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Глава I. Функции алгебры логики 
§1. Функции алгебры логики. Равенство функций. Тождества 

для элементарных функций 

1°. Функции алгебры логики. 
Определение 1. Пусть E2 = {0, 1} — основное множество (исход-

ный алфавит значений переменных), тогда 2
nE  = {(α1, …, αn) | ∀i αi∈E2}. 

Всюду определённой булевой функцией назовём отображение f (x1, …, xn): 
2
nE → E2. Такую функцию можно задать таблично. Например, для n = 1: 

x 0 1 x x  
0 0 1 0 1 
1 0 1 1 0 

При этом функция 0 называется константой нулём, функция 1 — 
константой единицей, функция x — тождественной, а функция x  — 
отрицанием x. При этом для последней функции используется также 
иное обозначение: x x≡ ¬ . 

Для n = 2: 

x y f1 f2 f3 f4 f5 f6 f7 

0 0 0 0 0 1 1 1 1 
0 1 1 0 1 1 0 1 0 
1 0 1 0 1 0 0 1 0 
1 1 1 1 0 1 1 0 0 

При заполнении таблицы столбцы переменных заполняются в 
лексикографическом порядке (по возрастанию двоичных чисел). 

f1 — дизъюнкция, функция «или», логическое сложение: f1 = x ∨ y. 
f2 — конъюнкция: f2 = x · y = x & y = xy. 
f3 — сложение по модулю 2 (исключающее «или»): f3 = x ⊕ y = x + y. 
f4 — импликация: f4 = x → y. 
f5 — эквивалентность: f5 = x ~ y = x y⊕ . 
f6 — штрих Шеффера: f6 = x | y = xy . 
f7 — стрелка Пирса: f7 = x ↓ y = x y∨ . 
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Лемма (о числе слов). В алфавите A = {a1, …, ar} из r букв можно 
построить ровно rm различных слов длины m. 

Доказательство. Проведём индукцию по m. Для m = 1 утвержде-
ние очевидно. Пусть утверждение леммы верно для m – 1, то есть суще-
ствует ровно rm – 1 различных слов длины m – 1. Для каждого такого 
слова длины m – 1 существует ровно r возможностей добавить одну 
букву в конец. Так как всего слов длины m – 1 — rm – 1, то различных 
слов длины m получится r · rm – 1 = rm. Лемма доказана. 

Рассмотрим таблицу некоторой функции алгебры логики от n пе-
ременных. 

1 2

0

1

2 1

0 0 0
0 0 1

2

1 1 1 n

n

n

x x x f
α
α

α
−














   



 

Для её задания необходимо и достаточно определить её значения на 2n 
наборах. Таким образом, получаем, что всего различных функций от n 
переменных столько, сколько существует различных наборов из нулей 
и единиц длины 2n, т.е. 22

n

. 
Используя последний факт можно, например, получить оценку 

числа функций от 10 переменных. Всего таких функций бу-
дет ( ) ( )10 100 1002 1024 1000 10 3002 2 2 2 1000 10= > = > = . Таким образом, при ро-
сте числа переменных число функций возрастает очень быстро, и их 
табличное задание становится неудобным. 

2°. Равенство функций. В обычной алгебре справедливо равен-
ство x + y – y = x, несмотря на то, что в левой части записана функция 
от двух переменных, а в правой — от одной. Таким образом, функции 
от разного числа переменных могут быть одинаковыми, что даёт повод 
ввести понятие существенных и фиктивных переменных. 

Определение 2. Переменная xi называется существенной пере-
менной функции алгебры логики f (x1, …, xn), если существуют такие 
α1, …, αi – 1, αi + 1, …, αn∈E2, что 

f (α1, …,αi – 1, 0, αi + 1,…, αn) ≠ f (α1, …, αi – 1, 1, αi + 1, …, αn). 
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Такие наборы, отличающиеся лишь одной переменной xi, называются 
соседними по xi. В противном случае переменная xi называется фиктив-
ной. 

Если xi — фиктивная переменная функции f, то функция f одно-
значно определяется некоторой функцией g (x1, …, xi – 1, xi + 1, …, xn). 
Таблицу любой функции можно расширить введением любого числа 
фиктивных переменных. 

Определение 3. Две функции алгебры логики называются 
равными, если одну из них можно получить из другой путём добав-
ления и изъятия любого числа фиктивных переменных. 

3°. Формулы. 
Определение 4. Пусть имеется некоторое множество функций 

A = {f1 (…), f2 (…), …, fn (…), …}. 

Введем понятие формулы над A: 
1) Любая функция из A называется формулой над A. 
2) Если f (x1, …, xn) ∈ A и для любого i Hi — либо переменная, 

либо формула над A, то выражение вида f (H1, H2, …, Hn) явля-
ется также формулой над A. 

3) Только те объекты называются формулами над A, которые 
можно построить с помощью пунктов 1 и 2 данного определе-
ния. 

Замечание. Среди H1, H2, …, Hn вполне могут быть одинаковые. 
4°. Основные эквивалентности. 

1. Коммутативность: 
x ∨ y = y ∨ x ; 
xy = yx ; 
x ⊕ y = y ⊕ x ; 
x ~ y = y ~ x . 

2. Ассоциативность: 
(x ∨ y) ∨ z = x ∨ (y ∨ z) = x ∨ y ∨ z ; 
(xy) z=x (yz)=xyz ; 
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) = x ⊕ y ⊕ z. 

3. Дистрибутивность: 
(x ⊕ y) z = (xz) ⊕ (yz) ; 
(x ∨ y) z = (xz) ∨ (yz) ; 
(xy) ∨ z = (x ∨ z)·(y ∨ z). 

4. x x= , 
правила де Моргана: 
x y x y∨ = ⋅ , 

yxyx ∨=⋅ . 
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5. Законы поглощения. 
x ∨ x = x 
x · x = x 

1x x∨ =  
0x x⋅ =  

x ∨ 1 = 1 
x · 1 = x 
x ∨ 0 = x 
x · 0 = 0. 

6. x y x y= ⋅  

x y x y↓ = ∨  
x y x y→ = ∨  

( ) ( )x y x y x y⊕ = ⋅ ∨ ⋅  

( ) ( )~x y x y xy x y= ⊕ = ∨  

Приоритет конъюнкции выше, чем приоритеты дизъюнкции и сум-
мы по модулю 2. Благодаря этому, часто удаётся опустить ряд ненужных 
скобок. Имеют место следующие очевидные утверждения: 

x1 · x2 · … · xn = 1 ⇔ ∀i xi = 1, 
x1 ∨ x2 ∨ … ∨ xn = 1 ⇔ ∃i: xi = 1. 

Определение 5. x в степени сигма называется функция 
, 1
, 0

x
x

x
σ σ

σ
=

=  =
; 

xσ = 1 ⇔ x = σ. 

§2. Теорема о разложении функции алгебры логики по 
переменным. Теорема о совершенной дизъюнктивной 
нормальной форме 

Теорема 1 (о разложении функции алгебры логики по пере-
менным). Для любой функции алгебры логики f (x1, …, xn) и для любо-
го k (1 ≤ k ≤ n) справедливо следующее равенство: 

( )
( )

( )1 2

1 2 2
1 1 2 1 2 1

, , ,
, , , , , , , ,k

k
k

n k k k n
E

f x x x x x f x xσσ σ

σ σ σ
σ σ σ +

∈
= ∨ ⋅ ⋅ ⋅ ⋅


    . 

Доказательство. Для любого набора ( )1 2, , , nα α α α=   вычислим 
значение правой части на этом наборе. Как только хотя бы один из 
сомножителей будет равен нулю, вся конъюнкция обратится в нуль. 
Таким образом, из ненулевых конъюнкций останется лишь одна — та, в 
которой αi = σi для i = 1, …, k, и 
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( )
( )

( )

1 2

1 2 2

1 2

1 2 1 2 1
, , ,

1 2 1

, , , , , ,

0 0 , , ,

k

k
k

k

k k k n
E

k n

f

f

σσ σ

σ σ σ

αα α

α α α σ σ σ α α

α α α α α

+
∈

∨ ⋅ ⋅ ⋅ =

= ∨ ∨ ∨ ⋅


  

  
 

а в силу того, что xx = 1, указанное выражение равно f (α1, α2, …, αn). 
Теорема доказана. 

Следствие 1. Разложение произвольной функции алгебры логики 
по одной переменной имеет вид 

( ) ( ) ( )1 2 1 2 1 2, , , 0, , , 1, , ,n n nf x x x x f x x x f x x= ∨   . 
Следствие 2 (теорема о совершенной дизъюнктивной нор-

мальной форме). Для любой функции алгебры логики f (x1, x2, …, xn), 
отличной от тождественного нуля, справедливо следующее представ-
ление: 

( )
( ) ( )

n

nn
nfn xxxxxf σσσ

σσσσ




21

11
211,,:,,1 ,,

=
∨= . 

Доказательство. Пусть функция f (x1, x2,…, xn) отлична от тожде-
ственного нуля. Напишем разложение этой функции по k = n перемен-
ным: 

( )
( )

( )1 2

1 2 2
1 1 2 1 2

, , ,
, , , , ,n

n
n

n n n
E

f x x x x x fσσ σ

σ σ σ
σ σ σ

∈
= ∨


   , 

что можно переписать в эквивалентном виде 

( ) ( )
( )1 2

1 1
1 2 1, , : , , 1

, ,n

n n
n nf

x x x fσσ σ

σ σ σ σ
σ σ

=
∨ ∨

 
   

( ) ( )
( )1 2

1 1
1 2 1, , : , , 0

, , .n

n n
n nf

x x x fσσ σ

σ σ σ σ
σ σ

=
∨ ∨

 
   

Учитывая, что в первой дизъюнкции все значения функции равны еди-
нице, а вторая обнуляется из-за того, что все значения функции в ней 
равны нулю, получаем утверждение следствия. Следствие доказано. 

Теорема 2 (о совершенной конъюнктивной нормальной фор-
ме). Для любой функции алгебры логики f (x1, x2, …, xn), отличной от 
тождественной единицы, справедливо представление 

 ( )
( )

( )

( )1 2

1 2
, , , 01 2

1 1 2, , ,
, , .& n

n
f n

n nf x x x x x
σ σ σ

σσ σ

σ σ σ
=

= ∨ ∨ ∨



   
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§3. Полные системы. Примеры полных систем 
(с доказательством полноты) 

Определение. Множество функций алгебры логики A называется 
полной системой (в P2), если любую функцию алгебры логики можно 
выразить формулой над A. 

Теорема 3. Система A = {∨, &, ¬} является полной. 
Доказательство. Если функция алгебры логики f отлична от тож-

дественного нуля, то f выражается в виде совершенной дизъюнктивной 
нормальной формы, в которую входят лишь дизъюнкция, конъюнкция 
и отрицание. Если же f ≡ 0, то f x x= ⋅ . Теорема доказана. 

Лемма 2. Если система A — полная, и любая функция системы A 
может быть выражена формулой над некоторой другой системой B, то 
B — также полная система. 

Доказательство. Рассмотрим произвольную функцию алгебры 
логики f (x1, …, xn) и две системы функций: A = {g1, g2, …} и B = {h1, h2, …}. 
В силу того, что система A полна, функция f может быть выражена в 
виде формулы над ней: ( ) [ ]1 1 2, , , ,nf x x g g= ℑ  , где [ ]1 2, ,i ig h h= ℜ  , 
то есть функция f представляется в виде ( ) [ ]1 1 2, , , ,nf x x = ℑ ℜ ℜ  , 
иначе говоря, может быть представлена формулой над B. Перебирая 
таким образом все функции алгебры логики, получим, что система B 
также полна. Лемма доказана. 

Теорема 4. Следующие системы являются полными в P2: 
1) { },x y x∨ ; 3) {x | y}; 
2) { },x y x⋅ ; 4 ){x · y, x ⊕ y , 1}. 
Доказательство. 1) Известно (теорема 3), что система 

{ }, ,A x y x y x= ∨ ⋅  полна. Покажем, что полна система { },B x y x= ∨ . 

Действительно, из закона де Моргана x y x y⋅ = ∨  получаем, что 
x y x y⋅ = ∨ , то есть конъюнкция выражается через дизъюнкцию и от-
рицание, и все функции системы A выражаются формулами над систе-
мой B. Согласно лемме 2 система B полна. 

2) Аналогично пункту 1: x y x y x y x y∨ = ⋅ ⇔ ∨ = ⋅  и из леммы 2 
следует истинность утверждения пункта 2. 
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3) |x x x= , ( ) ( )| | | |x y x y x y x y⋅ = =  и, согласно лемме 2, система 
полна. 

4) 1x x= ⊕  и, согласно лемме 2, система полна. 
Теорема доказана. 

§4. Теорема Жегалкина о представимости функции алгебры 
логики полиномом 

Определение 1. Монотонной конъюнкцией от переменных x1,…,xn 
называется любое выражение вида 

siiii xxxx 
321

⋅⋅ , где s ≥ 1, 1 ≤ ij ≤ n 
∀j = 1, 2, …, s, все переменные различны (ij ≠ ik, если j ≠ k); либо просто 1. 

Определение 2. Полиномом Жегалкина над x1, …, xn называется 
выражение вида 

K1 ⊕ K2 ⊕ K3 ⊕ … ⊕ Kl, 
где l ≥ 1 и все Kj суть различные монотонные конъюнкции над x1, …, xn; 
либо константа 0. 

Теорема 5 (теорема Жегалкина). Любую функцию алгебры ло-
гики f (x1, …, xn) можно единственным образом выразить полиномом 
Жегалкина над x1, …, xn. 

Доказательство. 1) Докажем существование полинома. Система 
{x · y, x ⊕ y, 1} полна, следовательно, любую функцию алгебры логики 
f (x1, …, xn) можно реализовать формулой над {x · y, x ⊕ y, 1}. 

a) Пользуясь дистрибутивностью, раскрываем все скобки в этой 
реализации и получаем, что f (x1, …, xn) = K1′ ⊕ K2′ ⊕ … ⊕ Kl′, 
где любая Ki′ — конъюнкция переменных и единиц. 

b) Преобразуем все полученные конъюнкции в монотонные, 
пользуясь при этом коммутативностью и соотношениями 
x · x = x, 1 · 1 = 1 и A · 1 = A. Очевидно, все конъюнкции ста-
нут монотонными. 

c) Преобразуем полученную сумму в полином Жегалкина, поль-
зуясь при этом соотношениями A ⊕ A = A и A ⊕ 0 = A. В ре-
зультате получим либо 

1 2 3 mi i i iK K K K⊕ ⊕ ⊕ ⊕  

либо константу 0. 
Существование доказано. 
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2) Докажем единственность представления. Подсчитаем число 
различных всевозможных монотонных конъюнкций от n переменных. 
Для этого составим таблицу вида 

1 2 3 4

1 2 4

2 3

1 1 0 1
0 1 1 0

1 0 0 0 0

x x x x
x x x
x x

, 

где каждой переменной соответствует единица, если она присутствует 
в монотонной конъюнкции и ноль в противном случае. При этом кон-
станте единице поставим в соответствие нулевой набор. Очевидно, что 
построенное отображение взаимно однозначно. Следовательно, всего 
различных монотонных конъюнкций от n переменных — 2n. Построим 
аналогичное взаимно однозначное отображение между всевозможными 
суммами монотонных конъюнкций и векторами длины 2n — числа 
конъюнкций. Для этого составим таблицу вида 

1
1 1 0 0 1

0 0 0 0 0

xy x y
xy + , 

где под соответствующей монотонной конъюнкцией стоит единица, 
если она входит в данную сумму, и ноль, если не входит. При этом кон-
станте ноль ставится в соответствие нулевой набор. Очевидно, такое 
отображение взаимно однозначно. Всего таких различных сумм будет 
столько, сколько существует различных булевых векторов длины 2n, то 
есть — 22

n

. Мы получили, что число различных полиномов Жегалкина 
совпадает с числом функций алгебры логики. Поскольку каждой функ-
ции соответствует хотя бы один полином, а каждому полиному соот-
ветствует ровно одна функция, то соответствие между ними взаимно 
однозначно, так как множества полиномов Жегалкина над n перемен-
ными и функций алгебры логики от n переменных равномощны. Един-
ственность доказана. 
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§5. Понятие замкнутого класса. Замкнутость классов 
T0, T1 и L. 

1°. Понятие замкнутого класса. 
Определение 1. Пусть A ⊆ P2. Тогда замыканием A называется 

множество всех функций алгебры логики, которые можно выразить 
формулами над A. 

Обозначение: [A]. 
Имеют место следующие свойства: 
1) [A] ⊇ A; 
2) A ⊇ B ⇒ [A] ⊇ [B], причём, если в левой части импликации 

строгое вложение, то из него вовсе не следует строгое вложе-
ние в правой части — верно лишь 

A ⊃ B ⇒ [A] ⊇ [B]; 

3) [[A]] = [A]. 
Определение 2. Система функций алгебры логики A называется 

полной, если [A] = P2. 
Определение 3. Пусть A ⊆ P2. Тогда система A называется за-

мкнутым классом, если замыкание A совпадает с самим A: [A] = A. 
Утверждение. Пусть A — замкнутый класс, A ≠ P2 и B ⊆ A. Тогда 

B — неполная система (подмножество неполной системы будет также 
неполной системой). 

Доказательство. B ⊆ A ⇒ [B] ⊆ [A] = A ≠ P2 ⇒ [B] ≠ P2. Следова-
тельно, B — неполная система. Утверждение доказано. 

2°. Примеры замкнутых классов. 
Класс T0 = {f (x1, …, xn) | f (0, …, 0) = 0}. 
Классу T0 принадлежат, например, функции 0, x, xy, x ∨ y, x ⊕ y. 
Классу T0 не принадлежат функции 1, x , x → y, x | y, x ↓ y, x ~ y. 
Подсчитаем число функций в классе T0. Для этого построим сле-

дующую таблицу: 

}

1

0 0 0
2 1

n

n

x x

−





  

. 
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Все функции, принадлежащие указанному классу, принимают на 
нулевом наборе нулевое значение. Таким образом, всего функций в 
классе T0 столько, сколько существует булевых векторов длины 2n – 1 
(первый разряд вектора длины 2n необходимо равен нулю), то есть 

2 1 21
0 22 2

n n

T −= = . 
Теорема 6. Класс T0 —замкнутый. 
Доказательство. Рассмотрим произвольную систему функций ал-

гебры логики ( ) ( ) ( ){ }11 1 11 1 1, , , , , , , , ,
nn m n n nmf x x g y y g y y     из T0. 

Рассмотрим функцию 

( ) ( ) ( )( )11 1 11 1 1, , , , , , , ,
nr m n n nmh y y f g y y g y y=    . 

Среди переменных функций gi могут встречаться и одинаковые, поэто-
му в качестве переменных функции h возьмём все различные из них. 
Тогда h (0, …, 0) = f (g1 (0, …, 0), …, gn (0, …, 0)) = f (0, …, 0) = 0 , сле-
довательно, функция h также сохраняет ноль. Рассмотрен только част-
ный случай (без переменных в качестве аргументов). Однако, посколь-
ку тождественная функция сохраняет ноль, подстановка простых пере-
менных эквивалентна подстановке тождественной функции, теорема 
доказана. 

Класс T1 = {f (x1, …, xn) | f (1, 1, …, 1) = 1}. 

Классу T1 принадлежат функции 1, x, xy, x ∨ y, x → y, x ~ y. 
Классу T1 не принадлежат функции 0, x , x ⊕ y, x | y, x ↓ y. 

Теорема 7. Класс T1 замкнут. 
Доказательство повторяет доказательство аналогичной теоремы 

для класса T0. 

Класс L линейных функций. 
Определение 4. Функция алгебры логики f (x1, …, xn) называется 

линейной, если 

f (x1, …, xn) = a0 ⊕ a1 x1 ⊕ … ⊕ an xn, где ai ∈ {0, 1}. 

Иными словами, в полиноме линейной функции нет слагаемых, содер-
жащих конъюнкцию. 

Классу L принадлежат функции 0, 1, 1x x= ⊕ , x ~ y, x ⊕ y. 
Классу L не принадлежат функции xy, x ∨ y, x → y, x | y, x ↓ y. 
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Теорема 8. Класс L замкнут. 
Доказательство. Поскольку тождественная функция — линейная, 

достаточно (как и в теоремах 6 и 7) рассмотреть только случай подста-
новки в формулы функций: пусть f (x1, …, xn) ∈ L и gi ∈ L. Достаточно 
доказать, что f (g1, …, gn)∈L. Действительно, если не учитывать слагае-
мых с коэффициентами ai = 0, то всякую линейную функцию можно 
представить в виде

1 2 0ki i ix x x a⊕ ⊕ ⊕ ⊕ . Если теперь вместо каждого 

jix  подставить линейное выражение, то получится снова линейное выра-
жение (или константа единица или нуль). 

§6. Двойственность. Класс самодвойственных функций, его 
замкнутость. 

1°. Двойственность. 
Определение 1. Функцией, двойственной к функции алгебры ло-

гики f (x1, …, xn), называется функция ( ) ( )1 1, , , ,n nf x x f x x∗ =  . 
Теорема 9 (принцип двойственности). Пусть 

( ) ( ) ( )( )11 1 11 1 1, , , , , , , ,
nm k n n nky y f g y y g y yΦ =    . 

Тогда ( ) ( ) ( )( )
nnknnkm yygyygfyy ,,,,,,,, 111111 1

 ∗∗∗∗ =Φ . 
Доказательство. Рассмотрим 

( ) ( ) ( )( )11 1 11 1 1, , , , , , ,
nm k n n nky y f g y y g y y∗Φ = =   

( ) ( )( )11 1 11 1, , , , , ,
n nk n nkf g y y g y y= =  

( ) ( )( )11 1 1

* *
1 1, , , , , ,

n nk n nkf g y y g y y= =  

( ) ( )( )11 1 1

* * *
1 1, , , , , , .

n nk n nkf g y y g y y=     

Теорема доказана. 
Следствие. Пусть функция Φ (y1, …, ym) реализуется формулой 

над A = {f1, f2, …}. Тогда если в этой формуле всюду заменить вхожде-
ния fi на fi

*, то получится формула, реализующая Φ* (y1, …, ym). 
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Утверждение. Для любой функции алгебры логики f (x1, …, xn) 
справедливо равенство 

f (x1, …, xn) = f  ** (x1, …, xn). 

Доказательство. ( ) ( ) ( )
*

**
1 1 1, , , , , ,n n nf f x x f x x f x x = = =    , 

и утверждение доказано. 
2°. Класс S самодвойственных функций. 
Определение 2. Функция алгебры логики f (x1, …, xn) называется 

самодвойственной, если 

f (x1, …, xn) = f  * (x1, …, xn). 

Иначе говоря, S = {f | f = f  *}. 
Классу S принадлежат функции 

x, x , x ⊕ y ⊕ z ⊕ a, ( )
1, 2

, ,
0, 1

x y z
m x y z xy yz zx

x y z
+ + ≥

= ∨ ∨ =  + + ≤
. 

Классу S не принадлежат функции 

0 ( ( ) ( ) ( )0 1f x f x f x∗≡ ⇒ = ≡ ), 1, 

x ∨ y (поскольку ( )x y x y x y x y∗∨ = ∨ = ⋅ ≠ ∨ ), xy. 

Теорема 10. Класс S замкнут. 
Доказательство. Пусть f (x1, …, xn) ∈ S, ∀i ( )1, ,

ii i ikg y y S∈ , 
i = 1, 2, …, n и 

( ) ( )( )11 11 1 1, , , , , ,
nk n n nkf g y y g y yΦ =    . 

Тогда из принципа двойственности следует, что 

( ) ( )( )11 11 1 1, , , , , ,
nk n n nkf g y y g y y∗ ∗ ∗ ∗Φ =     = f (g1 (…), …, gn (…)). 

Таким образом, мы получили, что Φ = Φ* и Φ ∈ S. Теорема доказана. 
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§7. Класс монотонных функций, его замкнутость. 

Определение 1. Пусть ( )1 2, , , nα α α α=   и ( )1 2, , , nβ β β β=  . 
Тогда 

( )i iiα β α β≤ ⇔ ∀ ≤ . 

Замечание. Существуют наборы, для которых неприменимо от-
ношение упорядоченности, определённое выше. Так, например, наборы 
(0, 0, 1) и (0, 1, 0) несравнимы. 

Определение 2. Функция алгебры логики f (x1, …, xn) называется 
монотонной, если для любых двух сравнимых наборов α и β  выпол-
няется импликация 

( ) ( )f fα β α β≤ ⇒ ≤   . 

Класс всех монотонных функций обозначим M. 
Классу M принадлежат функции 

0, 1, x, xy, x ∨ y, m (x, y, z) = xy ∨ yz ∨ zx. 
Классу M не принадлежат функции 

x , x | y , x ↓ y , x ⊕ y , x ~ y , x → y. 
Теорема 11. Класс M замкнут. 
Доказательство. Поскольку тождественная функция монотонна, 

достаточно проверить лишь случай суперпозиции функций. Пусть 
f (x1, …, xn) ∈ M, для любого j gj (y1, …, ym) ∈ M и 

Φ (y1, …, ym) = f (g1 (y1, …, ym), …, gn (y1, …, ym)). 

Рассмотрим произвольные наборы ( )1, , mα α α=  , ( )1, , mβ β β=   такие, 

что α β≤  . Обозначим 

( ) ( ),i i i ig gα γ β δ= = . 

Тогда для любого i имеем gi ∈ M и ( ) ( )i ig gα β≤  , то есть ( )i ii γ δ∀ ≤ . 
Обозначим 

( ) ( )1 2 1 2, , , , , , ,n nγ γ γ γ δ δ δ δ= =   . 
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Тогда по определению γ δ≤   и, в силу монотонности функции f, 

( ) ( )f fγ δ≤  . Но 

( ) ( ) ( )1, , nf fα γ γ γΦ = =  , ( ) ( ) ( )1, , nf fβ δ δ δΦ = =  , 

откуда ( ) ( )α βΦ ≤ Φ  , следовательно, Ф ∈ M. Теорема доказана. 

§8. Лемма о несамодвойственной функции 

Лемма (о несамодвойственной функции). Из любой несамод-
войственной функции алгебры логики f (x1, …, xn), подставляя вместо 
всех переменных функции x  и x, можно получить φ (x) ≡ const. 

Доказательство. Пусть f ∉ S. Тогда 

( ) ( ) ( )1 1 1, , , , , , :n n nf x x f x x σ σ σ≠ ⇒ ∃ =    

( ) ( ) ( ) ( )1 1 1 1, , , , , , , ,n n n nf f f fσ σ σ σ σ σ σ σ≠ ⇔ =    . 

Построим функцию φ (x) так: φ (x) = f (x ⊕ σ1, …, x ⊕ σn). Тогда 
ϕ (0) = f (σ1, …, σn), ( ) ( )11 , nfϕ σ σ=   

и φ (0) = φ (1) ⇒ φ (x) = const. Заметим, что подстановка удовлетворяет 

условию теоремы, так как
, 0
, 1

x
x

x
σ

σ
σ

=
⊕ =  =

. Лемма доказана. 

§9. Лемма о немонотонной функции 

Лемма (о немонотонной функции). Из любой немонотонной 
функции алгебры логики f (x1, …, xn), подставляя вместо всех перемен-
ных функции x, 0, 1, можно получить функцию ( )x xϕ = . 

Доказательство. Пусть f ∉ M. Тогда существуют такие наборы 
( )1, , nα α α=   и ( )1, , nβ β β=  , что α β<   (то есть ∀j (αj ≤ βj) иα β≠  ) 

и ( ) ( )f fα β>  . Выделим те разряды i1, …, ik наборов α  и β , в кото-
рых они различаются. Очевидно, в наборе α  эти разряды равны 0, а в 
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наборе β  — 1. Рассмотрим последовательность наборов 

0 1 2, , , , kα α α α     таких, что 0 1 2 kα α α α α β= < < < < =      , где 1iα +  по-
лучается из iα  заменой одного из нулей, расположенного в одной из 
позиций i1, …, ik, на единицу (при этом наборы iα  и 1iα +  — соседние). 

Поскольку ( ) 1f α = , а ( ) 0f β = , среди наборов 0 1 2, , , , kα α α α     найдут-

ся два соседних iα  и 1iα + , такие что ( ) 1if α =  и ( )1 0if α + = . Пусть они 
различаются в r-ом разряде: ( )1 1 1, , ,0, , ,i r r nα α α α α− +=   , 

( )1 1 1 1, , ,1, , ,i r r nα α α α α+ − +=   . Тогда определим функцию φ (x) так: φ 

(x) = f (α1, α2, …, αr – 1, x, αr + 1, …, αn). Действительно, тогда 
( ) ( )0 1ifϕ α= = , ( ) ( )11 0ifϕ α += =  и ( )x xϕ = . Лемма доказана. 

§10. Лемма о нелинейной функции 

Лемма (о нелинейной функции). Из любой нелинейной функции 
алгебры логики f (x1, …, xn), подставляя вместо всех переменных x, x , 
y, y , 0, 1, можно получить φ (x, y) = x · y или ( ),x y x yϕ = ⋅ . 

Доказательство. Пусть f (x1, …, xn) ∉ L. Рассмотрим полином Же-
галкина этой функции. Из её нелинейности следует, что в нём присут-
ствуют слагаемые вида

1 2i ix x⋅ ⋅ . Не ограничивая общности рассужде-
ний, будем считать, что присутствует произведение x1 · x2 · …. Таким 
образом, полином Жегалкина этой функции выглядит так: 

f (x1, …, xn) = x1 · x2 · P1 (x3, …, xn) ⊕ x1 · P2 (x3, …, xn) ⊕ 
⊕ x2 · P3 (x3, …, xn) ⊕ P4 (x3, …, xn), 

причем P1 (x3, …, xn) ≠ 0. Иначе говоря, ∃ a3, a4, …, an ∈ E2 = {0, 1} 
такие, что P1 (a3, a4, …, an) = 1. Рассмотрим вспомогательную функцию 
f (x1, x2, a3, a4, …, an) = x1 x2 · 1 ⊕ x1 · b ⊕ x2 · c ⊕ d. Тогда функция 
f (x ⊕ с, y ⊕ b, a3, a4, …, an) = (x ⊕ c)(y ⊕ b) ⊕ (x ⊕ c)b ⊕ (y ⊕ b)c ⊕ d = 

= xy ⊕ x · b ⊕ y · c ⊕ b · c ⊕ x · b ⊕ b · c ⊕ y · c ⊕ b · c ⊕ d = 

= xy ⊕ (bc ⊕ d) =
, 0

, 1

xy bc d

xy bc d

⊕ =


⊕ =
. 

Лемма доказана. 
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§11. Теорема Поста о полноте системы функций алгебры 
логики 

Теорема 12 (теорема Поста). Система функций алгебры логики 
A = {f1, f2, …} является полной в P2 тогда и только тогда, когда она не 
содержится целиком ни в одном из следующих классов: T0, T1, S, L, M. 

Доказательство. Необходимость. Пусть A — полная система, 
N — любой из классов T0, T1, S, L, M и пусть A ⊆ N. Тогда 

[A] ⊆ [N] = N ≠ P2 и [A] ≠ P2. 
Полученное противоречие завершает обоснование необходимости. 

Достаточность. Пусть A ⊄ T0, A ⊄ T1, A ⊄ M, A ⊄ L, A ⊄ S. Тогда в A 
существуют функции f0 ∉ T0, f1 ∉ T1, fM ∉ M, fL ∉ L, fS ∉ S. Достаточно по-
казать, что [A] ⊇ [f0, f1, fM, fL, fS] = P2. Разобьём доказательство на три ча-
сти: получение отрицания, констант и конъюнкции. 

a) Получение x . Рассмотрим функцию f0 (x1, …, xn) ∉ T0 и полу-
чим из нее функцию φ0 (x) = f0 (x, x, …, x). Так как функция f0 
не сохраняет нуль, φ0 (0) = f (0, 0, …, 0) = 1. Возможны два 
случая: либо ( )0 x xϕ = , либо φ0 (x) ≡ 1. Рассмотрим функцию 
f1 (x1, …, xn) ∉ T1 и аналогичным образом получим функцию 
φ1 (x) = f1 (x, x, …, x). Так как функция f1 не сохраняет единицу, 
φ1 (1) = f (1, 1, …, 1) = 0. Возможны также два случая: либо 

( )1 x xϕ = , либо φ1 (x) ≡ 0. Если хотя бы в одном случае полу-
чилось искомое отрицание, пункт завершён. Если же в обоих 
случаях получились константы, то согласно лемме о немоно-
тонной функции, подставляя в функцию fM ∉ M вместо всех 
переменных константы и тождественную функцию, можно 
получить отрицание. Отрицание получено. 

b) Получение констант 0 и 1. Имеем fS ∉ S. Согласно лемме о не-
самодвойственной функции, подставляя вместо всех перемен-
ных функции fS отрицание (которое получено в пункте a) и 
тождественную функцию, можно получить константы: 
[fS, x ] ∋ [0, 1]. Константы получены. 

c) Получение конъюнкции x · y. Имеем функцию fL ∉ L. Соглас-
но лемме о нелинейной функции, подставляя в функцию fL 
вместо всех переменных константы, переменные и отрицания 
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переменных (которые были получены на предыдущих шагах 
доказательства), можно получить либо конъюнкцию, либо от-
рицание конъюнкции. Однако на первом этапе отрицание уже 
получено, следовательно, всегда можно получить конъюнк-
цию: [fL, 0, 1, x ] ∋ [xy, xy ]. Конъюнкция получена. 

В результате получено, что [ ] [ ]0 1 2, , , , ,M L Sf f f f f x xy P⊇ = . По-
следнее равенство следует из пункта 2 теоремы 4. В силу леммы 2 до-
статочность доказана. 

§12. Теорема о максимальном числе функций в базисе алгеб-
ры логики 

Определение. Система функций алгебры логики A ⊆ P2 называет-
ся базисом (в P2), если 

1) [A] = P2; 
2) ∀f ∈ A ([A \ {f}] ≠ P2). 

Теорема 13. Максимальное число функций в базисе алгебры ло-
гики равно 4. 

Доказательство. 1) Докажем, что из любой полной системы мож-
но выделить полную подсистему, содержащую не более четырёх функ-
ций. Действительно, если A — полная система ([A] = P2), то согласно 
теореме Поста в ней существуют пять функций f0 ∉ T0, f1 ∉ T1, fS ∉ S, 
fM ∉ M, fL ∉ L. По теореме Поста система функций {f0, f1, fS, fM, fL} полна. 
Рассмотрим функцию f0 (x1, …, xn) ∉ T0 (f0 (0, 0, …, 0) = 1). Возможны 
два случая: 

a) f0 (1, 1, …, 1) = 1 ⇒ f0 ∉ S ⇒ [f0, f1, fL, fM] = P2 и система 
{f0, f1, fL, fM} полна. 

b) f0 (1, 1, …, 1) = 0 ⇒ f0 ∉ M, T1 ⇒ [f0, fL, fS] = P2 и система 
{f0, fL, fS} полна. 

2) Покажем, что существует базис алгебры логики из четырёх 
функций. Действительно, рассмотрим систему функций 

{0, 1, x · y, x ⊕ y ⊕ z}. 
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Эта система функций полная, так как 0 ∉ T1, S, 1 ∉ T0, x · y ∉ L, 
x ⊕ y ⊕ z ∉ M (0 ⊕ 0 ⊕ 1 = 1, 0 ⊕ 1 ⊕ 1 = 0). Однако, любая её подси-
стема не полна: 

{0, 1, x · y} ⊆ M 
{0, 1, x ⊕ y ⊕ z} ⊆ L 
{0, xy, x ⊕ y ⊕ z} ⊆ T0 
{1, xy, x ⊕ y ⊕ z} ⊆ T1. 

Теорема доказана. 

§13. Теорема о предполных классах 

1 . Предполные классы. 
Определение. Пусть A ⊆ P2. A называется предполным классом, если 
1) [A] ≠ P2; 
2) ∀f∈P2 ( f∉A ⇒ [A∪{f}] = P2). 
Теорема 14. В P2 предполными являются лишь следующие 5 

классов: T0, T1, S, L, M. 
Доказательство. 1) Покажем сначала, что ни один из этих пяти 

классов не содержится в другом. Для этого достаточно для каждого из 
пяти вышеперечисленных классов указать четыре функции, принадле-
жащие данному классу, но не принадлежащие остальным четырем: 

∈
∉ T0 T1 L M S 

T0  0 xy x ⊕ y 0 
T1 1  xy x ⊕ y ⊕ 1 1 
L 1 0  x ⊕ y 0 
M 1 0 xy  0 
S x  x  xy ⊕ yz ⊕ zx x   

2) Докажем, что все классы — T0, T1, S, L, M являются предпол-
ными. Действительно, пусть N ∈ {T0 , T1 , L, M , S} и f ∉ N. Тогда систе-
ма N ∪ {f} не содержится ни в одном из пяти классов Поста (так как N 
не содержится в четырёх из них, а f не содержится в N). Следовательно, 
система N ∪ {f} — полная и N — предполный класс. 

3) Пусть A — предполный класс. Тогда [A] ≠ P2 ⇒ ∃ N∈{T0, T1, L, 
M, S}: A ⊆ N. Если A ≠ N, то ∃ f ( f ∈ N, f ∉ A): 

A ∪ {f} ⊆ N ⇒ [A ∪ {f}] ≠ P2. 
Полученное противоречие завершает доказательство. 
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2 . Результаты Поста. 

1) В P2 существует ровно счётное число замкнутых классов. 
2) В любом замкнутом классе существует конечный базис. 

§14. k-значные функции. Теорема о существовании конечной 
полной системы в множестве k-значных функций 

1°. k-значные функции. Будем рассматривать конечный алфавит 
Ek = {0, 1, 2, …, k – 1}. Функцией k-значной логики назовём отображе-
ние вида f (x1, x2, …, xn): n

k kE E→ . 
Некоторые функции k-значной логики. 
1) Константы 0, 1, 2, …, k – 1 (всего — k); 
2) Тождественная функция f (x) = x; 
3) Отрицания: f (x) = x = x + 1 (mod k)  — отрицание Поста, 

 f (x) = ~ x = (k – 1) – x  — отрицание Лукасевича; 
4) Сложение по модулю k: f (x, y) = x + y (mod k); 
5) Умножение по модулю k: f (x, y) = xy (mod k); 
6) Максимум: max (x, y); 
7) Минимум: min (x, y); 

8) ( )
1,

0,
k x

J x
xσ

σ
σ

− =
=  ≠

. 

Теорема 15. Система 
{0, 1, …, k – 1, max (x, y), min (x, y), J0 (x), J1 (x), …, Jk – 1 (x)} 

полна в Pk. 
Доказательство. Утверждается, что для любой функции 

f (x1, …, xn) ∈ Pk справедливо представление 

( )
( )

( ) ( ) ( )( ){ }1
1

1 1 1 2
, ,

, , max min , , , , , ,
n n

n k
n n n

E
f x x J x J x fσ σ

σ σ
σ σ σ

∈
=


   . 

Действительно, для любого набора ( )1 2, , , n
n kEα α α α= ∈   рассмотрим 

значение правой части: если существует такое i , что σi ≠ αi, то 
( ) 0

i iJσ α =  и весь минимум станет равным нулю. Таким образом, пра-
вая часть станет равна  

1 21 2 1 2max{0,0, ,0,min( ( ), ( ), , ( ), ( , , , )),0, ,0}
n n nJ J J fα α αα α α α α α    , 
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а учитывая то, что в Pk 

Ja (a) = k – 1, 

получим, что правая часть равна просто ( )1 2, , , nf α α α . Теорема до-
казана. 

Замечание. 
min (x1, x2, x3)  = min (x1, min (x2, x3)); 

min (x1, x2, …, xn)  = min (x1, min (x2, … ,xn)). 
Аналогично определяется функция максимума от n переменных. 

2°. Особенности k-значной логики. 
1) В Pk существует континуум замкнутых классов (при k ≥ 3). 
2) В Pk существуют замкнутые классы с бесконечным базисом 

(при k ≥ 3). 
3) В Pk существуют замкнутые классы, не имеющие базиса (при 

k ≥ 3). 
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Глава II. Основы теории графов 
§15. Основные понятия теории графов. Изоморфизм графов. 

Связность 

Определение 1. Графом называется произвольное множество 
элементов V и произвольное семейство E пар из V. Обозначение: 
G = (V, E). 

В дальнейшем будем рассматривать конечные графы, то есть гра-
фы с конечным множеством элементов и конечным семейством пар. 

Определение 2. Если элементы из E рассматривать как неупоря-
доченные пары, то граф называется неориентированным, а пары назы-
ваются рёбрами. Если же элементы из E рассматривать как упорядо-
ченные, то граф ориентированный, а пары — дуги. 

Определение 3. Пара вида (a, a) называется петлёй, если пара 
(a, b) встречается в семействе E несколько раз, то она называется крат-
ным ребром (кратной дугой). 

Определение 4. В дальнейшем условимся граф без петель и крат-
ных рёбер называть неориентированным графом (или просто графом), 
граф без петель — мультиграфом, а мультиграф, в котором разрешены 
петли — псевдографом. 

Определение 5. Две вершины графа называются смежными, если 
они соединены ребром. 

Определение 6. Говорят, что вершина и ребро инцидентны, если 
ребро содержит вершину. 

Определение 7. Степенью вершины (deg v) называется количе-
ство рёбер, инцидентных данной вершине. Для псевдографа полагают 
учитывать петлю дважды. 

1 
2 

6 3 

5 

4 

7 

 

.8 
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Утверждение 1. В любом графе (псевдографе) справедливо сле-

дующее соотношение:
1

deg 2
p

i
i

v q
=

=∑ , где p — число вершин, а q — чис-

ло рёбер. 
Доказательство. Когда мы считаем степень одной вершины, мы 

считаем все рёбра, выходящие из неё. Вычисляя сумму всех степеней, 
мы получаем, что каждое ребро считается дважды, так как оно инци-
дентно двум вершинам (петли по определению степени также посчита-
ются дважды). Поэтому общая сумма будет равна удвоенному числу 
рёбер. Утверждение доказано. 

Определение 8. Пусть множество вершин графа V = {v1, v2, …, 
vp}. Тогда матрицей смежности этого графа назовём матрицу A = ||aij||, 
где aij = 1, если вершины vi и vj смежны (2, 3, … для мультиграфа или 
псевдографа) и 0 в противном случае, aii при этом равно числу петель в 
вершине vi. 

Определение 9. Два графа (или псевдографа) G1 = (V1, E1) и 
G2 = (V2, E2) называются изоморфными, если существуют два вза-
имно однозначных отображения φ1: V1 → V2 и φ2: E1 → E2 такие, что 
для любых двух вершин u и v графа G1 справедливо φ2 (u, v) = 
= (φ1 (u), φ1 (v)). 

Определение 10 (изоморфизм графов без петель и кратных рё-
бер). Два графа G1 = (V1, E1) и G2 = (V2, E2) называются изоморфными, 
если существует взаимно однозначное отображение φ1: V1 → V2 такое, 
что (u, v) ∈ E1 ⇔ (φ (u), φ (v)) ∈ E2. 

Определение 11. Граф G1 = (V1, E1) называется подграфом 
графа G = (V, E), если 

V1 ⊆ V, E1 ⊆ E. 

Определение 12. Путём в графе G = (V, E) называется любая по-
следовательность вида 

v0, (v0, v1), v1, (v1, v2), …, vn – 1, (vn – 1, vn), vn. 
Число n в данных обозначениях называется длиной пути. 

Определение 13. Цепью называется путь, в котором нет повторя-
ющихся рёбер. 

Определение 14. Простой цепью называется путь без повторения 
вершин. 
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Утверждение 2. Пусть в G = (V, E) v1 ≠ v2 и пусть P — путь из v1 в 
v2. Тогда в P можно выделить подпуть из v1 в v2, являющийся простой 
цепью. 

Доказательство. Пусть данный путь — не простая цепь. Тогда в 
нём повторяется некоторая вершина v, то есть он имеет вид: 
P1 = v0C1vC2vC3v2. Тогда он содержит подпуть P2 = v0C1vC3v2. Если в P2 
повторяется некоторая вершина, то аналогично удалим ещё кусок и так 
далее. Процесс должен закончиться, так как P1 — конечный путь. 
Утверждение доказано. 

Определение 15. Путь называется замкнутым, если v0 = vn. 
Определение 16. Путь называется циклом, если он замкнут, и рё-

бра в нём не повторяются. 
Определение 17. Путь называется простым циклом, если v0 = vn и 

вершины не повторяются. 
Определение 18. Граф G = (V, E) называется связным, если для 

любых вершин vi, vj ∈ V (vi ≠ vj) существует путь из vi в vj. 
Рассмотрим отношение vi → vj существования пути из vi в vj. Оно 
1) симметрично, так как (vi → vj) ⇒ (vj → vi), 
2) транзитивно, так как (vi → vj) & (vj → vk) ⇒ (vi → vk), 
3) рефлексивно, так как ∀i (vi → vi). 
Таким образом, получено, что vi → vj — отношение эквивалентности 

и множество вершин разбивается на конечное число классов эквивалент-
ности: V → V1 ∪ V2 ∪ … ∪ Vk, Vi ∩ Vj = ∅ ⇐ i ≠ j. При этом граф G разби-
вается на связные подграфы, которые называются компонентами связно-
сти. 

Vk V2 V1 

 
Связные компоненты графа G 

… 
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§16. Деревья. Свойства деревьев. 

Определение 1. Деревом называется связный граф без циклов. 
Определение 2. Подграф G1 = (V1, E1) графа G = (V, E), называется 

остовным деревом в графе G = (V, E), если G1 = (V1, E1) — дерево и V1 = V. 
Лемма 1. Если граф G = (V, E) связный и ребро (a, b) содержится 

в некотором цикле в графе G, то при выбрасывании из графа G ребра 
(a, b) снова получится связный граф. 

Доказательство. Это утверждение следует из того, что при вы-
брасывании из графа G ребра (a, b) вершины a и b всё равно остаются в 
одной связной компоненте, поскольку из a в b можно пройти по остав-
шейся части цикла. Лемма доказана. 

Теорема 1. Любой связный граф содержит хотя бы одно остовное 
дерево. 

Доказательство. Если в G нет циклов, то G является искомым 
остовным деревом. Если в G есть циклы, то удалим из G какое-нибудь 
ребро, входящее в цикл. Получится некоторый подграф G1. По лемме 
1 G1 — связный граф. Если в G1 нет циклов, то G1 и есть искомое 
остовное дерево, иначе продолжим этот процесс. Процесс должен за-
вершиться, так как E — конечное множество. Теорема доказана. 

Лемма 2. Если к связному графу добавить новое ребро на тех же вер-
шинах, то появится цикл. 

Доказательство. Рассмотрим произвольный связный граф G = (V, E). 
Пусть u ∈ V, v ∈ V, (u, v) ∉ E. Так как G — связный граф, то в нём есть 
путь из v в u. Тогда в G есть и простая цепь C из v в u. Поэтому в полу-
ченном графе есть цикл C, (u, v), v. Лемма доказана. 

Лемма 3. Пусть в графе G = (V, E) p вершин и q рёбер. Тогда в G 
не менее p – q связных компонент. Если при этом в G нет циклов, то G 
состоит ровно из p – q связных компонент. 

Доказательство. Пусть к некоторому графу H, содержащему 
вершины u и v, добавляется ребро (u, v). Тогда если u и v лежат в раз-
ных связных компонентах графа H, то число связных компонент 
уменьшится на 1. Если u, v лежат в одной связной компоненте графа H, 
то число связных компонент не изменится. В любом случае, число 
связных компонент уменьшается не более чем на 1. Значит, при добав-
лении q рёбер число связных компонент уменьшается не более чем на 
q. Так как граф G получается из графа G1 = (V, ∅) добавлением q рёбер, 
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то в G не менее p – q связных компонент. Пусть теперь в G нет циклов, 
и пусть в процессе получения G из G1 добавляется ребро (u, v). Если бы 
u, v лежали уже в одной связной компоненте, то в G, согласно лемме 2, 
возникал бы цикл. Следовательно, u, v лежат в разных связных компо-
нентах и при добавлении ребра (u, v) число связных компонент умень-
шается ровно на 1. Тогда G состоит ровно из p – q связных компонент. 
Лемма доказана. 

Теорема 2 (о различных определениях дерева). Следующие 
пять определений эквивалентны (p — число вершин, q — число рёбер): 

1) G — дерево; 
2) G — без циклов и q = p – 1; 
3) G — связный граф и q = p – 1; 
4) G — связный граф, но при удалении любого ребра становится 

несвязным; 
5) G — без циклов, но при добавлении любого ребра на тех же 

вершинах появляется цикл. 
Доказательство. Докажем следующие переходы: 1) ⇒ 2) ⇒ 3) ⇒ 

⇒ 4) ⇒ 5) ⇒ 1), откуда будет следовать, что из любого условия выте-
кает любое другое. 

1) ⇒ 2): так как G — связный граф и G не содержит циклов, то 
p – q = 1 по лемме 3. Отсюда q = p – 1. 

2) ⇒ 3): по лемме 3 в G число связных компонент равно p – q = 1, то 
есть G — связный граф. 

3) ⇒ 4): при удалении одного ребра p – q = 2. Тогда по лемме 3 
число связных компонент не менее чем p – q = 2. 

4) ⇒ 5): если G имеет цикл, то согласно лемме 1 можно выбросить 
одно ребро так, что граф останется связным. Согласно лемме 2, если 
добавить любое новое ребро к связному графу G на тех же вершинах, 
то появится цикл. 

5) ⇒ 1): если G не связный граф и вершины u, v лежат в разных 
связных компонентах графа G, то добавление к G ребра (u, v), очевид-
но, не порождает циклов, что противоречит 5). Отсюда следует, что 
G — связный граф. Теорема доказана. 
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§17. Корневые деревья. Верхняя оценка их числа 

Определение 1. Любое дерево, в котором выделена одна вершина, 
называемая корнем, называется корневым деревом. 

Определение 2. 1) Граф, состоящий из одной вершины, которая 
выделена, называется корневым деревом. 

2) Пусть имеются корневые деревья D1,D2,…,Dm с корнями v1,v2,… 
…, vm, Di = (Vi, Ei), Vi ∩ Vj = ∅ (i ≠ j). Тогда граф D = (V, E), полученный 
следующим образом: 

V = V1 ∪ V2 ∪ … ∪ Vm ∪ {v} (v ∉ Vi, ∀i ), 
E = E1 ∪ E2 ∪ … ∪ Em ∪ {(v, v1), (v, v2), …,(v, vm)} 

и в котором выделена вершина v, называется корневым деревом. 
3) Только те объекты являются корневыми деревьями, которые 

можно построить согласно пунктам 1) и 2). 
При таком определении D1,D2,…,Dm называются поддеревьями де-

рева D. 

 

Утверждение. Определения 1 и 2 эквивалентны. 
Определение 3. Упорядоченным корневым деревом называется 

корневое дерево, в котором 
1) задан порядок поддеревьев и 
2) каждое поддерево Di является упорядоченным поддеревом. 
Дерево с одной вершиной также является упорядоченным подде-

ревом. 
Теорема 3. Число упорядоченных корневых деревьев с q рёбрами 

не превосходит 4q. 
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Доказательство. Рассмотрим алгоритм обхода упорядоченного 
дерева, называемого «поиском в глубину». Этот обход описывается ре-
курсивно следующим образом: 

1) Начать с корня. Пока есть поддеревья выполнять: 
2) перейти в корень очередного поддерева, обойти это поддерево 

«в глубину». 
3) Вернуться в корень исходного поддерева. 
В результате обход «в глубину» проходит по каждому ребру дере-

ва ровно 2 раза: один раз при переходе в очередное поддерево, второй 
раз при возвращении из этого поддерева. В соответствии с обходом «в 
глубину» будем строить последовательность из нулей и единиц, запи-
сывая на каждом шаге нуль или единицу, причём нуль будем записы-
вать, если происходит переход в очередное поддерево, а единицу, если 
мы возвращаемся из поддерева. Получим последовательность из 0 и 1 
длины 2q, которую назовём кодом дерева. По этому коду однозначно 
восстанавливается дерево, поскольку каждый очередной разряд одно-
значно указывает, начинать ли строить новое очередное поддерево или 
возвращаться на ярус ближе к корню. Таким образом, упорядоченных 
корневых деревьев с q рёбрами не больше, чем последовательностей из 
0 и 1 длины 2q, а их число равно 22q = 4q. Теорема доказана. 

Изоморфизм корневых деревьев определяется так же, как и изо-
морфизм графов, но с дополнительным требованием: корень должен 
отображаться в корень. Для упорядоченных корневых деревьев также 
требуется сохранение порядка поддеревьев. 

Следствие. Число неизоморфных корневых деревьев с q рёбрами 
и число неизоморфных деревьев с q рёбрами не превосходит 4q. 

Доказательство. Выделяя в неизоморфных деревьях по одной 
вершине, мы получим неизоморфные корневые деревья. Упорядочивая 
поддеревья в неизоморфных корневых деревьях, мы получим различ-
ные упорядоченные корневые деревья. Поэтому число неизоморфных 
деревьев с q рёбрами не превосходит числа неизоморфных корневых 
деревьев с q рёбрами, которое, в свою очередь, не превосходит числа 
различных упорядоченных корневых деревьев с q рёбрами. Отсюда и из 
теоремы следует утверждение следствия. Следствие доказано. 
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§18. Геометрическая реализация графов. Теорема о реализа-
ции графов в трёхмерном пространстве 

Определение. Пусть задан некоторый неориентированный граф 
G = (V, E). Пусть любой вершине vi графа G сопоставлена некоторая 
точка ai: vi → ai, ai ≠ aj (i ≠ j), а любому ребру e = (a, b) сопоставлена не-
которая непрерывная кривая L, соединяющая точки ai и aj и не прохо-
дящая через другие точки ak (k ≠ i, j). Тогда если все кривые, сопостав-
ленные рёбрам, не имеют общих точек, кроме концевых, то говорят, 
что задана геометрическая реализация графа G. 

 

не является геометрической реализацией графа K4 

геометрическая реализация графа K4 

 
Теорема 4. Для любого графа существует его реализация в трёх-

мерном пространстве. 
Доказательство. Возьмём в пространстве любую прямую l и раз-

местим на ней все вершины графа G. Пусть в G имеется q рёбер. Про-
ведём связку из q различных полуплоскостей через l. После этого каж-
дое ребро графа G можно изобразить линией в своей полуплоскости и 
они, очевидно, не будут пересекаться. Теорема доказана. 

§19. Планарные (плоские) графы. Формула Эйлера 

Определение 1. Граф называется планарным, если существует его 
геометрическая реализация на плоскости. 

Определение 2. Если имеется планарная реализация графа и мы 
«разрежем» плоскость по всем линиям этой планарной реализации, то 
плоскость распадётся на части, которые называются гранями этой пла-
нарной реализации (одна из граней бесконечна, она называется внешней 
гранью). 
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Теорема 5 (формула Эйлера). Для любой планарной реализации 
связного планарного графа G = (V, E) с p вершинами, q рёбрами и r гра-
нями выполняется равенство: p – q + r = 2. 

Доказательство. Докажем теорему при фиксированном p индук-
цией по q. Так как G — связный граф, то q ≥ p – 1. 

a) Базис индукции: q = p – 1. Так как G — связный и q = p – 1, то 
согласно пункту 3 теоремы 2 G — дерево, то есть, в G нет 
циклов. Тогда r = 1. Отсюда p – q + r = p – (p – 1) + 1 = 2. 

b) Пусть для q: p – 1 ≤ q < q0 теорема справедлива. Докажем, что 
для q = q0 она также справедлива. Пусть G — связный граф с p 
вершинами и q0 рёбрами и пусть в его планарной реализации r 
граней. Так как q0 > p – 1, то G — не дерево. Следовательно, в G 
есть цикл. Пусть ребро e входит в цикл. Тогда к нему с двух сто-
рон примыкают разные грани. Удалим ребро e из G. Тогда две 
грани сольются в одну, а полученный граф G1 останется связ-
ным. При этом получится планарная реализация графа G1 с p 
вершинами и q0 – 1 рёбрами и r – 1 гранями. Так как q0 – 1 < q0, 
то, по предположению индукции, для G1 справедлива формула 
Эйлера, то есть p – (q0 – 1) + (r – 1) = 2, откуда p – q0 + r = 2. Что и 
требовалось доказать. 

Следствие 1. Формула Эйлера справедлива и для геометрической 
реализации связных графов на сфере. 

Доказательство. Пусть связный граф G с p вершинами и q рёбра-
ми реализован на сфере S так, что число граней равно r. Пусть точка A 
на сфере не лежит на линиях этой геометрической реализации. Пусть 
P — некоторая плоскость. Поставим сферу S на плоскость P так, чтобы 
точка A была самой удалённой от плоскости. Спроектируем S на P цен-
тральным проектированием с центром в точке A. Тогда на плоскости P 
мы получим геометрическую реализацию связного графа с p вершина-
ми и q рёбрами, причём число граней будет равно r (грань на сфере, 
содержащая A, отображается на внешнюю грань на плоскости). По тео-
реме получаем p – q + r = 2. Следствие доказано. 

Следствие 2. Для любого выпуклого многогранника справедливо 
равенство p – q + r = 2, где p — число вершин, q — число рёбер, r — 
число граней. 

Доказательство. Пусть выпуклый многогранник M имеет p вер-
шин, q рёбер и r граней. Пусть O — внутренняя точка многогранника. 
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Разместим сферу S с центром в точке O настолько большого радиуса, 
чтобы M целиком содержался в S. Рассмотрим центральное проектиро-
вание с центром в точке O, и спроектируем вершины и рёбра M на S. 
Тогда на S мы получим геометрическую реализацию некоторого связ-
ного графа с p вершинами, q рёбрами и r гранями. Отсюда согласно 
следствию 1 p – q + r = 2. Следствие 2 доказано. 

§20. Доказательство непланарности графов K5 и K3,3. Теорема 
Понтрягина-Куратовского (доказательство в одну 
сторону) 

Определение 1. Графом K5 называется граф с пятью вершинами, в 
котором каждая пара вершин соединена ребром. 

 

K5  

Теорема 6. Граф K5 не планарен. 
Доказательство. Допустим, что для графа K5 существует планар-

ная реализация. Так как граф K5 связен, то для этой планарной реализа-
ции справедлива формула Эйлера p – q + r = 2. Поскольку в графе K5 
имеем p = 5 и q = 10, то число всех граней должно равняться r = 2 – p + q = 7. 
Пусть грани занумерованы 1, 2, …, r и пусть при обходе i-ой грани по 
периметру (по её краю) проходится qi рёбер. Так как при этом каждое 
ребро обходится дважды (оно является стороной для двух граней), то 

1
2 20r

ii
q q

=
= =∑ . Но в каждой грани не менее трёх сторон. Поэтому 

qi ≥ 3 для всех i. Отсюда 
1

3 21r
ii

q r
=

≥ =∑ . Получаем 20 ≥ 21 — противо-
речие. Значит, для графа K5 не существует планарной реализации. 
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Определение 2. Графом K3,3 называется граф с шестью вершина-
ми a1, a2, a3, b1, b2, b3, в котором каждая вершина ai соединена ребром с 
каждой вершиной bj и других рёбер нет. 

 
a1 a3 a2 

b1 b3 b2 

K3,3  

Теорема 7. Граф K3,3 не планарен. 
Доказательство. Допустим, что для графа K3,3 существует планар-

ная реализация. Так как граф K3,3 связен, то для этой планарной реализа-
ции справедлива формула Эйлера p – q + r = 2. Поскольку в графе K3,3 име-
ем p = 6 и q = 9, то число всех граней должно равняться r = 2 – p + q = 5. 
Так же, как в доказательстве предыдущей теоремы, получаем, что 

1
2 18r

ii
q q

=
= =∑ , где qi — число сторон в i-ой грани. Но в графе K3,3 нет 

циклов длины 3. Поэтому в каждой грани не менее 4 сторон. Следователь-
но, qi ≥ 4 для всех i. Отсюда 

1
4 20r

ii
q r

=
≥ =∑ . Получаем 18 ≥ 20 — проти-

воречие. Значит, для графа K3,3 не существует планарной реализации. 
Определение 3. Подразделением ребра (a, b) называется опера-

ция, состоящая в следующих действиях: 
1) удаление (a, b), 
2) добавление новой вершины c, 
3) добавление рёбер (a, c) и (c, b). 
Определение 4. Граф H называется подразделением графа G, если 

H можно получить из G путём конечного числа подразделений своих 
рёбер. 

Определение 5. Два графа называются гомеоморфными, если су-
ществуют их подразделения, которые изоморфны. 

Теорема 8 (Понтрягина-Куратовского). Граф является планар-
ным тогда и только тогда, когда он не содержит ни одного подграфа, 
гомеоморфного графам K5 или K3,3. 
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Доказательство. Необходимость. Пусть G — планарный. Допу-
стим, что он содержит подграф G1, гомеоморфный графу K5 или K3,3. 
Рассмотрим планарную реализацию графа G. Удалив лишние вершины 
и рёбра, мы получим планарную реализацию подграфа G1. Но G1 гео-
метрически — это граф K5 или K3,3 с точками на рёбрах. Если проигно-
рировать эти точки, то мы получим планарную реализацию графа K5 
или K3,3. Но это невозможно в силу теорем 1 и 2. Необходимость дока-
зана. 

Достаточность без доказательства. 

§21. Теорема о раскраске планарных графов в пять цветов 

Лемма 1. Для любой геометрической реализации на плоскости 
связного планарного графа с q рёбрами выполняется равенство: 

1
2

r

i
i

q q
=

=∑ , 

где суммирование ведётся по всем граням (включая внешнюю). 
Доказательство. Равенство следует из того, что у каждого ребра 

две стороны и при суммировании qi каждое ребро учитывается дважды: 
либо оно входит в границы двух соседних граней, либо оно дважды 
учитывается в одной грани. Лемма доказана. 

Теорема 9. Если в связном планарном графе G = (V, E) с p верши-
нами и q рёбрами, отличном от дерева, нет циклов длины меньше k 
(k ≥ 3), то ( )2 2k

kq p−≤ − . 
Доказательство. Так как по условию qi ≥ k, то из леммы получаем 

2q ≥ kr и 2q
kr ≤ . Из формулы Эйлера r = 2 – p + q. Отсюда 22 q

kp q− + ≤ . 
Далее (k – 2)q ≤ k(p – 2) и ( )2 2k

kq p−≤ − . Теорема доказана. 
Следствие. В любом связном планарном графе G = (V, E) без пе-

тель и кратных рёбер с p ≥ 3 вершинами и q рёбрами справедливо нера-
венство: q ≤ 3( p – 2). 

Определение 1. Подмножество V1 ⊆ V вершин графа G = (V, E) 
называется независимым, если никакие две вершины из V1 не соединя-
ются ребром. 
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Определение 2. Пусть есть некоторое множество C={C1,C2,…,Cm} 
— множество цветов. Тогда раскраской графа G = (V, E) (вершинной) 
называется любое отображение φ: V → C. Раскраска называется пра-
вильной, если для любого цвета вершины этого цвета образуют незави-
симое множество. 

Лемма 2. В планарном графе без петель и кратных рёбер суще-
ствует вершина v: 

deg v ≤ 5. 

Доказательство. Пусть G — планарный граф с p вершинами и q 
рёбрами. Пусть в G нет вершин степени 0 и 1. Тогда q ≤ 3(p – 2) < 3p. 
Пусть dmin — минимальная степень вершин в G. Тогда получаем  

min
1

6 2 deg
p

i
i

p q v pd
=

> = ≥∑ . 

Отсюда dmin < 6, то есть dmin ≤ 5. Лемма доказана. 
Теорема 10. Вершины любого планарного графа можно правиль-

но раскрасить в не более чем 5 цветов. 
Доказательство. Проведём индукцию по числу вершин p. 
1) Базис индукции: p = 1 — очевидно. 
2) Пусть для p < p0 утверждение справедливо и пусть G = (V, E) — 

планарный граф с |V| = p0. Согласно лемме 2 в G есть вершина v степе-
ни не более 5. Рассмотрим укладку на плоскости графа G без пересече-
ния рёбер. Удалим из G вершину v и все инцидентные ей рёбра. Полу-
чим планарный граф G1 с числом вершин p0 – 1. По предположению 
индукции его вершины можно правильно раскрасить в 5 цветов C1, C2, 
C3, C4, C5. Пусть в G вершина v смежна с v1, v2, …, vk, где k ≤ 5. Воз-
можны два случая: 

a) Среди цветов вершин v1, v2, …, vk в G нет цвета Ci (1 ≤ i ≤ 5). 
Тогда вершине v припишем цвет Ci и получим правильную 
раскраску графа G в 5 цветов. 

b) Степень вершины v равна 5 и среди вершин v1, v2, …, v5 в 
G1 есть все 5 цветов. Без ограничения общности будем 
считать, что в укладке графа G рёбра (v, v1), (v, v2), (v, v3), 
(v, v4), (v, v5) выходят из v в порядке по часовой стрелке и 
что C (vi) = Ci, i = 1, …, 5. Пусть A — множество всех вер-
шин в G1, до которых можно дойти из v1 по рёбрам графа 
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G1, используя только вершины цветов C1 и C3. Возможны 
два варианта: 
i) v3∉A. Тогда в A поменяем цвета C1 → C3, C3 → C1. Так 

как вершины из A не смежны с другими вершинами 
цветов C1 и C3, то останется правильная раскраска и 
среди v1, v2, v3, v4, v5 не будет цвета C1. Тогда вершине 
v припишем цвет C1. 

ii) v3∈A. Это значит, что в A есть цепь из v1 в v3, все вер-
шины которой имеют цвета C1 и C3. Эта цепь вместе с 
рёбрами (v3, v) и (v, v1) образует цикл в G, причём вер-
шины v2 и v4 лежат по разные стороны от этого цикла. 
Это значит, что из v2 нельзя пройти в v4 в графе A 
только по вершинам цветов C2 и C4. Пусть B — мно-
жество всех вершин в G, до которых можно дойти из 
v2 по рёбрам графа G, используя только вершины цве-
тов C2 и C4. Тогда v4∉B и далее поступаем как в i). 

В любом случае вершины графа G можно правильно раскрасить в 
не более чем 5 цветов, и теорема доказана. 
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Глава III. Основы теории 
управляющих систем 

§22. Схемы из функциональных элементов. Реализация 
функций алгебры логики схемами 

Определение 1. Вершины орграфа, в которые не входит ни одной 
дуги, называются истоками. 

Определение 2. Орграф называется ациклическим, если в нем нет 
ориентированных циклов. 

Определение 3. В ациклическом орграфе глубиной вершины v 
называется максимальное число дуг в ориентированном пути из какого-
нибудь истока в вершину v. 

Если в ациклическом орграфе есть дуга (v1, v2), то глубина v2 
больше глубины v1. 

Определение 4. Орграф называется упорядоченным, если для 
каждой вершины vi, в которую входит ki дуг, задан порядок 1 2, , ,

ike e e  
этих дуг. 

Определение 5. Систему Б = {g1, g2, …, gm}, где все gi — функции 
алгебры логики, будем называть базисом функциональных элементов. 

Определение 6. Схемой из функциональных элементов в базисе Б 
называется ациклический упорядоченный орграф, в котором: 

1) каждому истоку приписана некоторая переменная, причем раз-
ным истокам приписаны разные переменные (истоки при этом называ-
ются входами схемы, а приписанные им переменные — входными пе-
ременными); 

2) каждой вершине, в которую входят k ≥ 1 дуг, приписана функ-
ция из базиса Б, зависящая от k переменных (вершина с приписанной 
функцией при этом называется функциональным элементом); 

3) некоторые вершины выделены как выходы (истоки одновре-
менно могут являться выходами). 

Индукцией по глубине q вершины v определяется функция fv, реа-
лизуемая в данной вершине. Если q = 0, то есть v — исток, и v приписа-
на переменная xi, то fv ≡ xi. Пусть реализуемые функции уже определе-
ны для всех вершин глубины меньшей, чем q0, и глубина v равна q0. 
Пусть в v входят дуги e1, e2, …, ek из вершин v1, v2, …, vk и в них реали-
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зуются функции f1, f2, …, fk. Пусть вершине v приписана функция 
g (x1, …, xk). Тогда в v реализуется функция fv = g (f1, f2, …, fk). 

Определение 7. Будем говорить, что схема реализует систему 
функций, реализуемых в ее выходах. 

Определение 8. Сложностью схемы из функциональных элемен-
тов называется число функциональных элементов в схеме. 

В дальнейшем по умолчанию будем подразумевать под базисом 
функциональных элементов систему { }0 ,&,Б = ∨ . Так как все эти 
функции симметричны относительно своих переменных, то дуги, вхо-
дящие в каждую вершину, можно не упорядочивать.  

Пример. Полусумматор. Пусть v и v1 — выходы на рисунке, 
( )&vf xy x y x y= ∨ = ⊕ ; 

1vf xy= . Сложность (число элементов) полу-
сумматора равна 4. 

 x y 

& xy ∨ x∨y 
_ 

xy  
& 

v1 v2 

v 
Полусумматор Σ′ 

 
В дальнейшем при построении схем ячейку полусумматора будем 

обозначать просто 
 

Σ′ 

x y 

⊕ & 
Ячейка полусумматора Σ′ 
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Пусть есть 2 n-разрядных числа, и требуется найти их сумму (в 
дальнейших обозначениях xi, yi — разряды чисел, а qi — единицы пере-
носа). 

nn

nn

nn

n

zzzzz
yyyy
xxxx

qqqq

1210

121

121

1210

−

−

−

−

+








 

При i = 1, 2, …, n – 1 задача решается системой функций 

( )1

,
m , , .

i i i i

i i i i i i i i i i

z x y q
q x y q x y y q q x−

= ⊕ ⊕
 = = ∨ ∨

 

Таким образом, ячейку сумматора можно построить следующим обра-
зом: 

 

Σ′ 

· · 
v′′ 

⊕ 

q y x 

∨ 

Ячейка сумматора Σ1 

Σ′ 

⊕ 

v′ 

 
где fv′′= (x ⊕ y) ⊕ q,  fv′ = xy ∨ (x ⊕ y) · q = xy ∨ (x ∨ y) · q = m (x, y, q). 
Ячейку сумматора будем обозначать Σ1 и в дальнейшем в схемах под-
ставлять вместо ячейки сумматора символ Σ1 с тремя входами (x, y, z) и 
двумя выходами (z, q′). 
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Σ1 

x y q 

z q′ 
Ячейка сумматора Σ1 

 
Заметим, что сложность схемы, реализующей ячейку сумматора равна 
L (Σ1) = 9. Очевидно, zn = xn ⊕ yn, qn – 1 = xnyn, z0 = q0. 

§23. Сумматор. Верхняя оценка сложности сумматора. 
Вычитатель 

Для набора ( )1 2 nα α α α=   будем обозначать ( )1 2 2nα α α α=  . 
Определение 1. Сумматором Sn порядка n называется схема с 2n 

входами x1, x2, …, xn, y1, y2, …, yn и n + 1 выходом z0, z1, z2, …, zn такая, 
что ( ) yxyxSz n

~~~,~~ +== . 
Теорема 1. Существует схемный сумматор порядка n в базисе {∨, 

&, } с числом элементов 9n – 5. 
Доказательство. Построим искомый схемный сумматор. Для это-

го возьмём одну ячейку полусумматора, содержащую четыре элемента, 
и n – 1 ячейку сумматора, каждая из которых содержит девять элемен-
тов. Построим из этих частей сумматор. 
 

Σ′ 

xn yn 

zn 

Σ1 

xn – 1 yn – 1 

zn – 1 

Сумматор Sn 

Σ1 

xn – 2 yn – 2 

zn – 2 

Σ1 

x1 y1 

z1 z0 

… 

 

Вычислим сложность построенной схемы: L (Sn) = 9L (Σ1) + L (Σ′) = 
= 9(n – 1) + 4 = 9n – 5. Теорема доказана. 
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Определение 2. Вычитателем Wn порядка n называется схема с 
2n входами x1, x2, …, xn, y1, y2, …, yn и n выходами z1, z2, …, zn такая, что 
при yx ~~ ≥  

( ) yxyxWz ~~~,~~ −== . 

Теорема 2. Существует схемный вычитатель порядка n в базисе 
{∨, &, } с числом элементов 11n – 5. 

Доказательство. Заметим предварительно, что 

( )1 2 2 1n
nα α α α α= = − −  . 

Действительно, 

( )
( )
( )

1 2 2

1 2 2

2
1 1 1 2 1

n

n
n

α α α
α α α+

= −







. 

Тогда вычитатель реализуется схемой 

 

Sn 

– 

x1 y1 yn … 

z1 
Вычитатель Wn 

– 

xn … 

– … – 

z0 zn 

 
( ) ( )( )yxyxyxW nn

n
~~1212~~~,~ +−−−−=−=  

и его можно построить, используя 2n отрицаний и 1 сумматор порядка 
n. При этом L (Wn) = 2n + L (Sn) = 2n + (9n – 5) = 11n – 5. Так как x y≥  , 

то ( )2 1 2 1n nx y− − + ≤ −  , и выход вычитателя определен. Теорема до-
казана. 
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§24. Метод Карацубы построения схемы для умножения, 
верхняя оценка её сложности 

Определение 1. Умножителем Mn порядка n называется схема с 
2n входами x1, x2, …, xn, y1, y2, …, yn и 2n выходами z1, …, z2n такая, что 

( ),nz M x y x y= = ⋅    . При этом 

n
nn

nn

yx
y
x 22~~

212~0
212~0

<⋅⇒




<−≤≤
<−≤≤ . 

Определение 2. Через M (n) обозначим наименьшую сложность 
умножителя порядка n в базисе {∨, &, }. 

Утверждение. Существует схема из функциональных элементов 
для умножения n-разрядного числа X на 1-разрядное число y с числом 
элементов n. 

Доказательство. Действительно, если X = |(x1, x2, …, xn)| и Xy = 
= Z = |(z1, z2, …, zn)|, то zi = xiy для всех i = 1, 2, …, n. Следовательно, для 
реализации такой схемы понадобится ровно n элементов, реализующих 
конъюнкцию. Утверждение доказано. 

При умножении двух n-разрядных чисел X и Y «в столбик» можно 
n раз умножить X на 1-разрядное число (всего n2 конъюнкций) и затем n 
– 1 раз сложить числа длиной не более 2n. Для реализации такой схемы 
необходим также n – 1 сумматор порядка 2n. Согласно теореме 1, 
сложность сумматора порядка 2n равна L (S2n) = 9 · 2n – 5 = 18n – 5, и 
сложность подобного умножителя составит n2 + (n – 1) · (18n – 5) = 
= 19n2 – 23n + 5. Такой алгоритм (схема) имеет сложность по порядку 
n2. Следующая теорема показывает, что такой алгоритм умножения «в 
столбик» не оптимален по порядку. 

Лемма 1. Существует такая константа C1 > 0, что 

M (n + 1) ≤ M (n) + C1 n 

для всех n. 
Доказательство. Пусть требуется перемножить два (n + 1)-раз-

рядных числа ( )0 1 nx x x x=   и ( )0 1 ny y y y=  . Тогда 



 46 

( )

0 1 0 1

2
0 0 0 0

2 2

2 2 .

n n
n n

X Y

n n

xy x x x y y y

x y x Y y X X Y

  
  = ⋅ + ⋅ + =
  
  

= ⋅ + ⋅ + ⋅ ⋅ + ⋅

  
   

Поэтому для вычисления xy  достаточно использовать умножитель Mn 
со сложностью M (n) для вычисления XY, 2n элементов конъюнкции 
для вычисления x0Y и y0X, 1 элемент конъюнкции для вычисления x0y0 и 
3 сумматора порядка не более 2n + 2, так как 2 22 nxy +< . Отметим, что 
числа x0y0, x0Y и y0X надо подавать на сумматоры со сдвигом, одновре-
менно подавая на младшие разряды 0. При этом 0 можно предвари-
тельно получить подсхемой с 2 элементами, реализующей 0 0 0x x = . Так 
как сложность каждого сумматора можно сделать не более 9(2n + 2), а 
сложность Mn равна M (n), то сложность полученной схемы будет не 
больше, чем M (n) + C1n для некоторой константы C1. Лемма доказана. 

Лемма 2 (основная) [Карацуба А. А.]. Существует константа C2 
такая, что 

M (2n) ≤ 3M (n) + C2n 

для всех n. 
Доказательство. Пусть нужно перемножить два 2n-разрядных 

числа x  и y . Разобьём их на части, содержащие по n разрядов: 

1 2

1 2 1 2n n n

X X

x x x x x x+

 
 =
 
 

  


, 
1 2

1 2 1 2n n n

Y Y

y y y y y y+

 
 =
 
 

  


. 

Тогда x  = X1·2n + X2, y = Y1·2n + Y2 и 

yx~~  = X1Y1 · 22n + (X1Y2 + X2Y1) · 2n + X2Y2 = 
= X1Y1 · 22n + [(X1 + X2)(Y1 + Y2) – X1Y1 – X2Y2] · 2n + X2Y2. 

Так как X1Y2 + X2Y1 ≥ 0, то при вычитании в квадратной скобке не воз-
никнет отрицательных чисел. Таким образом, схему для умножения 

yx~~  можно построить, используя два умножителя Mn с числом элемен-
тов M (n) в каждом для вычисления X1Y1 и X2Y2, умножитель Mn+1 с чис-
лом элементов M (n + 1) для вычисления (X1 + X2)(Y1 + Y2), 4 сумматора 
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порядка не более 4n (так как 42 nxy < ) и два вычитателя порядка 2n + 2. 
В некоторых сумматорах опять на младшие разряды надо подавать 0, 
который реализуем подсхемой с 2 элементами: 0 xx= , где x — любая 
входная переменная. Для построения схемы M2n с учётом леммы 1 по-
лучим для некоторых констант C и C2: 

M (2n) ≤ 2 M (n) + M (n + 1) + Cn ≤ 3 M (n) + C1n + Cn = 3 M (n) + C2n. 

Лемма доказана. 
Лемма 3. Существует такая константа C3 > 0, что для любого 

натурального k верно 

M (2k) ≤ C33k. 

Доказательство. Положим ( ) ( )
k

kMkf
3

2= . Тогда из леммы 2 имеем 

( ) ( )1 1
2

1

2 2 2
3 3 3 3

k k k

k k

M M C− −

−

 ≤ +  
 

 

и 

( ) ( ) ( )

( )

1 2 1
2 2 2

2 1
2

3

2 2 21 2
3 3 3 3 3 3

2 2 21
3 3 3 3

k k k

k

C C Cf k f k f k

Cf C

− − −

−

     ≤ − + ≤ − + + ≤     
     

    ≤ + + + + ≤    
     



 

 

для некоторой константы C3, поскольку сумма в квадратных скобках не 
превосходит сумму 2 бесконечно убывающей геометрической прогрес-

сии с первым членом 2
3  и знаменателем 2

3 . Таким образом, ( )2
33

k

k

M
C≤  и 

M (2k) ≤ C3 3k. Лемма доказана. 

Теорема 3. Существует схемный умножитель в базисе {∨, &, } с 
числом элементов 

( )2log 3O n . 

Доказательство. Пусть n — любое натуральное число и n>1. То-
гда существует натуральное k такое, что 2k–1 < n ≤ 2k. Для умножения n-
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разрядных чисел будем использовать схему 
2kM  с числом элементов M 

(2k), подавая на старшие 2k – n разрядов обоих сомножителей 0, предва-
рительно реализованный подсхемой из 2 элементов. Тогда имеем, исхо-
дя из леммы 3 

( ) ( )
( ) 2 2 2

1
3 3

1 log 3 log 3 log 3
3 3

2 2 3 2 3 3 2

3 2 2 3 2

k k k

k

M n M C C

C C n Cn

−

−

≤ + ≤ + = + =

= + < + ≤
 

для некоторой константы C. Теорема доказана. 
Замечание. Существует практически применимый метод Шён-

хаге-Штрассена умножения с оценкой сложности O (n log n · log log n). 

§25. Дешифратор. Асимптотика сложности дешифратора. 
Верхняя оценка сложности реализации произвольной 
функции алгебры логики 

Определение. Дешифратором Qn порядка n называется схема из 
функциональных элементов с n входами x1, x2, …, xn и 2n выходами 

0 1 2 1
, , , nz z z

−
  такая, что если |x1x2…xn| = i, то zi = 1 и zj = 0 при i ≠ j: 

( ) 1
1

1

1, ,
, ,

0, .
n

i n
n

x x i
z x x

x x i
 ==  ≠





 

Заметим, что если i = (i1, i2, …, in)2, то ( ) 1 2
1 1 2, , nii i

i n nz x x x x x=  . 
Лемма 4. Существует дешифратор Qn с числом элементов, не пре-

восходящим n2n + 1. 
Доказательство. Для реализации каждой zi достаточно взять ров-

но n–1 конъюнкций и не более n отрицаний, то есть всего менее, чем 2n 
функциональных элементов. Всего различных конъюнкций ровно 2n, и 
сложность дешифратора не превосходит n2n + 1. Лемма доказана. 

Теорема 4. Сложность минимального схемного дешифратора по-
рядка n не меньше, чем 2n и асимптотически не больше, чем 

( )22 2
nn O n+ ⋅ . 

Доказательство. 1) Поскольку у дешифратора Qn ровно 2n выхо-
дов, на которых реализуются различные функции, не равные входным 
переменным, сложность минимального дешифратора не меньше, чем 2n. 
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kQ′  knQ −′′  

x1 xk xk + 1 xn … … 

& 

y0 y1 12 −ky  12 −−′ kny  y′0 

Qn [1] 

… Q′[j] Q′′[l] 

Qn [i] 

… y′1 … … 

& 

 
2) Докажем существование дешифратора со сложностью 

( )22 2
nn O n+ ⋅ . Разобьём набор входных переменных x = (x1, …, xn) на 

поднаборы x′ = (x1, …, xk) и x′′ = (xk + 1, …, xn), где k — некоторый пара-
метр и 1 ≤ k ≤ n – 1. Пусть Q′ и Q′′ —функциональные дешифраторы 
порядка k и n – k от базовых переменных x′ и x′′, а Σ′ и Σ′′ — соответ-
ствующие им схемные дешифраторы, построенные по лемме. Легко 
видеть, что любую конъюнкцию Qn [i], 1 ≤ i ≤ 2n, можно представить в 
виде Qn [i] = Q ′[j]·Q′′ [l], где i = 2n – k(j – 1) + l и 1 ≤ j ≤ 2k, 1 ≤ l ≤ 2n – k. 
Дешифратор Σ порядка n от базовых переменных x содержит дешифра-
торы Σ′ и Σ′′ в качестве подсхем и реализует каждую функцию алгебры 
логики Qn [i], 1 ≤ i ≤ 2n, с помощью одного функционального элемента 
&, входы которого присоединены к выходам Σ′ и Σ′′ в соответствии с 
формулой Qn [i] = Q′ [j]·Q′′ [l]. Из построения Σ следует, что L (Σ) = 2n + 
L (Σ′) + L (Σ′′) ≤ 2n + k·2k + 1 + (n – k)2n – k + 1, и поэтому при 2

nk =     полу-

чим: ( ) ( )22 2
nnL O nΣ ≤ + ⋅ . Теорема доказана. 

Следствие. Для любой функции алгебры логики f(x1,…,xn) суще-
ствует реализация её схемой из функциональных элементов в базисе 
{∨,&, } со сложностью, не превосходящей ( )22 2 2

nn O n⋅ + ⋅ . 

Доказательство. Если f ≡ 0, то реализуем 1 1f x x= ⋅ . Если f ≠ 0, то 

( )
( ) ( )

1

1
1 1, , : 1
, , n

n
n nf

f x x x xσσ

σ σ σ =
= ∨


  , и ( ) ( )22 1 2 2 2

nn n
nL L Q O n≤ + − ≤ ⋅ + ⋅ . 

Следствие доказано. 
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§26. Мультиплексор. Верхняя оценка сложности мультиплек-
сора. Метод Шеннона 

Определение 1. Мультиплексором µn порядка n называется схема из 
функциональных элементов с n + 2n входами 1

адресные входы

, nx x


, 0 1 2 1

информационные входы

, , , ny y y
−




 и 

1 выходом z такая, что если на входы x1, …, xn поступает набор (α1, …, αn), 
то ( )1 2, , n

z y α α=


. 

Теорема 5. Существует мультиплексор µn порядка n с числом 
элементов 

( ) ( )23 2 2
nn

nL O nµ ≤ ⋅ + ⋅ . 

Доказательство. Заметим, что задачу решает функция 

( ) ( )
1 2

1 21
1 2, ,

n

nn
nz x x x yαα α

α αα α
= ∨ ⋅ ⋅


 . 

Для её вычисления достаточно использовать один дешифратор, 2n 
конъюнкций и 2n – 1 дизъюнкций и 

( ) ( ) ( )22 2 1 3 2 2
nn n n

n nL L Q O nµ ≤ + + − ≤ ⋅ + . 

Теорема доказана. 
 

Qn 

x1 xn … y0 y1 … 12 −ny  

& 2n 

 

& & 

∨ 

∨ 

∨ 

2n – 1 

 
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Определение 2. Сложностью L (S) схемы S называется число 
элементов в ней. 

Определение 3. Сложностью функции алгебры логики f (x1, …, xn) 
называется ( ) ( )

 реализует 
min

S f
L f L S= . 

Определение 4. Функцией Шеннона L(n) для схемы из функцио-
нальных элементов называется ( ) ( )

1 от , ,
max

nf x x
L n L f=


. 

Обозначения: g (n) ≲ h (n) ⇔ g (n) ≤ h (n)·(1 +o(1)); g (n) ≳ h (n) ⇔ 
⇔ g (n) ≥ h (n)·(1 +o(1)). 

Определение 5. Универсальным многополюсником Un порядка n 
называется схема из функциональных элементов с n входами и 22

n

 вы-
ходами, на которых реализуются все 22

n

 функций от x1, …, xn. 
Теорема 6. Минимальная сложность универсального многопо-

люсника порядка n равна 22
n

n− . 
Доказательство. 1) Очевидно, что ( ) 22

n

nL U n≥ − , так как всего 
функций алгебры логики от n переменных, отличных от входных пере-
менных, ровно 22

n

n− . 
2) Докажем существование универсального многополюсника с 

числом элементов 22
n

n− . Для этого построим какую-нибудь схему из 
функциональных элементов, реализующую все функции алгебры логи-
ки. Затем оставим из каждой группы эквивалентных вершин (в которых 
реализуются одинаковые функции) лишь одну, наиболее близкую к 
входам, подсоединив выходы удалённых к выходу оставшейся. В ре-
зультате получим, что в каждой вершине реализуется уникальная 
функция алгебры логики. Но всего функций, отличных от входных пе-
ременных — 22

n

n− . Следовательно, и вершин — 22
n

n− . Теорема до-
казана. 

Теорема 7. ( )L n ≲ 16 2n
n⋅ ⋅ . 

Доказательство. Рассмотрим произвольную функцию f (x1, …, xn). 
Выберем некоторое натуральное k (1 ≤ k ≤ n) и рассмотрим разложение 
взятой функции по первым k переменным: 

( )
( )

( )1 2

1
1 1 2 1 1, ,
, , , , , , ,k

k
n k k k nf x x x x x f x xσσ σ

σ σ
σ σ += ∨ ⋅ ⋅


    . 
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Построим схему из функциональных элементов из универсального 
многополюсника Un–k порядка n – k от базовых переменных xk + 1, …, xn 
и мультиплексора µn порядка n с адресными переменными x1, …, xk, на 
информационные входы которого подаются те выходы Un – k, на кото-
рых реализуются функции ( )1 1, , , , ,k k nf x xσ σ +  . Мультиплексор 
можно построить так, что его сложность не превзойдёт 

( )23 2 2
nk O k⋅ + ⋅ , а универсальный многополюсник так, что его слож-

ность будет не больше, чем 22
n k−

. Итак, 

( ) ( ) ( ) ( )2 23 2 2 2
n n kk

k n kL n L L U O kµ
−

−= + ≤ ⋅ + ⋅ + . 

Полагая ( )2 2log 2logk n n n=  − −    (при этом k ≤ n – log2(n – 2log2n) + 1, 
а n – k ≤ log2(n – 2log2n)), получим, что 

( )2 2

2

log 2log 1 1

2

2log2
2

1 22 2 2 ~ 2 ,
2log

2 22 2
n k

n
n n nk n

n n
n n

n n n

o
n n

−

− − + +

−

≤ = ⋅ ⋅
−

 
≤ = =  

 

 

и в итоге 

( )L S ≲ 22 2 23 2 2 ~ 6
nn n n

O n o
n n n

    
⋅ ⋅ + + ⋅    

    
. 

Теорема доказана. 
Определение 6. Пусть γ (L, n) — число всех попарно неизоморфных 

схем из функциональных элементов с входными переменными x1, …, xn и 
выходной переменной z1, сложность которых не превосходит L. 

Лемма 5. В функциональном базисе {&, ∨, } γ (L, n) ≤ (L + n)2L + 4. 
Доказательство. Можно выбрать целые неотрицательные числа 

L1, L2, L3 так, чтобы их сумма не превосходила L, не более, чем (L + 1)3 
способами. Можно взять L1 конъюнкций, L2 дизъюнкций, L3 отрицаний, 
а затем каждый вход каждого из них «присоединить» к выходу некото-
рого другого функционального элемента или к входу схемы не более, 
чем (L + n)2L способами, и пометить в качестве выхода одну из не бо-
лее, чем L + n точек. 

Тогда γ (L, n) ≤ (L + 1)3·(L + n)2L·(L + n) ≤ (L + n)2L + 4. Лемма дока-
зана. 



 53 

Теорема 8. Для функции Шеннона L (n) справедливо ( )L n ≳ 1 2
2

n

n⋅ . 
Доказательство. Так как, по определению, схемами сложности не 

более L (n) реализуются все функции от n переменных, то 
( )( ) 2, 2

n

L n nγ ≥ , но в то же время согласно лемме γ (L, n) ≤ (L + n)2L+4. 

Следовательно, ( )( ) ( ) ( )( ) ( )( )2 4 2
22 2 4 log 2

nL n nL n n L n L n n
+

+ ≥ ⇒ + + ≥ . 

Так как ( )L n ≲ 16 2n
n⋅ ⋅ ,то начиная с некоторого номера n, n + L (n) ≤ 2n 

и ( ) 22 4
n

L n
n

+ ≥ , откуда ( )L n ≳ 1 2
2

n

n
⋅ . Теорема доказана. 

§27. Шифратор. Верхняя оценка сложности шифратора 

Определение. Шифратором Dn порядка n называется схема из 
функциональных элементов с 2n входами 0 1 2 1

, , , nx x x
−

  и n выходами 
y1,y2,…,yn такая, что если на вход поступает набор с одной единицей по 
переменной xi, то на выходе образуется набор (β1, β2, …, βn)2 = i. 

Теорема 9. Существует шифратор Dn порядка n со сложностью, не 
превосходящей 

n·2n – 1. 

Доказательство. Задачу решает система функций 

( ) ( )1 1 11 1 1
, , ,1, , ,, , ,1, , , j j nj j n

jy x
σ σ σ σσ σ σ σ − +− +

= ∨
  

 

(например, 1 3 5 7 2 1nny x x x x x
−

= ∨ ∨ ∨ ∨ ∨ ). Всего в каждой дизъюнкции 
2n – 1 слагаемых, следовательно, необходимо 2n – 1 – 1 дизъюнкторов, всего 
таких функций надо реализовать n, то есть получаем оценку сложности 
шифратора L (Dn) ≤ (2n – 1 – 1) · n < n · 2n – 1. Теорема доказана. 
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Глава IV. Основы теории кодирования 
§28. Алфавитное кодирование. Теорема Маркова о взаимной 

однозначности алфавитного кодирования 
Определение 1. Пусть A = {a1, a2, …, ar} — исходный алфавит, B 

= {b1, b2, …, bm} — кодирующий алфавит и 

A* = ∅ ∪ A ∪ A2 ∪ A3 ∪ … ∪ An ∪ …, 
B* = ∅ ∪ B ∪ B2 ∪ B3 ∪ … ∪ Bn ∪ …. 

Тогда алфавитным кодированием A* → B* назовём отображение 
ϕ : A → B* такое, что ai → Bi. Множество {B1, B2, …, Br} при этом назы-
вается множеством кодовых слов (или просто кодом). При этом 

1 2 1 2
:

s si i i i i ia a a B B Bϕ →  . 

Определение 2. Кодирование A* → B* называется взаимно одно-
значным (декодируемым, разделимым), если для любых слов 1a A∗∈  и 

2a A∗∈  выполняется ( ) ( )1 2 1 2a a a aϕ ϕ≠ ⇒ ≠ . 
Определение 3. Код называется равномерным, если длины всех 

его кодовых слов одинаковы. 
Утверждение 1. Любой равномерный код является взаимно одно-

значным. 
Определение 4. Код называется префиксным, если никакое кодо-

вое слово не является началом другого. 
Утверждение 2. Любое префиксное кодирование является взаим-

но однозначным. 
Определение 5. Код называется постфиксным (суффиксным), ес-

ли никакое кодовое слово не является концом другого. 
Утверждение 3. Любое постфиксное кодирование является вза-

имно однозначным. 
Определение 6. Слово b B∗∈  называется неприводимым, если b  

декодируется неоднозначно, однако, при выбрасывании из b  любого 
связного непустого куска получается слово, которое декодируется не 
более, чем одним способом. 
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Теорема 1 [Марков А. А.]. Пусть ϕ: ai → Bi (i = 1, 2, …, r) — не-
которое кодирование. Пусть W — максимальное число кодовых слов, 
которые «помещаются» подряд внутри кодового слова. Пусть li — дли-

на слова Bi и
1

r

i
i

L l
=

= ∑ . Тогда если кодирование ϕ не взаимно однознач-

но, то существуют два различных слова a' ∈ A*, a'' ∈ A*, 

( ) ( )( )1 2
2

W L rдлина a + − + ′ ≤   , ( ) ( )( )1 2
2

W L rдлина a + − + ′′ ≤    и ϕ (a') = ϕ (a''). 

Доказательство. Пусть ϕ не является взаимно однозначным. То-
гда существует некоторое слово 1b , которое допускает две расшифров-
ки. Если слово 1b  не является неприводимым, то выбрасывая из 1b  
куски несколько раз, получим неприводимое слово b ; иначе, поло-
жим 1b b= . Очевидно, это всегда можно сделать. Рассмотрим любые 
две декодировки слова b . Разрежем слово b  в концевых точках кодо-
вых слов каждого из разбиений. Слова нового разбиения разделим на 
два класса: к I классу отнесём слова, являющиеся элементарными ко-
дами, а ко II классу — все остальные слова (то есть слова, являющиеся 
началами кодовых слов одного разбиения и концами слов второго раз-
биения). 
 

 
Лемма. Если b  — неприводимое слово, то все слова β1, β2, …, βm 

II класса различны. 
Доказательство. Пусть β' = β''. Тогда, очевидно, слово b  не бу-

дет неприводимым, поскольку при выкидывании отрезка между β' и β'', 
вместе с любым одним из этих слов, получим снова две различные 
расшифровки этого слова (проверьте). Лемма доказана. 

Таким образом, все β1, β2, …, βm разные. Тогда число слов второго 
класса не превосходит числа непустых начал элементарных кодов, то 
есть не превосходит 

(l1 – 1) + (l2 – 1) + … + (lr – 1) = L – r. 
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Слова из второго класса разбивают слово не более чем на L – r + 1 кус-
ков. Рассмотрим пары соседних кусков. Тогда согласно одному разбие-
нию в одной половинке уложится не более одного кодового слова, а в 
другой — не более W (согласно второму разбиению ситуация симмет-
рична). Всего пар кусков не больше, чем 

1 2
2 2

L r L r− + − +≤   , 

а в каждом из них укладывается слов не более чем W + 1. Отсюда число 
кодовых слов в любом разбиении не превосходит ( )2

2 1L r W− + + , а по-

скольку число целое, то не превосходит и целой части ( )( )1 2
2

W L r+ − + 
  . Тео-

рема доказана. 

§29. Неравенство Макмиллана 

Теорема 2 (неравенство Макмиллана). Пусть задано кодирова-
ние ϕ : ai → Bi (i = 1, 2, …, r) и пусть в кодирующем алфавите B — q 
букв и длина (Bi) = li (i = 1, 2, …, r). Тогда если ϕ взаимно однозначно, 
то 

1

1 1
i

r

l
i q=

≤∑ . 

Доказательство. Положим
1

1
i

r

l
i

x
q=

= ∑ . Тогда для любого натураль-

ного n 

1 2 1 2
1 2 1 21 1 1 1 1 1

1 1 1 1
i i i i i in n

n n

r r r r r r
n

l l l l l l
i i i i i i

x
q q q q + + +

= = = = = =

   
= =       

    
∑ ∑ ∑ ∑∑ ∑ 

  . 

Обозначая max 1
max ii r

l l
≤ ≤

=  и приводя подобные члены, получим, что эта 

сумма равна 
max

1

n l
k
k

k

c
q

⋅

=
∑ . 

Лемма. ck ≤ qk (∀k). 
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Доказательство. За ck обозначено, очевидно, число наборов (i1, 
…, in) (1 ≤ ij ≤ r), для которых

1 2 ni i il l l k+ + + = . Но такой сумме соот-
ветствует слово 

1 2 ni i iB B B  и 

( )1 2 1 2n ni i i i i iдлина B B B l l l k= + + + =  . 

В силу того, что кодирование взаимно однозначно, различным наборам 
соответствуют различные сообщения, а различных сообщений длины k в 
алфавите из q букв не более qk ⇒ ∀k (ck ≤ qk). 

Лемма доказана. 

Согласно лемме 
max max

max max
1 1

1 ,
nl nl

n k n
k

k k

cx nl x nl n
q= =

= ≤ = ⇔ ≤ ∀∑ ∑ . 

Устремляя n к бесконечности, получаем x ≤ 1. Теорема доказана. 

§30. Существование префиксного кода с заданными длинами 
кодовых слов 

Теорема 3. Если |B| = q и натуральные числа l1, l2, …, lr удовле-
творяют неравенству 

1

1 1
i

r

l
i q=

≤∑ , 

то существует префиксный код B1, B2, …, Br (в алфавите B) такой, что 
длина(Bi) = li (i = 1, 2, …, r). 

Доказательство. Пусть 
1

1 1
i

r

l
i q=

≤∑  и для любого k существует ров-

но dk таких i, что li = k, то есть
max

1
1

l
k
k

k

d
q=

≤∑ . Тогда надо построить префикс-

ный код, в котором ровно d1 слов длины 1, d2 слов длины 2, и т. д., 

maxld слов длины lmax. Имеем ∀m (1 ≤ m ≤ lmax)
1

1
m

k
k

k

d
q=

≤∑ , или, что то же 

самое, 

( )1 211 2
1 2 12 1 1 m m mm m

m mm m

d dd d d q d q d q d q
q q q q

− −−
−−+ + + + ≤ ⇔ ≤ − + + +  . 
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Рассмотрим это неравенство для m = 1: d1 ≤ q. Для слов длины 1 всего 
предоставляется возможностей в алфавите мощности q — ровно q ва-
риантов. После выбора d1 слов длины 1 рассмотрим неравенство для m 
= 2: d2 ≤ q2 – d1q. Всего слов длины 2 — q2, однако все они могут начи-
наться лишь с тех букв, которые не были выбраны в качестве слов дли-
ны 1, следовательно, остаётся ровно q2 – d1q возможностей выбрать 
слова длины 2, что удовлетворяет условию d2 ≤ q2 – d1q. Пусть уже вы-
браны d1 слов длины 1, d2 слов длины 2, и т. д., dm – 1 слов длины m – 1. 
Тогда для слов длины m разрешено возможностей не меньше, чем 

qm – dm – 1q – dm – 2q2 – … – d2qm – 2 – d1qm – 1, 

что удовлетворяет условию. Теорема доказана. 
Следствие. Если существует взаимно однозначное кодирование 

со спектром длин слов l1, l2, …, lr в алфавите B, то в B существует пре-
фиксный код с тем же спектром длин слов. 

§31. Оптимальные коды, их свойства. 

Будем рассматривать кодирование A* → {0, 1}*. Пусть известны 
некоторые частоты p1, p2, …, pk появления символов кодируемого алфа-
вита в тексте: 

1 1 1 1

2 2 2 2

k k k k

p a B l
p a B l

p a B l

− → −
− → −

− → −


, 

lj — длина j-го кодового слова, p1 + p2 + … + pk = 1, pj > 0. 
При кодировании текста длины N его длина становится примерно 

равной 

( )
1 1

k k

i i i i
i i

Np l N p l
= =

=∑ ∑ . 

Определение 1. Ценой (стоимостью, избыточностью) кодирова-

ния ϕ называется функция ( )
1

k

i i
i

c p lϕ
=

= ∑ . 
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Определение 2. Взаимно однозначное кодирование ϕ называется 
оптимальным, если на нём достигается ( )

взаимно однозначное
inf с

ϕ
ϕ

−
. 

Утверждение 4. Если существует оптимальный код, то существу-
ет оптимальный префиксный код с тем же спектром длин слов. 

Лемма 1. Если ϕ — оптимальное кодирование и pi > pj, то li ≤ lj. 
Доказательство. Допустим, что pi > pj и li > lj. Рассмотрим коди-

рование ϕ и рассмотрим кодирование ϕ', в котором переставим кодовые 
слова Bi и Bj: 

: i i

j j

a B
a B

ϕ
→

 →
, : i j

j i

a B
a B

ϕ
→

′  →
. 

Тогда 

c (ϕ) – c (ϕ') = (pili + pjlj) – (pilj + pjli) = (pi – pj)(li – lj) > 0 ⇒ c (ϕ') < c (ϕ), 

следовательно, ϕ не является оптимальным — противоречие. 
Лемма доказана. 
Лемма 2. Если ϕ — оптимальное префиксное кодирование и 

max 1
max ii k

l l
≤ ≤

= , длина(Bj) = lmax, Bj = Bj'α, где α ∈ {0, 1}, то в коде ϕ суще-

ствует слово Br такое, что r jB B α′= . 
Доказательство. Допустим, что в ϕ нет слова jB α′ . Тогда заме-

ним в ϕ Bj'α на Bj'. Получим код ϕ', который является префиксным, но 

( ) ( ) ( ) ( ) ( ) ( )j j j j jc c p дл B p дл B p c cϕ ϕ α ϕ ϕ′ ′ ′ ′− = − = ⇒ < , 

следовательно, ϕ не является оптимальным — противоречие. Лемма 
доказана. 

Лемма 3. Если ϕ — оптимальное префиксное кодирование и 
p1 ≥ p2 ≥ … ≥ pk–1 ≥ pk, то можно так переставить слова в коде ϕ, что по-
лучится оптимальное префиксное кодирование ϕ' такое, что слова 1kB −′  
и kB′  в нём будут различаться только в последнем разряде. 

Доказательство. Пусть p1 ≥ p2 ≥ … ≥ pk–1 ≥ pk. По лемме 2 в коде ϕ 
есть слова B′0 и B′1 максимальной длины. Поменяем их местами с Bk–1 
и Bk. Так как pk–1 ≤ pi и pk ≤ pi для 1 ≤ i ≤ k – 2, то цена кодирования не 
увеличится и код останется оптимальным (префиксным). Лемма дока-
зана. 
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Лемма 4. Рассмотрим кодирования 

1 2

1 2

, , ,
:

, , ,
k

k

p p p
B B B

ϕ



 и 1 2 1

1 2 1

, , , , ,
:

, , , , 0, 1
k

k k k

p p p p p
B B B B B

ϕ −

−

′ ′′
′




, 

где p' + p'' = pk. Если один из этих наборов префиксный, то второй так-
же префиксный и 

c(ϕ') = c(ϕ) + pk. 

Доказательство. Первое утверждение легко проверяется. Далее 

c(ϕ') – c(ϕ) = p' · дл(Bk0) + p'' · дл(Bk1) – pk · дл(Bk) = 
= p'(lk + 1) + p''(lk + 1) – pklk = (p' + p'')lk + (p' + p'') – pklk = pk. 

Лемма доказана. 

§32. Теорема редукции 

Теорема 4 (теорема редукции). Пусть заданы 2 набора частот и 2 
набора слов: 

1 2

1 2

, , ,
:

, , ,
k

k

p p p
B B B

ϕ



 и 1 2 1

1 2 1

, , , , ,
:

, , , , 0, 1
k

k k k

p p p p p
B B B B B

ϕ −

−

′ ′′
′




. 

1) Тогда если ϕ′ — оптимальное префиксное кодирование, то и 
ϕ — оптимальное префиксное кодирование. 

2) Если же ϕ — оптимальное префиксное кодирование и p1 ≥ p2 ≥ … 
… ≥ pk–1 ≥ p′ ≥ p″, то ϕ′ — также оптимальное префиксное кодирование. 

Доказательство. 1) Очевидно, из префиксности ϕ′ следует пре-
фиксность ϕ. Допустим, что ϕ не оптимально. Тогда существует пре-
фиксный код ϕ1: c(ϕ1) < c(ϕ) для тех же распределений частот. Пусть 

1 2
1

1 2

, , ,
:

, , ,
k

k

p p p
D D D

ϕ



. 

Рассмотрим новое кодирование  

1 2 1
1

1 2 1

, , , , ,
:

, , , , 0, 1
k

k k k

p p p p p
D D D D D

ϕ −

−

′ ′′
′




. 
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По лемме 4, кодирование ϕ1′ также является префиксным и 

( ) ( )
( ) ( )

( ) ( ){ } ( ) ( ) ( ) ( )( )
1 1

1 1 1

k

k

k k

c c p
c c p

c c c c p c p c

ϕ ϕ
ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

′ = + ⇒ ′ = +
′ ′⇒ < ⇒ = + < + =

. 

Следовательно, ϕ′ не является оптимальным кодированием, что проти-
воречит условию. Остаётся предположить, что ϕ оптимально. 

2) Пусть ϕ — оптимальное префиксное кодирование и p1 ≥ p2 ≥ … 
… ≥ pk–1 ≥ p′ ≥ p′′. Допустим, что ϕ′ не оптимально. Тогда по лемме 3 
для частот p1, p2, …, pk–1, p′, p′′ существует оптимальное префиксное 
кодирование ϕ1′: D1, …, Dk–1, Dk0, Dk1 и c(ϕ1′) < c(ϕ). Тогда для частот 
p1, p2, …, pk рассмотрим кодирование ϕ1: D1, …, Dk–1, Dk. Получим 

c(ϕ1) = c(ϕ1′) – pk < c(ϕ′) – pk = c(ϕ) ⇒ c(ϕ1) < c(ϕ) 

и ϕ не оптимально, что противоречит условию. Теорема доказана. 

§33. Коды с исправлением r ошибок. Оценка функции Mr (n) 

Будем рассматривать равномерные коды в алфавите {0, 1}, длины 
всех слов, равные n, и ошибки типа замещения, то есть изменение раз-
рядов 0 → 1 и 1 → 0. 

Определение 1. Код называется исправляющим r ошибок, если 
при наличии в любом кодовом слове не более r ошибок типа замещения 
можно восстановить исходное кодовое слово. 

Определение 2. Расстоянием Хэмминга между 2 наборами длины 
n называется число разрядов, в которых эти наборы различаются. 

Определение 3. Шаром (сферой) радиуса r с центром в точке 
( )1, , nα α α=   называется множество всех наборов длины n, расстоя-

ние от которых до α  не превосходит r (в точности равно r). 
Определение 4. Кодовым расстоянием называется расстояние по 

Хэммингу 

( )min ,  из кода, 
min ,

i j i j
i jα α α α

ρ ρ α α
≠

=
 

  . 
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Утверждение 1. Код { }1 2, , , mK α α α=     исправляет r ошибок то-
гда и только тогда, когда 

( )min 2 1K rρ ≥ + . 

Доказательство. Заметим, что условие утверждения эквивалент-
но тому, что расстояние между центрами шаров радиуса r (кодовыми 
словами) не меньше, чем 2r + 1, что эквивалентно тому, что эти шары 
не пересекаются. Таким образом, на выходе получится слово, принад-
лежащее единственному однозначно определённому шару (если в слове 
не более r ошибок), что позволяет точно восстановить слово, так как 
известен центр этого шара. Утверждение доказано. 

Определение 5. Код обнаруживает r ошибок, если при наличии в 
нём не более r ошибок типа замещения можно сказать, были ошибки, 
или их не было. 

Утверждение 2. Код { }1 2, , , mK α α α=     обнаруживает r ошибок 
тогда и только тогда, когда 

ρ min (K) ≥ r + 1. 

Доказательство. Условие утверждения эквивалентно тому, что 
ни один из центров шаров (кодовое слово) не содержится в каком-либо 
другом шаре, то есть если произошло не более r ошибок, можно в точ-
ности установить, что полученное на выходе слово не совпадает с цен-
тром одного из шаров. Утверждение доказано. 

Определение 6. Функция Mr (n) есть максимальное число слов 
длины n, образующих код, исправляющий r ошибок. Sr (n) — число точек 
(наборов длины n) в шаре радиуса r. 

Утверждение 3. ( ) 1
1 2r

n n n
S n

r
     

= + + + +     
     

 . 

Доказательство. Точки шара радиуса r — это его центр, множе-

ство наборов, отличающихся от центра в одной координате — 
1
n 

 
 

, 

множество наборов, отличающихся от центра в 2 координатах — 
2
n 

 
 

, 

и т. д. Получаем утверждение. 
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Теорема 5. 
( ) ( ) ( )2

2 2n n

r
r r

M n
S n S n

≤ ≤ . 

Доказательство. Рассмотрим произвольный код { }1 2, , , mK α α α=    , 
исправляющий r ошибок. Из утверждения 1 следует, что шары радиуса 
r с центрами в iα  не пересекаются, следовательно, число всех точек 
всех шаров не превосходит числа точек n-мерного куба и 

( ) ( ) ( ) ( )
2 22

n n
n

r r
r r

m S n m M n
S n S n

⋅ ≤ ⇔ ≤ ⇒ ≤ . 

Теперь будем строить код { }1 2, ,K α α=    , исправляющий r оши-
бок. Выберем произвольно точку 1α . Для выбора точки 2α  запрещено 
S2r(n) точек, так как запрещены все точки одного шара и все точки, рас-
положенные от любой граничной точки на расстояние, не больше, чем 
r, то есть все точки шара радиуса 2r с центром в точке 1α . Пусть уже 
выбраны наборы 1, , kα α  . Для выбора набора 1kα +  запрещено точек не 
больше, чем k·S2r (n), то есть, если k·S2r (n) < 2n, то можно выбрать 1kα + . 
Если тупик наступит после выбора m-го набора, то 

( ) ( ) ( ) ( )2
2 2

2 22
n n

n
r r

r r

m S n m M n
S n S n

⋅ ≥ ⇔ ≥ ⇒ ≥ . 

Теорема доказана. 

§34. Коды Хэмминга. Оценка функции M1 (n). 

Рассмотрим коды, исправляющие одну ошибку типа замещения в 
словах длины n. Выберем натуральное k таким, что 

( ) ( )21
2 2

2

log 1
2 2 1 log 1 log 1

log 1
k k k n

n k n n
k n

− ≤ +
≤ ≤ − ⇔ ⇔ = + =  +      ≥ +

. 

Разобьём номера всех разрядов исходного слова на k классов: 

Di = {m | m = (mk–1mk–2…m0)2, mi = 1}, 1 ≤ m ≤ n. 

так, например, D0 = {1, 3, 5, 7, …}, D1 = {2, 3, 6, 7, …}, D2 = {4, …}. 



 64 

Определение. Кодом Хэмминга порядка n называется множество 
наборов 

( )1 2 2, , , k
n Eα α α α= ∈  , 

удовлетворяющих системе уравнений (суммы по модулю 2): 

0

1

1

0

0

0
k

jj D

jj D

jj D

α

α

α
−

∈

∈

∈

 =


=


 =

∑
∑

∑


. 

Теорема 6. Код Хэмминга порядка n содержит 2n – k наборов, где 
2log 1k n= +    и исправляет одну ошибку. 

Доказательство. Рассмотрим систему уравнений из определения 
кода Хэмминга 

( )
( )

( )1

1 3

2

2

0
0

0k

α α
α

α −

 ⊕ ⊕ =
 ⊕ =


 ⊕ =









. 

Задаём произвольно αj, кроме 11 2 4 2
, , , , kα α α α − . Это можно сделать 2n – k 

способами. Так как 11 2 4 2
, , , , kα α α α −  в скобках не встречаются, то они 

однозначно определяются из системы. 
Пусть передано кодовое слово ( )1 2 nα α α α=  , ошибка произошла 

в d-ом разряде и пусть d = (γk–1γk–2…γ1γ0)2. Пусть на выходе получено 
слово ( )1 2 nβ β β β=  , при этом βi = αi при i ≠ d, βd = αd ⊕ 1. Обозначим 

0

1

1

0

1

1

,

,

,
.

k

j
j D

j
j D

k j
j D

δ β

δ β

δ β
−

∈

∈

−
∈

=

=

=

∑

∑

∑

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Утверждение. (δk–1δk–2…δ1δ0)2 = d. 
Доказательство. Пусть γi = 0 ⇒ d ∉ Di, тогда 

i i

j j
j D j D

β α
∈ ∈

=∑ ∑ , следо-

вательно, δi = 0 и δi = γi. Пусть теперь γi = 1 и d ∈ Di. Тогда 
1 1 1

i i

i i i i i
j D j D

β α δ δ γ
∈ ∈

= ⊕ = ⇒ = ⇒ =∑ ∑ . 

Утверждение доказано. 
Таким образом, по выходному слову можно определить номер иска-

женного разряда и восстановить исходное слово. 
Теорема доказана. 
Замечание. Обычно разряды с номерами 1, 2, 4, 8, …, 2k–1 назы-

вают проверочными (или контрольными), остальные — информацион-
ными. 

Теорема 7. ( )1
2 2
2 1

n n

M n
n n

≤ ≤
+

. 

Доказательство. Имеем 
( ) ( ) ( )2

2 2n n

r
r r

M n
S n S n

≤ ≤  (теорема 5). 

Правое неравенство в теореме 7 следует из того, что S1 (n) = n + 1. Заме-
тим предварительно, что аналогично нельзя получить и левое неравен-
ство, так как 

( ) ( ) 2

2

1
1 1 ~

2 2 2
n n n nS n n n

− 
= + + = + + 

 
. 

По теореме 6 всего различных слов в коде Хэмминга, исправляю-
щем одну ошибку — m = 2n–k. Поскольку 2log 1k n= +   , имеем 

( )2log 1
2 1

2 2log 1 2
2 2

n n
n nk n m M n m

n n
− −≤ + ⇒ ≥ = ⇒ ≥ ≥ . 

Теорема доказана. 
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Глава V. Основы теории конечных 
автоматов 

§35. Понятие ограниченно детерминированных (автоматных) 
функций, их представление диаграммой Мура. 
Единичная задержка 

Пусть даны A = {a1, a2, …, ar} — входной алфавит и B = {b1, b2, …, bm} 
— выходной алфавит. Определим множества A∞ и B∞ как множества все-
возможных последовательностей в алфавитах A и B соответственно. 

Определение 1. Отображение ϕ: A∞ → B∞ называется детермини-
рованной функцией (д.-функцией), если b(t) для любого t = 1, 2, … одно-
значно определяется по a(1), a(2), …, a(t). Обозначать д.-функции бу-

дем так: ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1

2 2 2 2

1 1
:

1 1
a a t b b t
a a t b b t

ϕ
→
→

   

   
, причём, 

если a1 (1) = a2 (1), то b1 (1) = b2 (1); 

если 

( ) ( )
( ) ( )

( ) ( )

1 2

1 2

1 2

1 1
2 2

a a
a a

a t a t

 =
 =


 =


, то b1(t) = b2(t). 

Определение 2. Пусть задана д.-функция ϕ: A∞ → B∞. Рассмотрим 
произвольное слово *

1 2 ka a a a A= ∈ . Определим функцию aϕ  следу-
ющим образом: пусть a(1), a(2), …, a(t)… — произвольная входная по-
следовательность. Рассмотрим 

ϕ (a1a2…aka(1)a(2)…a(t)…) = b1b2…bkb(1)b(2)…b(t)…. 

Тогда положим ( ) ( ) ( )( ) ( ) ( ) ( )1 2 1 2a a a a t b b b tϕ =    . aϕ  при этом 

называется остаточной функцией для ϕ по слову a A∗∈ . 
Определение 3. Детерминированная функция ϕ : A∞→B∞ называ-

ется ограниченно детерминированной, если у неё имеется лишь конеч-
ное число различных остаточных функций. 
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Определение 4. Автоматом (инициальным) называется любая 
шестёрка (A, B, Q, G, F, q0), где A, B, Q — конечные алфавиты (A назы-
вают входным алфавитом, B — выходным алфавитом, Q — множе-
ством состояний), G: A × Q → Q, F: A × Q → B, q0 ∈ Q — начальное со-
стояние. 

Входом автомата служит последовательность a(1)a(2)a(3)…a(t)…∈ A* 
(конечная или бесконечная), выходом автомата служит последователь-
ность z(t), при этом автомат задаётся системой канонических уравнений 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) 0

, 1 ,

, 1 ,

0 .

z t F x t q t

q t G x t q t

q q

 = −
 = −
 =

 

Определение 5. Отображение ϕ: A∞ → B∞ называется автоматной 
функцией, если существует автомат, который реализует это отображе-
ние. 

Утверждение. Функция является автоматной тогда и только то-
гда, когда она является ограниченно детерминированной. 

Пример. Пусть A = B = Q = {0, 1} и система канонических урав-
нений выглядит следующим образом: 

( ) ( )
( ) ( )

( )

1 ,
,

0 0.

z t q t
q t x t

q

 = −
 =
 =

 

Такой автомат, очевидно, осуществляет отображение 
a(1)a(2)…→0a(1)a(2)… и называется единичной задержкой. 

x (t)  a (1) a (2) a (3) 
q (t) 0 a (1) a (2) a (3) 
z (t)  0 a(1) a(2) 

Определение 6. Диаграммой Мура для автомата называется ори-
ентированный граф с множеством вершин Q, у которого каждой паре 
(a, q) сопоставляется дуга, идущая из вершины q в вершину, соответ-
ствующую G (a, q). Этой дуге приписывается пометка (a, F (a, q)). Осо-
бым образом помечена вершина, соответствующая начальному состоя-
нию. Диаграмма Мура однозначно задаёт автомат. 
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§36. Схемы из функциональных элементов и элементов за-
держки. Автоматность осуществляемых ими 
отображений 

Определение. Схемой из функциональных элементов и элемента 
задержки называется схема из функциональных элементов в функцио-
нальном базисе, к которому добавлен элемент, реализующий функцию 
единичной задержки. В схеме из функциональных элементов и элемен-
тов задержки допускаются ориентированные циклы, но любой ориен-
тированный цикл должен проходить хотя бы через одну задержку. 

Пусть A = B = {0, 1}, E2
n — множество всех булевых векторов 

длины n. 
Теорема 1. Схема из функциональных элементов и задержки 

осуществляет автоматное отображение. 
Доказательство. 1) Пусть в схеме имеется r элементов задержки. 

Пусть i-я задержка Ri приписана вершине vi, в которую идёт дуга из 
вершины wi. Для всех i = 1, …, r удалим из СФЭЗ дуги (wi, vi). По опре-
делению СФЭЗ в полученном после этого графе не будет ориентиро-
ванных циклов и он, тем самым будет представлять собой СФЭ. Вхо-
дами этой СФЭ будут все входы исходной схемы, а также все вершины 
vi, i = 1, …, r (заметим, что все они различны и отличны от входов ис-
ходной схемы). Выходами полученной СФЭ объявим все выходы ис-
ходной схемы и вершины wi, i = 1, …, r. Пусть в исходной схеме выхо-
дам приписаны переменные z1, …, zm, входам — переменные x1, …, xn. 
Вершинам vi припишем переменные q'1, …, q'r, а вершинам wi — пере-
менные q1, …, qr. В соответствии с определением функционирования 
СФЭ, для некоторых функций алгебры логики fi, gj справедливо: 

( )
( )

1 1

1 1

, , , , , , 1, , ,
, , , , , , 1, , .

i i n r

j j n r

z f x x q q i m
q g x x q q j r

′ ′ = =
 ′ ′= =

  

  
  (1) 

Естественно считать, что равенства (1) выполняются в каждый момент 
времени t = 1, 2, 3,…, то есть 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1 1

1 1

, , , , , , 1, ,

, , , , , , 1, , .
i i n r

j j n r

z t f x t x t q t q t i m

q t g x t x t q t q t j r

 ′ ′= =
 ′ ′= =

  

  
 (2) 
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Так как, в соответствии с каноническими уравнениями элемента еди-
ничной задержки его выход в момент t совпадает с его входом в момент 
t – 1, то естественно считать, что в исходной схеме q'i (t) = qi (t – 1) при 
t = 1, 2, … для всех i = 1, …, r, где qi (0) = 0. Тогда равенства (2) прини-
мают вид (где i = 1, …, m и j = 1, …, r): 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( )

1 1

1 1

, , , 1 , , 1 ,

, , , 1 , , 1 ,

0 0.

i i n r

j j n r

j

z t f x t x t q t q t

q t g x t x t q t q t

q

 = − −
 = − −
 =

 

   (3) 

Полученные равенства определяют функционирование СФЭЗ и назы-
ваются её каноническими уравнениями. 

2) Пусть отображение ψ, осуществляемое схемой Σ, задаётся ка-
ноническими уравнениями (3). Введём переменные X = (x1, …, xn), 
Q = (q1, …, qr), Z = (z1, …, zm), принимающие значения, соответственно 
в 2

nE , 2
rE , 2

mE . Положим q0 = (0, …, 0). Тогда (3) можно переписать в 
виде 

( ) ( ) ( )( )
( ) ( ) ( )( )

( ) 0

, 1 ,

, 1 ,

0 ,

Z t F X t Q t

Q t G X t Q t

Q q

 = −
 = −
 =

 

где функции F, G не зависят явно от t. Отсюда видно, что отображение, 
осуществляемое схемой, совпадает с отображением, задаваемым авто-
матом ( )2 2 2 0, , , , ,n m rE E E G F q , то есть является автоматной функцией. 
Теорема доказана. 

§37. Моделирование автоматной функции схемой из 
функциональных элементов и элементов задержки 

Определение. Пусть автоматная функция ϕ отображает последо-
вательности в конечном алфавите A в последовательности в конечном 
алфавите B. Пусть СФЭЗ Σ осуществляет преобразование ψ последова-
тельностей с элементами из 2

nE  в последовательности с элементами из 

2
mE . Будем говорить, что Σ моделирует ϕ, если существуют отображе-
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ния (кодирования) 1 2: nK A E→  и 2 2: mK B E→ , сопоставляющие разным 
элементам разные элементы и обладающие свойством: для любой по-
следовательности P = a(1)a(2)…a(t) в алфавите A, если 

ϕ (P) = T = b(1)b(2)…b(t), то ψ (K1 (P)) = K2 (T), 
где K1 (P) = K1 (a(1))K1 (a(2))…K1 (a(t)), 

K2 (T) = K2 (b(1))K2 (b(2))…K2 (b(t)). 
Теорема 2. Для любой автоматной функции существует модели-

рующая её СФЭЗ в базисе из функциональных элементов дизъюнкции, 
конъюнкции, отрицания и элемента задержки. 

Доказательство. Пусть автоматная функция дана автоматом 
D = (A, B, Q, G, F, q0). Выберем n, m, r так, что 2n ≥ |A|, 2m ≥ |B|, 2r ≥ |Q|. 
Рассмотрим произвольные отображения (кодирования) 1 2: nK A E→ , 

2 2: mK B E→ , 3 2: rK Q E→ , при которых разные элементы отображаются 
в разные элементы. Дополнительно потребуем, чтобы K3 (q0) = (0, …, 0). 
Рассмотрим отображения 2 2 2: n r rG E E E′ × →  и 2 2 2: n r mF E E E′ × →  такие, 
что для любых a ∈ A и q ∈ Q выполняется 

( ) ( )( ) ( )( )
( ) ( )( ) ( )( )

1 3 3

1 3 2

, , ,

, , .

G K a K q K G a q

F K a K q K F a q

 ′ =
 ′ =

 (1) 

Равенства (1) определяют отображения G' и F' только для пар 
2 2,n rE Eα β∈ ∈  таких, что α  является кодом некоторой буквы из A, а 

β  является кодом некоторой буквы из B. Для остальных пар отображе-
ния G' и F' доопределим произвольно. Пусть ( )0 0, ,0=  . Рассмотрим 

автомат ( )2 2 2, , , , ,0n m rH E E E G F′ ′=   с каноническими уравнениями 

( ) ( ) ( )( )
( ) ( ) ( )( )

( )

, 1 ,

, 1 ,

0 0.

Z t F X t Q t

Q t G X t Q t

Q

 ′= −
 ′= −
 =



 (2) 

Из (1) вытекает, что если автомат D преобразует последователь-
ность P в алфавите A в последовательность T в алфавите B, то H преоб-
разует код K1 (P) последовательности P в код K2 (T) последовательности 
T. Таким образом, достаточно показать, что автоматную функцию, за-
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даваемую равенствами (2), можно реализовать схемой. Так как значе-
нием переменной X являются наборы длины n из 2

nE , то её можно рас-
сматривать как набор переменных (x1, …, xn), принимающих значения 
из E2. Аналогично для переменных Q и Z. Тогда (2) можно переписать в 
эквивалентном виде для некоторых функций алгебры логики fi, gj: 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

1 1

1 1

, , , , , , 1, , ,

, , , , , , 1, , .
i i n r

j j n r

z t f x t x t q t q t i m

q t g x t x t q t q t j r

 ′ ′= =
 ′ ′= =

  

  
 

Тогда можно построить схему из функциональных элементов в базисе 
{∨,&, } с n + r входами и m + r выходами, реализующую семейство 
функций 

( )
( )

1 1

1 1

, , , , , , 1, , ,
, , , , , , 1, , .

i i n r

j j n r

z f x x q q i m
q g x x q q j r

′ ′ = =
 ′ ′= =

  

  
 

Пусть в этой СФЭ входная переменная jq′  приписана вершине vj, а вы-
ходная переменная qj — вершине wj. Добавим дугу (wj, vj) и сопоставим 
вершине vj элемент задержки. Проделав это для всех пар 

( ), 1, ,j jq q j r′ =  , получим СФЭЗ, функционирование которой опи-
сывается каноническими уравнениями 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

( )

1 1

1 1

, , , 1 , , 1 , 1, , ,

, , , 1 , , 1 , 1, , ,

0 0.

i i n r

j j n r

j

z t f x t x t q t q t i m

q t g x t x t q t q t j r

q

 = − − =
 = − − =
 =

  

    

Эта схема является искомой. Теорема доказана. 

§38. Теорема Мура. Теорема об отличимости состояний двух 
автоматов 

Будем рассматривать автоматы, в которых не выделено начальное 
состояние, то есть автомат задаётся пятёркой (A, B, Q, G, F). 

Через A* будем обозначать множество всех конечных слов в алфа-
вите A. Расширим функции F и G, определив ( ), iF a q  и ( ), iG a q  для 

любого состояния qi ∈ Q и любого слова ( ) ( ) ( )( )1 , 2 , ,a a a a m A∗= ∈ . 
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Пусть автомат (A, B, Q, G, F) находится в состоянии qi ∈ Q и на вход 
подаётся слово ( ) ( ) ( )( )1 , 2 , ,a a a a m=  . Тогда на выходе будет после-

довательно выдаваться некоторое слово ( ) ( ) ( )( )1 , 2 , ,b b b b m=   и по-
сле подачи всего слова a  автомат окажется в некотором состоянии qk. 
Расширим функции F и G, положив ( ), iF a q b= , ( ), i kG a q q= . 

Определение 1. Два состояния qi и qj автомата (A, B, Q, G, F) 
называются отличимыми, если существует входное слово a A∗∈  такое, 
что ( ) ( ), ,i jF a q F a q≠ . При этом слово a  называют экспериментом, 

отличающим qi и qj, а длину ( )l a  — длиной этого эксперимента. 
Лемма. Пусть в автомате (A, B, Q, G, F) есть 2 состояния qu и qv, 

отличимые экспериментом длины p и не отличимые более коротким 
экспериментом. Тогда для любого k, где 1 ≤ k ≤ p, существуют 2 состо-
яния, отличимые экспериментом длины k и не отличимые более корот-
ким экспериментом. 

Доказательство. Пусть состояния qu, qv отличимы экспериментом 
a  длины p и не отличимы экспериментом меньшей длины. Пусть 

( ) ( ), , ,u vF a q b F a q c= = . Тогда b c≠ , причём b  и c  различаются 
только последней буквой. Разобьём все слова a , b , c  на 2 подслова 

1 2a a a= , 1 2b b b= , 1 2c c c= , где ( ) ( ) ( )2 2 2l a l b l c k= = = . Пусть 

( )1, uG a q q′= , ( )1, vG a q q′′= . Тогда ( )2 2,F a q b′ = , ( )2 2,F a q c′′ = . Так 
как 2b  и 2c  различаются последней буквой, то q' и q'' отличимы экспе-
риментом длины ( )2l a k= . Допустим, что q' и q'' отличимы экспери-
ментом 3a  длины ( )3l a k< . Тогда ( )3 3,F a q b′ = , ( )3 3,F a q c′′ =  и 3 3b c≠ . 
Но тогда ( ) ( )1 3 1 3 1 3 1 3, , ,u vF a a q b b F a a q c c= =  и 1 3 1 3b b c c≠ . Следователь-
но, qu и qv отличимы экспериментом 1 3a a  длины 

( ) ( ) ( ) ( )1 3 1 3l a a l a l a p k k p= + < − + = . Это противоречит условию. Зна-
чит (от противного), q' и q'' не отличимы экспериментом длины мень-
шей, чем k. Лемма доказана. 
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Теорема 3 (Теорема Мура). Если в автомате (A, B, Q, G, F) состо-
яния qi и qj отличимы и |Q| = r, то существует эксперимент a , отлича-
ющий qi и qj, длины ( ) 1l a r≤ − . 

Доказательство. Пусть состояния qi и qj отличимы эксперимен-
том длины p и не отличимы более коротким экспериментом. Рассмот-
рим в данном автомате следующее отношение Rm на множестве состоя-
ний Q (m = 0, 1, …, p): состояния qi и qj не отличимы экспериментом 
длины m (считаем, что любые 2 состояния не отличимы экспериментом 
длины 0). Если для любого слова a A∗∈  длины m ( ) ( ), ,i jF a q F a q=  и 

( ) ( ), ,j kF a q F a q= , то ( ) ( ), ,i kF a q F a q= , поэтому Rm — это отноше-
ние эквивалентности для каждого m = 0, 1, …, p. Относительно Rm Q 
разбивается на классы эквивалентности ( ) ( )

( )
( )

1 2, , ,m m m
s mQ Q Q , так что лю-

бые два состояния из одного класса не отличимы экспериментом длины 
m, а любые два состояния из разных классов отличимы экспериментом 
длины m. При этом s(0) = 1 и ( )0

1Q Q= . Посмотрим, как меняются эти 
классы при переходе от m к m + 1. Если 2 состояния отличимы экспе-
риментом длины m, то они отличимы и экспериментом длины m + 1, 
поэтому состояния из разных классов остаются в разных классах. По 
лемме для любого m = 0, 1, …, p – 1 существуют 2 состояния, отличи-
мые экспериментом длины m + 1 и не отличимые экспериментом длины 
m. Следовательно, хотя бы один из классов эквивалентности относи-
тельно Rm распадается не менее чем на 2 класса эквивалентности отно-
сительно Rm+1. Отсюда 

1 = s (0) < s (1) < s (2) < … < s (p – 1) < s (p) ≤ r. 

Так как все s (i) — натуральные числа, то p ≤ r – 1. Теорема доказана. 
Следующий пример автомата показывает, что оценку r – 1 в тео-

реме Мура в общем случае улучшить нельзя. Здесь, независимо от 
входного символа a F(a, qi) = 0, для i = 2, 3, …, r и F(a, q1) = 1. 

 0,1 
q1 

1 
1 

0 

… 

q2 

0 

q3 

0 

qr–1 

0 

qr 

0 

… 0 0 0 

1 1 1 1 

0 
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Для того, чтобы отличить состояния qr–1 и qr надо перевести хотя 
бы одно из них в q1 (входным словом длины r – 2) и затем подать ещё 
один входной символ. Следовательно, минимальная длина эксперимен-
та, отличающего qr–1 и qr, равна r – 1. 

Определение 2. Пусть 2 автомата (A, B, Q1, G1, F1) и (A, B, Q2, G2, F2) 
имеют одинаковые входной и выходной алфавиты. Пусть qi ∈ Q1 и 
qj ∈ Q2. Будем говорить, что эксперимент a A∗∈  отличает состояния qi 
и qj, если ( ) ( )1 2, ,i jF a q F a q≠ . 

Теорема 4. Пусть даны 2 автомата (A, B, Q1, G1, F1) и (A, B, Q2, G2, F2). 
Пусть |Q1| = r, |Q2| = m и qi ∈ Q1, qj ∈ Q2. Тогда, если qi и qj отличимы, то 
существует отличающий их эксперимент a  длины ( ) 1l a r m≤ + − . 

Доказательство. Можно считать, что Q1 ∩ Q2 = ∅. Рассмотрим ав-
томат (A, B, Q, G, F), в котором Q = Q1 ∪ Q2 и диаграмма которого получа-
ется объединением диаграмм исходных автоматов. Тогда |Q| = r + m и по 
теореме Мура qi, qj отличимы экспериментом a  длины ( ) 1l a r m≤ + − . 
Теорема доказана. 

Следующий пример автомата показывает, что оценка r + m – 1 в 
общем случае не улучшаема. Здесь предполагается m ≥ r и опять вы-
ходной символ зависит только от текущего состояния и не зависит от 
входного символа. 
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Легко видеть, что если не использовать состояние mq′  второго ав-

томата, то нельзя отличить состояния q1 и 1q′ . Поэтому для того, чтобы 
отличить q1 и q1′ сначала надо перевести второй автомат словом a  из 

1q′  в mq′ . При этом ( )1 1l a m≥ −  и первый автомат под действием a  пе-
рейдёт из q1 в qr. Чтобы далее получить различные выходные последо-
вательности, надо перевести первый автомат из qr в q1 и подать ещё 
один символ. Всего для того, чтобы отличить q1 от 1q′  потребуется 
входное слово длины (m – 1) + (r – 1) + 1 = m + r – 1. 


