
Monitoring Dense-Time, Continuous-Semantics,

Metric Temporal Logic

Kevin Baldor1,2 and Jianwei Niu1

1 University of Texas at San Antonio, USA
{kbaldor,niu}@cs.utsa.edu

2 Southwest Research Institute, San Antonio, USA

Abstract. The continuous semantics and dense time model most closely
model the intuitive meaning of properties specified in metric temporal
logic (mtl). To date, monitoring algorithms for mtl with dense time and
continuous semantics lacked the simplicity the standard algorithms for
discrete time and pointwise semantics. In this paper, we present a novel,
transition-based, representation of dense-time boolean signals that lends
itself to the construction of efficient monitors for safety properties defined
in metric temporal logic with continuous semantics. Using this represen-
tation, we present a simple lookup-table-based algorithm for monitor-
ing formulas consisting of arbitrarily nested mtl operators. We examine
computational and space complexity of this monitoring algorithm for the
past-only, restricted-future, and unrestricted-future temporal operators.

1 Introduction

Program monitoring has attracted interest as an alternative to model checking
or theorem proving as these become impractical due to the size of the state space
of a full program. A dynamic analysis, monitoring is limited to the detection of
property violations that are actually observed in a program’s execution, and
more fundamentally, to so called safety properties, those that can be falsified
given only a finite number of program events.

Temporal logics such as linear temporal logic (ltl) [7] and computation tree
logic (ctl) [3] provide an effective formal description for desired or undesired
program behavior and are commonly used in monitoring applications. Each of
these logics specify constraints on the order of occurrence of events. For example,
they can state that “after event p, event q must take place at some point in the
future”. This is not an enforceable safety property but would become one if
modified to state that q must occur within a certain period of time. To do so,
these logics must be augmented with an explicit notion of time.

One such augmentation is metric temporal logic (mtl) [5]. It introduces limits
on the periods of time over which a logical connective operates. For example, the
property described in the preceding paragraph may be specified as p→[0,5] q.
The subscript on the eventually operator (), is an interval – relative to the

S. Qadeer and S. Tasiran (Eds.): RV 2012, LNCS 7687, pp. 245–259, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

246 K. Baldor and J. Niu

current time – in which q must hold in order for the statement to be true at the
current time. Some notations support a number of subscript forms, but without
loss of generality, we restrict our presentation to the use of intervals that may be
closed or open on either end. Additionally, we admit intervals of the form [a, a],
though their use incurs a potential space penalty.

The runtime-verification community employs two time models for mtl: dis-
crete and dense. Within the dense-time model, there are two semantics: point-
based and continuous [8] [2]. We concentrate on the latter, as in [2], Basin et
al. assert that “Real-time logics based on a dense, interval-based time model
are more natural and general than their counterparts based on a discrete or
point-based model”. But in it, they present a monitoring algorithm that they
describe as ”conceptually simpler” for the point-based semantics than for the
interval-based (continuous) semantics.

Our contribution with this paper is the introduction of a transition-based –
rather than interval-based [2] – representation for the dense-time boolean signals
that are a feature of the continuous semantics. With this representation, the
output of all mtl connectives can be expressed as a simple lookup-table indexed
by the input. Using this representation, we present a conceptually simple mtl
monitoring algorithm modeled on the transducer-approach of [6] that reduces
to something like the ltl-monitoring algorithm of [4] for past-only operators.
We then observe the increase in space complexity of its extension to future mtl
expressions.

2 Background

2.1 LTL and MTL

Logical expressions use the connectives for disjunction (∨), logical or ; conjunc-
tion (∧), logical and ; and negation (¬) to describe the relationship between
logical statements at the current time. Linear Temporal Logic (ltl) augments
them with a number of logical connectives that describe the relationship between
logical expressions over time.

The past-only operator historically (φ) indicates that the expression φ has
been true since time zero, once (φ) indicates that φ must have been true at
some point in time since time zero, and since (φ S ψ) indicates that at some
point in the past ψ must have been true and that φ must at least have been true
at every point after that until the current time;

The future-only operator globally (φ) indicates that the expression φ is true
now and will be true at all points in the future, eventually (φ) indicates that
φ must be true at the current time or at some point in the future, and until
(φ U ψ) indicates that at the current time or at some point in the future ψ must
be true and that that φ must at least have been true at every point between the
current time and that point.

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 247

The semantics of ltl operate on a trace, a countably infinite sequence of
truth values of atomic elements. ltl expressions are only interpreted as having
a truth value at the instants of time corresponding to the elements of the trace.
Beyond the order of events, the actual time at which the events plays no role in
determining the truth of the ltl expressions.

The pointwise semantics of mtl are a natural extension of the semantics of
ltl in that, while they augment the order constraints of ltl with true time
constraints, the truth of an expression is only defined at discrete points in time.
When used for monitoring, an mtl expression might be evaluated only when
an input event arrives. This is more efficient than periodically re-evaluating
expressions, but can lead to counter-intuitive results. In [2], Basin et al. dis-
cuss a number of such results. Perhaps most striking is that under pointwise
semantics [0,1][0,1]φ is not logically equivalent to [0,2]φ. This is illustrated
in the case that φ is true at time τ = 0, and the next observation of the system
takes place at time τ = 2, [0,2]φ is true at time τ = 2, but [0,1][0,1]φ
is false since the observations lack the ‘bridge’ at time τ = 1 (for which
[0,1]φ would evaluate to true) needed to declare [0,1][0,1]φ to be true at
time τ = 2.

As observed by the authors of [2], adding additional sample points can restore
the equivalence of these expressions at the cost of additional computation by the
monitor. In a discrete-valued-time system, this can be taken to the extreme of
evaluating all expressions with each ‘clock tick’. Beyond the computational cost,
this cannot be extended to the dense-time representation that best models ex-
ternal events for which there is no shared clock.

2.2 Continuous Semantics and Boolean Signals

Under continuous semantics, we avoid the ambiguity introduced by the selection
of sample points. Loosely, the continuous semantics (mtl) assign a truth value to
any expression for any point of time greater than zero. A more formal definition
is presented in [2], but we will present enough here for the purpose of discussion.
Essentially, the notion of a trace used in ltl and the pointwise semantics of mtl
is replaced by a mapping from time τ ∈ R≥0 to {true, false} that the authors
term a boolean signal. In their formulation, the boolean signal for the expression
φ, denoted γφ, is the set of all points in time for which φ evaluates to true. In
Figure 1 – expanded from the definitions given in [2] to include UI , the set of
all signals in a model is written γ̂, τ ∈ R≥0 denotes the time for which the
statement applies, and the subscript I is an interval on R for which the operator
applies.

248 K. Baldor and J. Niu

γ̂, τ |= p iff τ ∈ γp

γ̂, τ |= ¬φ iff γ̂, τ �|= φ

γ̂, τ |= φ ∧ ψ iff γ̂, τ |= φ and γ̂, τ |= ψ

γ̂, τ |= φ SI ψ iff ∃ τ′ ∈ [0, τ] such that τ − τ
′ ∈ I, γ̂, τ

′ |= ψ, and γ̂, κ |= φ ∀κ ∈ (τ
′
, τ] or1

∃ τ′′ ∈ [0, τ
′
) such that τ − τ

′′ ∈ I, γ̂, κ |= ψ ∀κ ∈ [τ
′′
, τ

′
) and γ̂, κ |= φ ∀κ ∈ [τ

′
, τ]

γ̂, τ |= φ UI2 ψ iff ∃ τ′ ≥ τ such that τ
′ − τ ∈ I, γ̂, τ

′ |= ψ, and γ̂, κ |= φ ∀κ ∈ [τ, τ
′
) or

∃ τ′′ > τ′ such that τ′′ − τ ∈ I, γ̂, κ |= ψ ∀κ ∈ (τ′, τ′′] and γ̂, κ |= φ ∀κ ∈ [τ, τ′]

Fig. 1. Continuous Semantics of mtl

3 Modeling Dense-Time Boolean Signals as Event
Sequences

The dense model of time precludes a representation consisting of every value for
which a boolean signal is true as theremay be uncountablymany such points. How-
ever, boolean signals are defined as satisfying the finite-variability condition that
on any bounded interval there exists a finite number of non-overlapping intervals
over which the signal is true. This lends itself to the representation used in [2] an
at-most-countably-infinite set of non-overlapping intervals. Our representation
differs in that we model boolean signals not as a series of intervals, but as a se-
quence of timed events denoting a transition from one truth value to another. For
example, a signal described with the intervals {[1, 2], [3, 3], (4, 5), (5, 6)}might be
illustrated as

1 2 3 4 5 6

where the higher line indicates true and the lower, false. The dots at the tran-
sition indicate whether the signal is considered true at the transition point. We
represent this signal as the series of transitions

{(, 1) , (, 2) (, 3) (, 4) , (, 5) (, 6)}

This example exhausts all of the transition types required to describe boolean
signals. In the following sections the additional events (, τ) and (, τ) are used
to indicate the lack of transition on one of the inputs of a binary operator. They
are not strictly required to unambiguously describe a boolean signal, but are
convenient for the implementation of the monitor.

1 This clause was added to capture another boundary condition introduced by the
dense time model.

2 We introduce the until operator using the presentation of [2] to relate the definition
of future operators in the standard definitions of the runtime-verification community.

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 249

Definition 1. A boolean signal is described by an infinite sequence of timed
transitions (δi, τi) for which δ0 ∈ { , , , }, δi ∈ { , , , , , }∀ i > 0,
and τi ∈ R≥0, τ0 = 0, and τi+1 > τi∀i ≥ 0. The timed transitions are subject
to the further constraint types of adjacent transitions must agree in the sense
that the incoming value of each transition must match the outgoing value of the
previous transition. More formally,

δi ∈ { , , , } → δi+1 ∈ { , , } and

δi ∈ { , , , } → δi+1 ∈ { , , }.

Definition 2. The truth of a signal γ at time τ is given by

τ ∈ γ
.
=

{
δk ∈ { , , , } ∃k : τk = τ
δk ∈ { , , , } ∃k : τk < τ ∧ (τk+1 > τ ∨ k = |γ|)

4 Monitor Construction

4.1 Supported Temporal Operators

Although the timed until and since are sufficient to capture mtl semantics,
the treatment of their transitions is sufficiently complicated that we follow the
approach of [6] and introduce timed eventually to enable the treatment of only
the non-metric until and since. This is accomplished by exploiting the fact that
timed since and until are redundant given timed historically (I) , once (I),
henceforth (I), and future (I) since

φ S[a,b]ψ ↔ [0,a](φ S ψ) ∧ [a,b]ψ and

φ U[a,b]ψ ↔ [0,a](φ U ψ) ∧ [a,b]ψ

and that I and I are redundant since

Iφ↔ ¬I¬φ
Iφ↔ ¬I¬φ

Further, we observe that for the same input the output of[a,a+Δ] and[b,b+Δ]

are both simply a time-shifted version of the output of [0,Δ]. By generalizing
the intervals to support negative indices, we obtain

[a,b]φ↔[−b,−a]φ

As a result, we can monitor both future and past mtl using only the transducers
for the operators ¬, ∧, S, U , and I , the formal definitions for which are given
in Figure 2.

250 K. Baldor and J. Niu

γ̂, τ |= ¬φ iff γ̂, τ �|= φ

γ̂, τ |= φ ∧ ψ iff γ̂, τ |= φ and γ̂, τ |= ψ

γ̂, τ |=I φ iff ∃ τ ′such that τ ′ − τ ∈ I, γ̂, τ ′ |= φ

γ̂, τ |= φ S ψ iff ∃ τ ′ ∈ [0, τ] such that γ̂, τ ′ |= ψ and γ̂, κ |= φ ∀κ ∈ (τ ′, τ] or

∃ τ ′′ ∈ [0, τ ′) such that γ̂, κ |= ψ ∀κ ∈ [τ ′′, τ ′) and γ̂, κ |= φ ∀κ ∈ [τ ′, τ]

γ̂, τ |= φ U ψ iff ∃ τ ′ ≥ τ such that γ̂, τ ′ |= ψ andγ̂, κ |= φ ∀κ ∈ (τ ′, τ] or

∃ τ ′′ > τ ′ such that γ̂, κ |= ψ ∀κ ∈ (τ ′, τ ′′] and γ̂, κ |= φ ∀κ ∈ [τ, τ ′]

Fig. 2. Semantics of Monitored mtl Connectives

4.2 Monitoring Algorithm

To monitor a formula φ, we begin by converting it into a parse tree. From
this, we construct an array Φ consisting of one transducer for each node of
the parse tree in reverse-topological-sort order. That is, for any node in the
parse tree, its children appear before it in Φ. The transducers maintain some
operation-specific fields, but each contains at least 〈op, inputs, Q, Ivalid〉 where
op identifies the operation, inputs contains a pointer to the elements of Φ upon
which it depends, Q is a queue containing the output of the transducer, and
Ivalid indicates the time interval over which the output of the transducer is
valid.

The valid interval allows a transducer to ‘stop time’ while its state is undeter-
mined. For example, the transducer for eventually uses this to apply a constant
offset to all output transitions, whereas the until transducer may delay its output
for an indeterminate period. Even the simple transducers such as negation and
conjunction must be able to specify a valid interval since their input might do so.

Some transducers define additional state variables in addition to those men-
tioned above. The since transducer maintains a state indicating whether or not
the latest transition left its output in the up state; The eventually transducer
maintains a timer that is used by the monitoring algorithm to call Update again
at some point in the future.

In the following pseudocode, the Update procedures for each transducer em-
ploys transition tables such as futurea[δ] for the eventually transducer. Their
contents are given in the following sections.

The monitoring procedure consists of gathering an ensemble of simultaneous
transition events for the external inputs to the monitor and storing them in a
container, Δ, that maps input variable names to transition types. If a timer ex-
pires, Update may be called with no input transitions. The Update function
returns the next timer expiration time so that the monitor may call it when it
has expired. The following pseudocode describes the most general version of the

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 251

update operation and the Update procedures for the more interesting trans-
ducers3. Subsequent sections will describe the simplifications that are possible
when supporting subsets of mtl.

function Update(Φ, Δ, τ)
for ϕ ∈ Φ do

if ϕ.op ∈ input variables then
if ϕ.op.id ∈ Δ then

Enqueue(ϕQ,Δ[ϕ.op.id], τ)
ϕ.Ivalid ← [0, τ]

else
while (δ∗, τ) ← Sync(ϕ.inputs) do

Updateϕ.op(ϕ, δ
∗, τ)

UpdateValidIntervalϕ.op(ϕ)

return min({ϕ.τtimer for ϕ ∈ Φ})

function UpdateI (ϕ, δ, τ)
τ ′ ← τ − b
 output time offset
if τ = 0 then

Enqueue(ϕ.Q, futureinit[δ], τ
′)

else if τ = ϕ.τtimer then
if δ = ∅ then

Enqueue(ϕ.Q, ϕ.δ↓, τ ′)
else if ϕ.δ↓ = then

Enqueue(ϕ.Q, futurec[δ], τ
′)

ϕ.δ↓ ← ∅

ϕ.τtimer ← ∅

else if δ ∈ futurea then
Enqueue(ϕ.Q, futurea[δ], τ

′)
if δ ∈ futureb then
 down transition

ϕ.δ↓ ← futureb[δ]
ϕ.τtimer ← τ + b− a

function UpdateValidIntervalI (ϕ)
φ← ϕ.inputs
switch φ.Ivalid

case [0, i] ϕ.Ivalid ← [0, i− b]

case [0, i) ϕ.Ivalid ← [0, i− b)

function UpdateU (ϕ, δφ, δψ, τ)
if τ = 0 then

Enqueue(ϕ.Q, untilinita [δφ, δψ], τ)
ϕ.δ↑ ← untilinitb

[δφ, δψ]
ϕ.δ↓ ← untilinitc

[δφ, δψ]
ϕ.τpending ← τ

else
switch untila[δφ, δψ]

τ ′ ← ϕ.τpending
case

Enqueue(ϕ.Q, ϕ.δ↑, τ ′)
case

Enqueue(ϕ.Q, ϕ.δ↓, τ ′)
Enqueue(ϕ.Q, untilb[δφ, δψ], τ)
ϕ.δ↑ ← untilc[δφ, δψ]
ϕ.δ↓ ← untilinitd

[δφ, δψ]
ϕ.τpending ← τ

if ¬(ϕ.δ↑ = ϕ.δ↓ = ∅) then
ϕ.Ivalid ← [0, τ)

function UpdateValidIntervalU (ϕ)
φ, ψ ← ϕ.inputs
if ϕ.δ↑ = ϕ.δ↓ = ∅ then

ϕ.Ivalid ← φ.Ivalid ∩ ψ.Ivalid

3 For the complete pseudocode, see the full version of this paper [1]

252 K. Baldor and J. Niu

function Enqueue(Q, δ, τ)
if δ = ∅ then return

case τ < 0
Clear(Q)
if δ ∈ { , , } then

Append(Q,(,0))
else

Append(Q(,0))

case τ = 0
Clear(Q)
case δ =

Append(Q(,0))

case δ ∈ { , }
Append(Q(,0))

case δ ∈ { , }
Append(Q(,0))

case δ =
Append(Q(,0))

case τ > 0
if Empty(Q) ∧Q.value = ∅ then

if δ ∈ { , } then
Q.append((δ, 0))
return

else if δ ∈ { , , } then
Q.append((, 0))

else
Q.append((, 0))

else
Q.append((δ, τ))

function Dequeue(Q)
(δ, τ) ← RemoveFirst(Q)
case δ ∈ { , , , }

Q.value ←
case δ ∈ { , , , }

Q.value ←
return (δ, τ)

function Sync(inputs)
ϕ, ψ ← inputs
if ψ = ∅ then
 one input

if Empty(ϕ.Q) then
return ∅

return Dequeue(ϕ.Q)
else
 two inputs

Ivalid ← ϕ.Ivalid ∩ ψ.Ivalid
eϕ ← Head(ϕ.Q) if Head(ϕ.Q).τ ∈ Ivalid
eψ ← Head(ψ.Q) if Head(ψ.Q).τ ∈ Ivalid
if eϕ �= ∅ ∧ eψ �= ∅ then

if eϕ.τ = eψ.τ then
Dequeue(ϕ.Q)
Dequeue(ψ.Q)
return ((eϕ.δ, eψ.δ), eϕ.τ)

if eϕ.τ < eψ.τ then
eψ ← ∅

else
eϕ ← ∅

if eϕ �= ∅ then
Dequeue(ϕ.Q)
return ((eϕ.δ, ψ.Q.value), eϕ.τ)

else
Dequeue(ψ.Q)
return ((ϕ.Q.value, eψ.δ), eϕ.τ)

Missing from this elided version of the pseudocode are the Update procedures
for negation, conjunction, and the since operator. They are simpler thanI and
U and the general sense of their operation is given in the sections describing their
transducer tables.

The functions on the second page support the Update procedures and sim-
plify their logic. For example, in addition to its obvious purpose, Enqueue
ensures that the outputs obey the transition rules described in definition 1. De-
queue ensures that the the value of a boolean signal can be obtained at times
for which there is no transition event per definition 2. Using this behavior of the
Dequeue procedure, the Sync procedure produces from two Boolean signals
an ordered stream of events for all time points at which either signal exhibits a
transition event. This is needed to drive the transducer tables for those operators
that have two inputs.

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 253

5 Signal Transducer Tables

5.1 Negation and Conjunction

Figure 3 contains the transition tables for negation and conjunction. The init
versions are used for the first transition and the regular version for all subsequent
transitions. The non-transition states of the inputs are illustrated, but table
entries for which there is no transition are omitted in the interest of readability.
Note that for the init versions of the tables, the non-transition outputs (and
) are shown because they are actually produced for the initial entry of a boolean

signal.

not[δ]

φ ¬φ

notinit[δ]

φ ¬φ

andinit[δφ, δψ]

φψ

andinit[δφ, δψ]

φψ

Fig. 3. Transition Tables for the Negation and Conjunction Operators

5.2 Since

The transducer for φ S ψ is somewhat more complicated. The output transition
for a given set of input transitions is influenced by whether or not the since
operator is currently in the down or the up state. As in the previous section,
omitted entries indicate states for which there is no transition. Some of the
omitted entries indicate states that cannot be reached, but these are not specially
indicated – nor is any special handling required to deal with unreachable states.

The transducer begins by applying the table sinceinit[δφ, δψ] for the initial
transition, afterward the tables sinceup[δφ, δψ] and sincedown[δφ, δψ] are used.
Which of the tables is to be used is determined by the type of transition last
emitted. If it is in { , , , }, then the up table is used, otherwise, it is the
down table.

5.3 Eventually

The metric eventually operator uses the tables from Figure 5. Its transducer is
distinguished from those introduced thus far by the addition of a timer used

254 K. Baldor and J. Niu

sincedown[δφ, δψ]

φψ

sinceup[δφ, δψ]

φψ

Fig. 4. Transition Tables for the Since Operator, φ S ψ

futurea[φ]: Up Transition

φ [a,b]φ (a,b]φ [a,b)φ (a,b)φ

futureb[φ]: Potential Future Down Transition

φ [a,b]φ (a,b]φ [a,b)φ (a,b)φ

futurec[φ]: Up Transition and Potential

φ [a,b]φ (a,b]φ [a,b)φ (a,b)φ

futureinit[φ]

φ Iφ

Fig. 5. Transition Tables for the Eventually Operator

to generate a down event b − a time units after the input transitions to the
down state. All events emitted in response to an event at time τ are emitted
at time τ − b. Also, it can enter an indeterminate state in response to a down
transition. When a down transition occurs, the transducer stores the potential
down transition – the type of which is determined by the interval type – in the
state variable δ↓. The actual transition emitted can be affected if an up transition
occurs before or simultaneous with the timer expiration.

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 255

untila[φ]: Past Event

φψ

untilb[φ]: Current Event

φψ

untilc[φ]: Non-Deterministic Up Event
()

φψ

untild[φ]: Non-Deterministic Down
Event ()

φψ

Fig. 6. Transition Tables for the Until Operator, φ U ψ

5.4 Until

The transducer for the until operator can enter a more complicated indetermi-
nate state than that of the non-metric eventually operator; It can maintain a
different potential transition depending on whether it is ultimately found to be
true or false at the point in time at which its output became uncertain. The
simplest example occurs when monitoring φ U ψ and φ becomes true with tran-
sition type at a time τ when ψ is false. If ψ becomes true before φ becomes
false, then the transducer should emit the transition event (, τ); If φ becomes
true before ψ becomes false, this potential transition is abandoned and the out-
put remains false up to and including the current time. It is possible that the

256 K. Baldor and J. Niu

transducer will maintain two such potential transitions, δ↓ or δ↑. We introduce
the notations non-deterministic up and non-deterministic down in untila
to denote which of the potential transitions is to be emitted upon the arrival of
input events.

6 Correctness

Theorem 1. 4 The Update procedure applied to the above transducer tables
correctly models the semantics of Figure 1.

sinceinit

φψ

untilinita

φψ

untilinitb

φψ

untilinitc

φψ

Fig. 7. Initialization Tables for the Since and Until Operators

7 Monitoring Algorithm Complexity

7.1 Instantaneous Transducers

The instantaneous transducers are defined as those for which all emitted tran-
sitions take place at the current time, that is, with the same τ as that of the
event that caused them. They comprise ¬, ∧, S, and [−a,0].

The Update procedure can be simplified in that there is no need to keep track
of the valid intervals. Without the potential for delayed output, the queues will
never grow larger than one element and can be replaced with single values.

Theorem 2. The runtime to monitor expression φ that consists of only instan-
taneous operators on input signals γ̂ from time zero until time τ is in O(|φ|n),
for n = the sum of the number of transitions on all inputs.

Proof. The proof is provided in the full version of this paper [1], but is reasonably
clear from the pseudocode if it is given that Enqueue, Dequeue, and Sync
run in constant time.

Theorem 3. The space required to monitor expression φ that consists of only
instantaneous operators on input signals γ̂ from time zero until time τ is in
O(|φ|), for n = the sum of the number of transitions on all inputs.

4 The proof of the theorems in the following sections are provided in the full version
of this paper [1].

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 257

Proof. The proof is provided in the full version of this paper [1] and centers on a
proof that the queues for the instantaneous transducers do not grow larger than
one element.

7.2 Strictly Past Transducer

The transducer for the operator [a,b] for a <= b < 0 operates identically to
that of [b−a,0] except that the timestamp of the output that results from an
event at time τ is τ − b. The corresponding statement is true for other intervals
with open bounds as well. This introduces the need to maintain valid ranges and
queues to store the output of the intermediate stages to support operators with
multiple inputs.

Theorem 4. The runtime to monitor expression φ that consists of only past-
time operators on input signals γ̂ from time zero until time τ is in O(|φ|n), for
n = the sum of the number of transitions on all inputs.

Theorem 5. The space required to monitor expression φ that consists of only
past-time operators with [a,b] where a < b < 0 on input signals γ̂ from time

zero until time τ is in O(|φ|
⌊

a
b−a

⌋
), for n = the sum of the number of transitions

on all inputs.

Theorem 6. The space required to monitor expression φ that consists of only
past-time operators with [a,a] where a < 0 on input signals γ̂ from time zero
until time τ is in O(|φ|n), for n = the sum of the number of transitions on all
inputs.

7.3 Restricted Future

The next increment in monitor complexity introduces the metric eventually op-
erator[a,b] with b > 0. From the Update procedure, we see that it introduces
a delay in its output events relative to the input events that produces them.
This adds no computational complexity, but reduces the guarantees that can be
made about space complexity even when a �= b.

Theorem 7. The runtime to monitor expression φ that consists of past-time
and restricted-future operators on input signals γ̂ from time zero until time τ is
in O(|φ|n), for n = the sum of the number of transitions on all inputs.

Theorem 8. The space required to monitor expression φ that consists of only
past-time operators with [a,b] where a <= b and b > 0 on input signals γ̂ from
time zero until time τ is in O(|φ|n), for n = the sum of the number of transitions
on all inputs.

258 K. Baldor and J. Niu

7.4 Unrestricted Future

The introduction of the until operator presents two challenges related to the fact
that it may remain in an indeterminate state for an arbitrary length of time.
The unchanged space complexity belies the fact that whereas a bound may be
placed on the growth of the size of the monitor for restricted-future operators
if a limit can be placed on the number of transitions within any time interval,
no such limit can be placed on the size of the monitor for unrestricted-future
operators. Also, it is possible to construct liveness properties that can not be
falsified by a monitoring procedure.

Theorem 9. The runtime to monitor expression φ that consists of past-time
and restricted-future operators on input signals γ̂ from time zero until time τ is
in O(|φ|n), for n = the sum of the number of transitions on all inputs.

Theorem 10. The space required to monitor expression φ that consists of only
past-time operators with [a,b] where a <= b and b > 0 on input signals γ̂ from
time zero until time τ is in O(|φ|n), for n = the sum of the number of transitions
on all inputs.

8 Conclusion

We have presented straightforward procedures for monitoring dense-time
continuous-semantics mtl formulae as well as the tradeoffs in runtime and space
complexity incurred as the expressiveness of the supported formulae increases.

We have included the unrestricted-future operators to demonstrate support
for full mtl but also because policy writers may find them to be the most natural
way of representing the policy that they wish to enforce. That said, they must be
used with care as they introduce the ability to describe pure liveness properties
for which no truth value will ever be determined, such as ¬¬φ.

Future work may include mechanisms for trimming the boolean signals of
subexpressions that cannot affect the truth of the full monitored expression
as well as the augmentation to the unrestricted-future monitoring algorithm
to support the extension of the valid-interval for binary operators in cases for
which its output value can be determined based on only the one of its inputs
for which the valid-interval extends further in time. For example, a conjunction
for which one of its input is unknown beyond τ), but the other is known to be
false over the entire interval [τ, current time).

More immediately, we intend to pursue a vhdl implementation of the subset
of mtl for which size restrictions can be guaranteed.

Acknowlegements. Jianwei Niu is supported in part by NSF award CNS-
0964710 and the UTSA research award TRAC-2008.

Monitoring Dense-Time, Continuous-Semantics, Metric Temporal Logic 259

References

1. Baldor, K., Niu, J.: Monitoring metric temporal logic with continuous semantics.
Technical Report CS-TR-2012-11, UTSA (2012)

2. Basin, D., Klaedtke, F., Zălinescu, E.: Algorithms for Monitoring Real-Time Prop-
erties. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 260–275.
Springer, Heidelberg (2012)

3. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state con-
current systems using temporal logic specifications. ACM Trans. Program. Lang.
Syst. 8(2), 244–263 (1986)

4. Havelund, K., Roşu, G.: Synthesizing Monitors for Safety Properties. In: Katoen,
J.-P., Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Hei-
delberg (2002)

5. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time
Systems 2, 255–299 (1990), doi:10.1007/BF01995674

6. Maler, O., Nickovic, D., Pnueli, A.: From MITL to Timed Automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006)

7. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
8. Prabhakar, P., D’Souza, D.: On the Expressiveness of MTL with Past Operators.

In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 322–336.
Springer, Heidelberg (2006)

	Monitoring Dense-Time, Continuous-Semantics,Metric Temporal Logic
	Introduction
	Background
	LTL and MTL
	Continuous Semantics and Boolean Signals

	Modeling Dense-Time Boolean Signals as Event Sequences
	Monitor Construction
	Supported Temporal Operators
	Monitoring Algorithm

	Signal Transducer Tables
	Negation and Conjunction
	Since
	Eventually
	Until

	Correctness
	Monitoring Algorithm Complexity
	Instantaneous Transducers
	Strictly Past Transducer
	Restricted Future
	Unrestricted Future

	Conclusion
	References

