
ELSEVIER Theoretical Computer Science 183 (1997) 2 155228

Theoretical
Computer Science

On the decidability of process equivalences
for the n-calculus’

Mads Dam*

SICS, Box 1263, S-164 28 Kista, Sweden

Abstract

We present general results for showing process equivalences applied to the finite control
fragment of the z-calculus decidable. Firstly, a Finite Reachability Theorem states that up to finite

name spaces and up to a static normalisation procedure, the set of reachable agent expressions is
finite. Secondly, a Boundedness Lemma shows that no potential computations are missed when
name spaces are chosen large enough, but finite. We show how these results lead to decidability
for a number of n-calculus equivalences such as strong or weak, late or early bismulation
equivalence. Furthermore, for strong late equivalence we show how our techniques can be used
to adapt the well-known PaigeTarjan algorithm. Strikingly, this results in a single exponential
running time not much worse than the running time for the case of for instance CCS. Our
results considerably strengthens previous results on decidable equivalences for parameter-passing
process calculi.

1. Introduction

The problem of obtaining a unified view of on the one hand sequential computa-

tion as embodied by the A-calculus, and reactive systems such as CCS or CSP, on

the other, has recently had considerable attention. The z-calculus [8] was proposed

as a calculus for mobile processes, i.e. processes whose interconnection topology may

be dynamically changed. It extends CCS by features for the transmission and genera-

tion of channel names. Considerable expressive power is gained by this. For instance,

data types [6], lambda calculus [7], object-oriented programming languages [15], and

higher-order processes [131 can all be captured, underlining the foundational importance

of the calculus. Moreover, the practical usefulness of the calculus have been demon-

strated in application studies on mobile telecommunication networks and high-speed

networks [11, lo]. It is therefore important to investigate to what extent methods and

toois developed for, say, CCS lift to the more expressive setting of the n-calculus.

__~
* E-mail: mfd@sics.se.
’ Work partially supported by ESPRIT BRA project 8130 “LOMAPS”, and the Human Capital and Mobility
Project EXPRESS.

0304-3975/97/$17.00 @ 1997 - Elsevier Science B.V. All rights reserved
PZZSO304-3975(96)00325-8

216 M. Dam I Theoretical Computer Science 183 (1997) 215-228

One such set of tools of fundamental importance are process equivalence check-

ing algorithms, as exemplified by the Paige-Tarjan algorithm [12,5]. Algorithms like

these apply in general only to finite-state processes, characterised, in the case of CCS,

by disallowing occurrences of the parallel combinator as well as unguarded occur-

rences of process identifiers in recursive definitions. The corresponding fragment of

the rc-calculus is termed the finite control fragment. In this paper we show that for a

range of equivalences the finite control conditions are in fact sufficient to lift algorithms

to the n-calculus. This is far from a trivial result, since even very simple n-calculus

agents exhibit infinite-state behaviour while satisfying these conditions. One example,

using a CCS-like notation, is the memory cell

Mem(x) = in(y). &fern(y) + outx. A4em(x)

that can either input a channel name y along channel in and then proceed as &fern(y)

or else output x along out and then proceed as Mem(x). This is an example of a duta-

independent agent such as those considered previously by Ionsson and Parrow [4].

However, the finite-control fragment goes beyond this, since it allows synchronisation,

or testing, on channel names passed as parameters. By adding a positive and negative

conditional2 if x = y then P else Q to the rc-calculus, as we do, we can for instance

encode the memory cell

KiZlubleMem(x) = in(y). (if y = KILL then ML else Mew(y)) + Eitx. Mem(x)

that is killed in case the channel KILL is passed to it. Other examples concern the

facility of the rc-calculus to declare new private names and to pass them on to other

parallel components. Consider for instance the agent

(vx)(Gen(x)(Listen(x))

where

Gen(x) = (yv)@.Gen(y)

Listen(x) = x(y). Listen(y)

In this system Gen repeatedly declares a new channel name y, transmits y to Listen
along x and then proceeds as Gen(y). Since the y’s are known to be fresh and thus

different from any other name previously encountered during a computation, the state

space generated by (vx)(Gen(x)jListen(x)) is infinite.

In this paper we provide the basic tools to show decidability for the finite control

fragment for a number of equivalences, including late or early, strong or weak bisimu-

lation equivalence (cf. [9]), and open (or uniform [l]) bisimulation equivalence [14]. 3

The tools consist of two key Lemmas, proofs of which are given in the paper:

* Jn the paper we actually use the notation [x = y]PQ instead of if x = y then P else Q for the conditional.

3 For open bisimulation equivalence decidability is already known [14].

M. Dam I Theoretical Computer Science 183 (1997) 215-228 217

(i) A Finite Reachability Theorem showing that up to a finite name space and up

to a deterministic static normalisation procedure only a finite number of distinct agents

are reachable.

(ii) A proof that the number of distinct free names needed at any point during a

computation can be bounded.

Put together these results imply that a bound can be put on the size of the name

space, and decidability for a given process equivalence E then consists of showing for

all agents A and B, that A z B iff Ao =_N BCJ where =_N represents equivalence with

respect to a large enough but finite name space N, and 0 is a map representing names

as names in N. We establish this result for all the equivalences mentioned above with

particular focus on strong late bisimulation equivalence [6]. For this equivalence we

show how the partition refinement algorithm of Paige and Tatjan [12] can be applied

resulting, as for the case of e.g. CCS, in a single exponential worst-case complexity.

Our results considerably strengthens previous results in the area of value-passing

process calculi. Besides the decidability result of Jonsson and Parrow [4] for data-

independent programs, Hennessy and Lin [3] showed decidability of bisimulation equiv-

alence for a certain class of symbolic transition graphs. Both these results are subsumed

by the work presented here. The notion of open bisimulation equivalence was specifi-

cally formulated with an eye on efficiency concerns. In the area of model checking a

close relative to the present work is the decidability result with respect to an extended

version of the modal p-calculus of [2].

2. ‘The Polyadic x-calculus, Syntax

We use a slight extension of Milner’s polyadic rc-calculus, introduced in [2]. Letters

x,.Yz,... range over names of which there is a countably infinite supply, A, B range

over agents, and D over agent identijiers. Actions, u, /3, are either names, co-names of

the form X, or the distinguished constant r. If CI is a name x then n(cr) (the name of a)

is x. and p(a) (the polarity of CI) is -. Otherwise if c1 =X then n(m) =x and p(x) = +.

The syntax of agents is the following:

A::=OIA+Aja.AIAIAI[x=y]AA)

(/Ix)A (Ax I (vx)A (D 1 fixD.A 1 [x]A

Name binders are the operators 2 and v. We use the notation fn(A) for the set of names

occurring freely in A and A{x/y} (A{A’/D}) f or substitution of x (A’) for y (D) in A.

An agent is closed if it does not contain any free occurrences of agent identifiers. The

intended meaning of connectives is familiar from CCS and the n-calculus. The present

version is based on the polyadic rr-calculus of [6]. There are three main differences:

Recursion: We use recursive definitions rather than replication. Just as for CCS we

require restriction to those expressions that are well-guarded (in the sense of, for an

expression fixD.A, only allowing free occurrences of D in A within the scope of a prefix

218 M. DamITheoretical Computer Science 183 (1997) 215-228

operator), and for which uses of the parallel combinator 1 within recursive definitions

are disallowed. We refer to this fragment as the jinite control fragment. In addition, we

require for technical reasons that recursions fixD.A are fully parametrised in the sense

that recursive agents fixD.A have no free occurrences of names. The expressive power

of the language is unaffected by this latter restriction since all equivalences considered

here will respect the identification of (fixD.A)(xl,. . . ,n,) with

(fixD.(Ix,)...(Lx,)A{Dxl . ..x.,/D})xl “‘x,,.

Conditionals: We admit the conditional [x = yJAB, identified with A when x = y, and

B when x # y. The admission of negative as well as positive matching has been an

issue of some controversy in the rr-calculus (cf. [14]). It is accommodated (though not

required) in our framework by a relativisation of the operational semantics to complete

descriptions of name identities and inequalities.

Well-formedness: A well-formedness condition is imposed, reflecting the stratified

syntax of [6]. Agents A that are to be considered well-formed are assigned an integer

arity n, written A : n. Processes are agents of arity 0, abstractions are agents of negative

arity, and concretions are agents of positive arity. Given an assignment D : n of arities

to agent identifiers, agent arities are computed as follows:

A:0 B:O A:n n<O A:n n20 A:0

0:o A+B:O x.A:O x.A:O z.A:O

A:0 B:O A:n B:n A:n n<O A:n-I n<O

AJB:O [x= y]AB:n (1x)A:n - 1 Ax:n

A:n D:n A:n A:n n>O

(vx)A : n fixD.A : n [x]A : n + 1

For the remainder of the paper we restrict attention to well-formed agents.

3. Operational semantics

In [6] the semantics of the rc-calculus is given in terms of a structural congruence

relation together with a relation of commitment. Here we choose a different, more

operational approach, replacing the structural congruence relation with a normalisation

procedure.

Name partitionings: Since the decision procedure handles names in a symbolic fash-

ion, normalisation needs to know what identities and inequalities are assumed of names.

This information is supplied by partitionings E on the set of names. A partitioning E

identifies the names x and y (written E /= x = y) if and only if x and y are members

of the same element of E. The operation (VX)E of name generation is defined by

(VX)E = {s - {X} 1 s E E} u {{X}}.

M. DamlTheoretical Computer Science 183 (1997) 215-228 219

Normal forms and normalisation: Processes in normal form, ranged over by P, are

generated by the grammar

P::=O(P+PIa.A(PIP((vx)P

Abstractions in normal form have the form (Ax)A, and concretions in normal form

have one of the forms [x]A or (vx)[x]A. The normalisation procedure is given by the

pseudo-ML function nf:

fun nf(O,&) = 0 /

nf(A + B,E) = nf(A,&) + nf(B,s) 1

nf(a.A,&) = %.A 1

nf(A I B,E) = (WA,&) I nf(B,E)) I
nf([x = y]AB,&) = if E + x = y then nf(A,.s) else nf(B,&) I

nf((kx)A,.s) = (2x)A 1

nf(Ax,&)= (case nf(A,&) of (ny)A~ => nf(Ai{x/y},&)) I

nf((vx)A,e) =

let Al =nf(A,(vx)s) in

if x E fn(At)

then if Al : 0 then (vx)A, else

(case Al of

(/zy)Az = > if x = y then (Ay)Az else (3,y)(vx)A2 I

[y]Az = > if x = y then (vx)[y& else [y](vx)Az I

(vy>[vlA~ = > if x = Y then (w)[ylA2 else (ty)[~l(vxV~)
else Al

end /

nf(fixD.A,s) = nf (A{~~xD.A/D},E) I

nf([x]A,&) = [x]A

Proposition 1. Let A be a closed, well-formed agent, and E a name partitioning. Then

nf(A,E) is a well-formed agent in normal form.

Proof. Structural induction. 0

Restricting to well-formed agents in the conditional-free fragment it is possible to

compare the normalisation procedure with the structural congruence relation zz of [6].

Using the definitions of [6] it is quite easy to show that for all well-formed, conditional-

free agents A, nf(A,s) is independent of E, and for all E, A s nf(A,s).

Commitment: The definition of the commitment relation needs the ancillary opera-

tions I/ and . on normal forms:

- A](B=A]BwhenA:OandB:O. 1fA:OandB:nfO thenA]][x]B’=[x](A]]B’),

A II (vx)[xlB’ = (w)[yl(A II B’{Y/~))> and A (((Ix)B’ = (2y)(A (1 B’{y/x}), where in

the two last cases it is assumed that y @ fn(A). The case for A : n # 0 and B : 0 is

defined symmetrically.

220 M. DamlTheoretical Computer Science 183 (1997) 215-228

- A . B is defined only when A : -n and B : n for some (positive or negative) n. For

n = 0, A.B = A 1 B. If n > 0, (ilx)A’,[y]B’ =A{y/x}.B’ and (kc)A’.(vy)[y]B’ = A{z/x}.

B’{z/y} where z $ (fn(A’) - {x}) U (fn(B’) - {y}). The case for n < 0 is defined

symmetrically.

As the normalisation procedure the commitment relation is relativised to name par-

titions too. It is defined as follows:

ACT:
AI *,B

a.A +E a.A SUM: Al + A2 +,B

coMM: Al +E x-B1 A2 +.s 732 E I= x= Y

Al I A2 b z.W@%,~) . nV2,&> >

pAR: Al 1 A2 +e a.(nf(&) (I A2)

A t(w), z.B
RW-‘: (vx)A +.E z.(vx)B

A +.(vx)E a.B
RE’-‘: (vx)A +E a.(vx)B (x # n(cr))

+ symmetrical versions of rules SUM, COMM and PAR

Relating to [6] let the full name partitioning sf be the one containing only singleton

sets. The full partitioning identifies names only if they are literally the same. It can

then be shown for the well-formed fragment without conditionals that A + B according

to [6] if and only if for some B’, nf(A,sf) +El B’, and nf(B,sf)=nf(B’,sf).

Definition 2 (Simulations, bisimulations). A (strong, late) partition-relativised simu-
lation (or pr-simulation) is an s-indexed family of binary relations R, on well-formed

agents satisfying the following conditions:

(i) If AR,B then nf(A,s)R,nf(B,s).

(ii) If AR,B and A : n then B : n.

(iii) If [x]A’R,[y]B’ then A’R,B’ and E + x = y.

(iv) If (vx)[xjA’R,(vy)[y]B’ then A’{z/x}R~~~~~B’{z/~} for all z such that z $!(fn(A’)-

{xl) U MB’) - (~1).
(v) If (lx)A’R,(;ly)B’ then for all z, A’{z/x}R,B’{z/y}.

(vi) If AR,B and A F-~ a.A’ then B +E B.B’ for some B’ such that E k tl= p and

A’R,B’.
Then R is a partition-relativised bisimulation (pr-bisimulation) if for each E both R,

and RF’ are pr-simulations; A and B are s-bisimilar (AN E B) if there is a pr-bisimulation

R such that AR,B; and A and B are pr-bisimilar (A N B) if there is a pr-bisimulation

R such that AR,B for all E.

M. Dam I Theoretical Computer Science 183 (1997) 215-228 221

Serving as justification for Definition 2 it can be shown quite easily that for the frag-

ment of well-formed, conditional-free agents, -Ef is the (strong) bisimulation equiva-

lence of [6], and N is strong congruence.

4. A finite reachability theorem

The main ingredient in the decidability proof is a finite reachability theorem, showing

that for finite control agents, if names are always chosen from a fixed finite number

of candidates then only a finite number of distinct agent expressions are reachable.

Small enough names: Names are chosen at the following points:
_ When computing A 11 B or A . B.

- When instantiating names bound by i or v.

We restrict these choices by assuming an enumeration x0,x1,. . of names and impos-

ing a maximal index no such that whenever a name is to be chosen then it is chosen

small enough, i.e. with an index not exceeding no. If no such name exists (because

otherwise confusion of names would ensue) then the result is left undefined. We show

later that by picking no large enough all choices can in fact be made.

Definition 3 (Reachability relation). Relative to a choice of no the reachability rela-

tion -+ on well-formed agents is defined as follows:

(i) For all E, A -+ nf(A,s),

(ii) [x]A ̂ iyf A,
(iii) (v.x)[x]A -+ A{ / } y x w h enever y is small enough and y 6 fn(A) - {x},
(iv) (Ix)A -1-3 A{ y/x} whenever y is small enough,

(v) If P is a process in normal form and for some E, P +F. cc.A while choosing only

names that are small enough, then P -+ A.

The Relation -+: Our aim is to show that for all well-formed, finite control A and

no, {B 1 A -+* B} is finite. To show this we define a reduction relation + such that

+* includes -+*, and such that we can prove {B 1 A --t* B} finite. The relation + is

determined by the following closure properties:

0. A + B whenever A and B are alpha-congruent, and B results from A by

replacing small enough bound names with small enough bound names

(i)A+B+A,A+B--+B
(ii) cr.A 4 A
(iii) [X = y]AB + A, [x = y]AB + B
(iv) (Ix)4 -+ A{ y/x} whenever y is small enough

(v) Ax ---f A
(vi) fixD.A ---f A{fixD.A/D}
(vii) [x]A -+ A

(viii) If A + B and x E fn(B) then (vx)A --f (vx)B
(ix) (vx)A --f A

222 M. DarnITheoretical Computer Science 183 (1997) 215-228

(xl (VX)(lYM + (AY)(VX)A
(xi) If x # y then (vx)[yjA -+ [y](vx)A

(xii) (vx)(vy)[~lA -+ (~)bl(vx)~
(xiii)IfA+A’thenA]B-tA’(BandB]A--+B(A’

(xiv) ((lx)A) I B + (~x)V I B), A I C&P) + @x)(A I B)
(xv) @IA) I B -+ [xl@ I B), A I ([xl@ -+ [xl@ I B)
@vi) (CvxY) I B -+ (vx)(A I B), A I ((vx)B) + (vx)@ I B)

Proposition 4. -+* C -+*.

Proof. We need to show

(i) For all &,A -+* $(A,&).

(ii) [x&4 +* A.
(iii) (vx)[x]A -+* A{y/x} whenever y is small enough and y @ fn(A) - {x}.

(iv) (h)A -+* A{y/x} whenever y is small enough.

(v) P ---)* A whenever P is a process in normal form and for some E and a, P +E a.A.
Of these (i) and (v) use structural induction, and (ii)- follow directly from the

conditions given. 0

Let p be an infinite derivation of the form

p=&, -+ . . . -+A, -+ . . . (1)

from A (i.e. A0 =A). Since -+ is finitely-branching, to show that {B 1 A -+* B} is finite

for all A, it suffices to show that for all such derivations p, the set R(p) = {Ai / i E co}

is finite. To prove this we analyse the structure of terms A;.
Contexts: Let an m’ary context be a non-recursive term C with m occurrences of

the empty context [.I, that is, a term generated by the abstract syntax

c ::= [.I IO (c + c 1 a.C) c 1 c 1 [x=y]CC 1 (lx)C (cx 1 (vx)C ([x]C

Using the finite control assumption, we can find an m such that each Ai can be written

in the form

Ai=G(Bi,l,...,Bi,m) (2)

where Ci is an m’ary context, and where each Bi,j is a term that does not contain

occurrences of the parallel composition operator. By convention contexts are filled

from left to right such that C(A’,, . . . , AL) is C with the ith leftmost occurrence of [.I

substituted for A[, etc. Contexts are equipped with a transition structure corresponding

to the relation --P on terms. The conditions (l)-(16) above are readily applicable to

contexts, except that the notion of free name is not quite appropriate. Instead, say of a

context C that x is visible through C if either there is some occurrence of [.I in C not

within the scope of a binding occurrence of x, or else x occurs unbound in C. Now we

M. Dam/ Theoretical Computer Science 183 (1997) 215-228 223

can define the relation -+ on contexts by the conditions (1)-(16) plus the following,

where Sz ranges over operators among (vx), (lx), and [x] with x small enough:

(I) [.I + (vx)[.], [.I + (Ax)[.], and [.I + [x][.] where x is small enough,

(II) if Ct -+ Cl and x is visible through Ci then (vx)Ct ---f (vx)C;

Proposition 5. Each Ai in (1) can be written in the form (2) such that, for all i E o
and j: 1 <j<m,

(i) Bi.j does not contain occurrences of the parallel composition operator,
(ii) C does not contain occurrences of the fixed point operator,

(iii) either Bi,j = Bi+l,j or else Bi,j + Bi+l,j, and
(iv) either Ci = Ci+l or else Ci -+* Ci+l.

Proof. By induction on i and the structure of proof that Ai 4 Ai+l. Observe that in

fact, in (4), C, --+* Ci+i in either 1 or 2 steps corresponding to applications of one

of the rules (14)-(16). In the first step an operator (Lx), (vx) or [x] is transferred

from an Bi,j to the context using (I), and in second step the original rule application

((14).-(16)) is mimicked on contexts. 0

Note that the number of occurrences in Ci of operators among +, prefixing, the

conditional, or application will decrease with increasing i since the only reduction that

can cause such occurrences to duplicate is axiom (6) which does not apply. Moreover,

for each occurrence of one of these operators, either it is never reduced, and then the

subterm in question can be viewed as a constant, or else the number of occurrences of

that particular operator in the Ci is reduced by 1. Thus there is no loss of generality in

assuming that CO is built using only operators of the form [xl, (Lx), (vx), or j . Call

such a context a restricted context.
We have thus reduced the problem of showing that R(p) is finite to the problem of

showing

(i) only a finite number of distinct contexts Cj are reachable,

(ii) any derivation p that does not involve parallel composition visits a finite number

of distinct agents only, under the assumption that CO is a restricted context.

Finite reachability ,for contexts: The property (i) is proved using the notion of

legitimate prejix.

Definition 6 (Context prejix, legitimate prefix).
(i) A (context) prefix is a sting p = sZ1 . . . Q, where each Qi is either (vx), (Lx),

or [xl, and where x is small enough. Write p :: C for the context obtained by prefixing

C with p.
(ii) A prefix .Qi . . .52, is legitimate if

(a) at most one Szi has the form either (Ax) or [x], and

(b) the total number of occurrences of operators of the form (vx) or (Ax) for

some small enough x is at most no.

224 M. Dam/ Theoretical Computer Science 183 (1997) 215-228

Lemma 7. For all C, {C’ 1 C +* C’} is jinite.

Proof. By induction in the structure of C:

C=[.]: Any context reachable from [.I has the form p :: [.I where p is a prefix. It

suffices to show that p is legitimate. To show this assume that p is legitimate and that

p :: [.I --f C’. Then C’ has the form p’ :: [.I. Clearly condition (a) above is satisfied.

To see that also (b) is satisfied suppose for a contradiction that it is not, so that p’ has

~10 + 1 occurrences of a binding operator. Then p’ must have the form p1(vx)p2Qp3

for some x where 52 binds x. But this is impossible since the justification of p :: [.I +

p’ :: [.I must have appealed to (II) for justifying (vx)p” :: [.I + (vx)p&p3 :: [+I for

some p”. But x is not visible through p2Qp3 - a contradiction.

C = (vx)C’: Using the inductive hypothesis it suffices to show that any context reach-

able from C (in 1 step or more) has the form p :: Cl where p is a legitimate prefix

and Cl is reachable from C’ (in 1 step or more). So assume that p :: Cl -+ C,. The
only case that needs considering is when p has the form p’(vx), Cl the form QCi,

and CZ the form pQ(vx) :: Ci. We then need to show that pG?(vx) is legitimate, but

this follows exactly as in the previous case.

C = Ci 1 Cz: We show that any context reachable from C (in 1 step or more) has the

form p :: (Ci) Ci) where p is legitimate, Cl is reachable from Cl, and Ci reachable

from C,. The only cases that need considering are applications of one of the rules

(14)-(16) but these follow as in the case for v.

The remaining cases are quite straightforward. q

Finite reachability for (-free agents: We then proceed to show finite reachability

for the relation + on agents that do not contain occurrences of 1 . Define the size, IAI,

of such an agent A in the following manner:

(01 = IDJ =2

(A+BJ=([x=~]ABI=IAI + IBJ + 1

(ccA~=~(~x)A(=IAx~=I[x]A(=~~~xD.A~=(A~ + I

I(v =2. JAI + I

Lemma 8. Axiom (0) does not increase size. All axioms among (l)-(16) except (6)

decrease size. Rules (8), (1 1), (13) preserve size decrease.

Thus, we can assume that the unfolding axiom (6) is used infinitely often along p.

Lemma 9. Suppose that A has no occurrences of I. For all derivations p=Ao +
. . . +A, + . . . with A0 =A, R(p) is finite.

Proof. The proof proceeds by induction in the size of A. Most cases (0, A + B, @.A,
[x= y]AB, (Lx)A, Ax, [x]A) are direct consequences of the induction hypothesis. For

M. DamITheoretical Computer Science 183 (1997) 215-228 225

(vx)A the proof follows the corresponding case in the preceding proof. So assume that

A=fixD.A’. We show that any agent reachable from A has the form p :: (A”{A/D})

where p is a legitimate prefix and A” is reachable from A’. This completes the proof

by the induction hypothesis. To each transition Ai + Ai+, is associated a proof using

the rules (l)-(16). Say that step i refers to A, if the justification of the transition

Ai + Ai+l involves an appeal to (6) with D instantiated to itself, and A to A’. Suppose

that A, has the form p :: (A”{A/D}) w ere A” is reachable from A’, The situation h

where step i is an instance of one of the axioms (lo)-(12) can be handled as in the

proof of Lemma 7. Thus, we only need to consider the case where step i refers to

A. But then A” must have the form p’ :: LI for p’ a prefix, and in this situation the

prefix pp’ must, as we have seen, be legitimate, and thus Ai+1 has been brought into

the desired form. 0

We have thus established the following:

Theorem 10 (Finite reachability). For all well-formed A and no, {B / A-+* B} is jinite.

5. Choosing names

The problem with Theorem 10 is that potential derivations might be lost because

at some point it becomes impossible to choose a small enough name. In this section

we show that we can avoid this problem by choosing 110 sufficiently large. Let IAl, be

the maximal number of free names in any subterm of A, and lAlz be the number of

occurrences of the parallel combinator 1 in A.

Lemma 11. For all A,, ifA0 +* A, then MA,)1 d lAoI, . (IAoI, + 1).

Proof. Let p be an infinite derivation p =A0 --+ . . ---f A, -+ . . . We proceed by

induction in the structure of Ao.

Ao=(kx)Ah. If it > 0 it must be the case that (forgetting about a possible initial

sequence of alpha-conversions) Al =Ab{y/x} where y is small enough, such that Ah --t*

A,,. I3y the induction hypothesis, Ifn(A,)] < \Ahl, (IA;\, + 1) which in turn is equal to

Pal, . (lAoI + 1).
A0 =Ao,I I AOJ. A, must have the form p :: (A,,1 / A,J) where p is a legitimate prefix.

For each iE { 1,2} we find legitimate prefixes pi such that Ao,i -+* pi :: A,,J, and p is

the merge of p1 and p2 in a manner such that if [x] occurs in p with x in a bound

position then so it does in whichever pi that contains [xl. By the induction hypothesis,

/fn(pi 1: A,,i)l d IAa,ili . (IAo,iI2 + 1) f or i=l and i=2. Now Ifn(A,)l<]fn(pi :: A,,,)\

+ I fn(p2 :: An,2)I. Let now B be whichever of Ao, I /Ao,2 such that IBI 1 is maximal. Then

I~~~~~~I~I~I,~~I~o,~I,+I~o,~~~+~~~ and then, since \Ao,I I2 + IAa,212 = IAojZ, we obtain

Ifn(A,,)I < lAoI, . (lAoI + 1) as required.

Aa = fixD.Ab. By the assumption of finite control IAolZ = 0. Thus it suffices to show

Ifn(A,)I d lAoI,. W e can assume that there are legitimate prefixes p and p’ such that

226 M. Dam I Theoretical Computer Science I83 (1997) 215-228

fixD.Ab -+* p :: fixD.A +* A,, where A,, has the form p’ :: AL{fixD.A/D}, and

A:, -+* A;. Without loss of generality, we can assume that p has no free occurrences

of names, since any free occurrences of a name in p would be eliminated before a

subsequent unfolding of fixD.A& We know that Ifh(< IAh II = /AoIl by the induction

hypothesis. The only case in which (fn(A,)(could be greater than Ih(is when p’
contains an occurrence of an output prefix [y] such that that particular occurrence of y

is free in pt. This, however, can only happen if the derivation p :: fix D.Ab -+* A, can

be factorised in the manner p :: fixD.Ah -+* p” :: Ai{fixD.AA/D} +* A, such that p”
has no free occurrence of y, and such that AA -+* AZ. Moreover, fn(A~)=fn(A~)CJ{y}.

But, by the induction hypothesis, (fn(Ai)J < [A,)/,, which is what we need to show.

The remaining cases follow directly by the induction hypothesis. 0

6. Decidability

Consider now a version of pr-bisimulation of Definition 2 modified such that z in 2.2

and 2.3 is required to be small enough, and such that commitment in 2.4 is conditional

on only small enough names being chosen. Call the ensuing variant of pr-bisimulation

for name-bounded pr-bisimulation, or nbpr-bisimulation, for short. By Konig’s Lemma,

since the number of transitions that use only small enough names and that emanate

from a given agent is finite, and by Lemma 11 any inhnite path must visit the same

agent expression infinitely often, the following decidability result obtains:

Theorem 12. Name-bounded pr-bisimulation equivalence is decidable.

Using this result we can then easily establish our first main theorem.

Theorem 13. Strong late bisimulation equivalence is decidable.

Proof. Both decidability results follow from decidability of s-pr-bisimulation which we

go on to demonstrate. Assume first if R, and RF’ are both pr-simulations. Then they

are also nbpr-simulations for any no. Suppose, on the other hand, that R, and RF’ are

both nbpr-bisimulations for some no greater than

IAll . (142 + 1) + PI, . (1% + 1).

Let a name representation be any pair of maps (f&, fb,,,&) such that j& is an

injection, and for each binding occurrence of a name in A or B fb,,*,j maps that name

into a small enough name, such that

(i) if x and y are distinct, both occurs freely in some subterm of A or B, and both

are occurrences of bound names, then f&,,&(X) # &&(y), and

(ii) if x and y are distinct, both occurs in a subterm of A or B and, say, x is an

occurrence of a bound name and y an occurrence of a free name, then &*d(x) #

fsee(Y).

M. Dam1 Theoretical Computer Science 183 (1997) 215-228 221

For a name partition E let fk&s)= {{f(x) 1 x E U} / U E E}. Because of the choice of

no, a name representation exists. Let then A&B if and only if there is a name representa-

tion (fkee, &&) such that if A’ and B’ are the agents resulting from renaming free and

bound names according to (frree,fbound), then A’ and B’ are frr&s)-nbpr-bisimulations.

It is then easy to verify that, due to the choice of no, S, is an s-pr-bisimulation. This

completes the proof. q

Other equivalences: In a similar manner we can prove decidability for other versions

of bisimulation equivalence, notably early strong bisimulation equivalence, late and

early weak bisimulation equivalence. Decidability of open bisimulation equivalence

can also be shown in this manner. However, open bisimulation equivalence is already

known to be decidable (indeed it was formulated with this as a central concern).

Early equivalence is characterised by permuting the quantifications over transitions

and inputs which is implicit in clauses (3) and (4) of Definition 2 (cf. [9] for a

definition of early equivalence). The proofs of Theorems 12 and 13 are only minimally

affected by this modification. For the weak late and early equivalences again only small

modifications are needed (though alternative characterisations of these equivalences are

likely to be mandatory for reasons of efficiency). We thus obtain:

Theorem 14. (i) Strong early bisimulation equivalence is decidable.
(ii) Weak late and early bisimulation equivalence are decidable.

7. Complexity and discussion

The obvious backtracking-based algorithm for deciding name-bounded bisimulation

equivalence is quite inefficient. As for standard bisimulation equivalence a better so-

lution is obtained using the Paige-Tarjan algorithm [12,5] with a worst-case running

time of S(n, logn, + n,) where nt is the number of transitions and n, the number of

states. With minor modifications to cater for bound output this algorithm is applicable

once the full state spaces have been constructed, as pairs (A, E). If the total number of

reachable agents A is m and the sum of the length of the input agents is n then, since in

the worst case no is quadratic in n, n, is LV(m2”‘) and nt is 0(m2n22”‘). Thus the run-

ning time of the Paige-Tatjan algorithm is bounded by 0(n42n2m2 logm). To estimate

m note first that up to the choice of names the number of agents reachable from one

parallel component is 0(n). Since each name can be instantiated in no different ways

the entire number of agents reachable from one parallel component is 0(n2nz10gCn’)).
Thus m is bounded by ~((~2"2109("2))")=~(2"31~~("2)i-n'o~~), which is 2°(n3'09(n2)). This

is strikingly close to the similarly approximated upper bound for CCS of 2°(n’oan)).

Both the parallel combinator already present in CCS and the rc-calculus features of

name generation and passing causes an exponential blow-up in the size of the state

space. One might fear that these two causes of state space blow-up could interfere in

a serious manner, resulting in double exponential running times or worse. However,

228 M. Dam I Theoretical Computer Science 183 (1997) 215-228

even though some interference does take place because of scope extrusion, our results

show that this fear is unfounded.

Lower bounds: Concerning lower bounds Jonsson and Parrow [4] shows that the

bisimulation problem for data-independent programs (not including the parallel combi-

nator 1) is NP-hard. Since data-independent programs are subsumed by those consid-

ered here that lower bound applies here as well.

EfJiciency: As for eficiency, based on the asymptotically quite similar worst-case

bounds for CCS and for the rc-calculus, since the Paige-Tat-Jan algorithm has been

applied to quite realistically sized examples in CCS one might hope that this applies

here too. Whether this in fact turns out to be the case remains to be seen. It may well

be that alternative characterisations of the equivalences can be exploited to improve

the efficiency of our algorithms, along the lines of for instance the efficient character-

isation of strong open bisimulation equivalence [14], or the symbolic bisimulations of

Hemressy and Lin [3]. For the weak equivalences in particular we expect such efficient

characterisations to be indispensable.

References

[l] R. Amadio, A uniform presentation of CHOCS and x-calculus, Rapport de Recherche 1726, INRIA-

Lorraine, Nancy, 1992.

[2] M. Dam, Model checking mobile processes, Inform. Comput. 129 (1996) 35-51.
[3] M. Hennessy and H. Lin, Symbolic bisimulations, Report l/92, Dept. of Computer Science, University

of Sussex, 1992.

[4] B. Jonsson and J. Parrow, Deciding bisimulation equivalences for a class of non-finite-state programs,

Inform. Comput. 107 (1993) 272-302.
[5] P.C. Kannellakis and S.A. Smolka, CCS expressions, finite state processes, and three problems of

equivalence, Znform. Comput. 86 (1990) 4348.
[6] R. Milner, The polyadic x-calculus: a tutorial, Tech. Report ECS-LFCS-91-180, Laboratory for the

Foundations of Computer Science, Department of Computer Science, University of Edinburgh, 1991.

[7] R. Milner, Functions as processes, Math. Struct. Comput. Sci. 2 (1992) 119-141.

[8] R. Mimer, J. Parrow and D. Walker, A calculus of mobile processes, I and II, Inform. Comput. 100
(1992) l-40 and 41-77.

[9] R. Milner, J. Parrow and D. Walker, Modal logics for mobile processes, Theoret. Comput. Sci. 114
(1993) 149-171.

[lo] F. Orava, On the formal analysis of telecommunication protocols, Ph.D. Thesis, Dept. of Computer

Systems, Uppsala University and Swedish Institute of Computer Science, 1994.

[ll] F. Orava and J. Parrow, An algebraic verification of a mobile network, Formal Aspects Comput.
4 (1992) 497-543.

[12] R. Paige and R.E. Tarjan, Three partition refinement algorithms, SIAM J. Comput. 16 (1987) 973-989.
[13] D. Sangiorgi, From n-calculus to higher-order x-calculus - and back, in: Proc. TAPSOFT’93, Lecture

Notes in Computer Science, Vol. 668 (Springer, Berlin, 1993).

[14] D. Sangiorgi, A theory of bisimulation for the n-calculus, in: Proc. CONClJR’93, Lecture Notes in

Computer Science, Vol. 715 (Springer, Berlin, 1993) 127-142.

[15] D. Walker, Objects in the n-calculus, Inform. Comput. 116 (1995) 253-271.

