

Is it possible that two processes enter simultaneously into the
critical section?



Example of a program

How to formulate the correctness
requirements?



Example of a program

The dining philosophers problem



The dining philosophers problem

Five silent philosophers are seated around a round table.
Each has a plate of spaghetti in front of them.
Forks lie between every pair of neighbors.
Every philosopher can either eat or think.
A philosopher can only eat when he holds two forks — taken from
the right and from the left.
Each philosopher can take the nearest fork (if available), or put
down - if he is already holding it.
Taking each fork and returning it to the table are separate actions
that must be performed one after the other.

The essence of the problem: to develop a model of behavior
(parallel algorithm) in which none of the philosophers will starve,
that is, they will forever alternate between eating and thinking.



The dining philosophers problem

Five silent philosophers are seated around a round table.
Each has a plate of spaghetti in front of them.
Forks lie between every pair of neighbors.
Every philosopher can either eat or think.
A philosopher can only eat when he holds two forks — taken from
the right and from the left.
Each philosopher can take the nearest fork (if available), or put
down - if he is already holding it.
Taking each fork and returning it to the table are separate actions
that must be performed one after the other.

The essence of the problem: to develop a model of behavior
(parallel algorithm) in which none of the philosophers will starve,
that is, they will forever alternate between eating and thinking.



END OF LECTURE 3.


