
Automatic Abstraction of Timed Components

Ramzi Ben Salah Marius Bozga Oded Maler

VERIMAG, 2, av. de Vignate, 38610 Gieres, France
Ramzi.Salah@imag.fr Marius.Bozga@imag.fr Oded.Maler@imag.fr

Abstract. We develop a new technique for generatingsmall-complexity abstrac-
tionsof timed automata that provide an approximation of theirtimed input-output
behavior. This abstraction is obtained by first augmenting the automaton with
additionalinput clocks, computing the “reachable” timed automaton that corre-
sponds to the augmented model, projecting the timing constraints on the input
clocks and finally hiding internal transitions and minimizing the automaton. As
a result we obtain a timed automaton in which output transitions are conditioned
on the time elapsed since the relevant input transitions that triggered them. The
abstract model does not allow any qualitative behavior which is infeasibledue to
timing constraints, and maintains a relaxed form of the timing constraints asso-
ciated with the feasible behaviors. We have implemented most of the ingredients
of this technique and intend to apply it to examples from different application
domains.

1 Introduction

The basic premise of a component-based design methodology is that a component (a
hardware IP block, a software module, a network router) can be used in the construction
of a system without deep knowledge of its intimate internal structure but rather using
a more abstract description of its observable input-outputbehavior. This description
should be sufficiently detailed to prove the correct interaction of the component with
the rest of the world, and sufficiently small to keep the analysis tractable. In the context
of discrete systems this means replacing an automatonA with and automatonA′ with
less states and more behaviors.

In this work we apply this methodology to a more refined level of description,
namely that oftimed systemswhere models represent not only the ordering relation
between input and output events, but also constraints on thetemporal distancebetween
them. We view a timed component as a reactive device that responds to input events
within a certain amount of time by emitting output events. Weare interested in the
analysis of large networks constructed from such components. In such networks many
processes may be active simultaneously and the qualitativebehavior of the overall sys-
tem often depends on the relative speeds of the processes andis very hard to analyze
as the number of components grows. Examples of timed components include digital
circuits (when propagation delays are taken into account),communication channels,
software modules (when execution times are considered) and, in fact, any other system
consisting of processes that consume some time between initiation and termination.
Each timed component is modeled as a timed automaton, an automaton augmented

clock variables whose role is to model and impose the timing constraints associated
with the input-output behavior of the component.

t

i o

i

o

o1

o2

i1

i2

i1

o1

i2

o2

(a) (b) (c)

Fig. 1. (a) A timed component and part of its semantics; (b) A network of timed components; (c)
An abstraction produced by our technique.

Figure 1 summarizes the contribution of the paper. At the left we see a timed com-
ponent with an input channeli and output channelo and an illustration of its semantics
as atimed transducerthat maintains some relationship between input and output events
(or state changes). We assume uncertainty in timing information so that the transducer
is non deterministic and may produce several outputs to a given input. In the middle
of the figure we see acompound componentconstructed as an acyclic network of such
elements with primary inputsi1, i2 and primary outputso1, o2. Our technique analyzes
the network and produces a reduced model which gives a conservative approximation
of the relation between the timing of input and output events, in the sense that every
input-output pair that may be exhibited by the network will be produced as well by the
abstract model. Thus, any correctness result or performance guarantee obtained using
the abstract model will hold for the concrete model as well.

The major steps in our abstraction procedure, starting froma timed automatonA
given as a product of the timed components, are the following:

1. We transformA into an equivalent timed automatonAt, which isA augmented
with additionalinput clocks. Each input clock is created when an input event occurs
and is killed when the effect of this event has propagated through the system.1 The
input clocks do not intervene with the dynamics of the automaton as they do not
participate in transition guards and are not reset when transitions are taken. Hence
the input/output behaviors ofA andAt are identical. These event clocks serve to
represent the time elapsed since the occurrence of the event.

2. We perform standard timed reachability computation onAt which leads to an au-
tomatonAr, based on the simulation/reachability graph, which issemantically
equivalentto At, but in which every path in the underlying transition graph is in-
deed realizable. Transitions and states ofAr are conditioned by conjunctions of

1 We will see later why in the systems that we consider, every event is propagated (or aborted)
within a finite amount of time and a finite number of clocks will suffice.

inequalities (zones) on all the clocks ofAt, but the constraints involving the input
clocks are practically redundant in these zones.

3. Weprojectthe timing constraints inAr on the input clocks and get rid of all clocks
associated with the internal components (after they servedus in eliminating im-
possible behaviors). In the resulting automatonAp, transitions and states are con-
ditioned by the time elapsed since the occurrence of input events. This projection
relaxes some of the timing constraints and leads to more behaviors than possible in
Ar, but the set of qualitative behaviors (sequences of transitions) is preserved.

4. We apply a minimization algorithm which merges states inAp that are linked by
unobservable transitions to obtain the final automatonAm which is semantically-
equivalent toAp.2

Semantically speaking, we have the following relation between the models:

[[A]] = [[At]] = [[Ar]] ⊆ [[Ap]] = [[Am]].

In terms of complexity,A has one clock per timed component and an untimed state
space exponential in the number of components, while the number of clocks inAm is
the maximal number of events that may be alive simultaneously, and its state space is
much smaller.

We have developed a full tool chain starting from a high-level description of net-
works of timed components all the way down to the final abstract model and tested
its performance on several examples. We believe this technique will have a significant
impact on system design.

The rest of the paper is organized as follows. In Section 2 we give some intuition
about timed systems and components followed by the unavoidable formalization of the
basic notion used in the paper and in the analysis of timed automata. We then move to a
step-by-step description of our abstraction technique: adding input clocks (Section 3),
timed reachability analysis (Section 4), clock projection(Section 5) and minimization
(Section 6).Finally we describe the accompanying implementation effort and report pre-
liminary experimental results.

2 Timed Systems

2.1 Intuition

The theory of timed behaviors and timed automata can be formulated using either of
two semantic domains, one is event-based (timed-event sequences, punctual discrete
events scattered along the real time axis) and one is state-based (signals, functions from
the positive reals to a discrete domain). To avoid repetition, we will use signals in the
formal definitions but will use both domains for motivating examples and benchmarks.
We describe below a class of event-based and a class of state-based timed components
that can be substituted into the blocks of Figure 1-(b).

As a first class of examples consider a system consisting of jobs, each job decom-
posed into a partially-ordered set of tasks{T1, . . . , Tn} whereTi ≺ Tj indicates that

2 Not yet sure. In the worst case it is an over approximation.

Ti must terminate beforeTj starts executing. The computation time of taskTi can vary
inside the interval[li, ui]. Each taskTi can be modeled as the simple timed automaton
depicted in Figure 2-(a). The automaton remains in an idle state⊥ until it receives an
si message, resets its clockci to zero and moves to the active stateA in which it stays
for somet ∈ [li, ui] until it terminates and returns to state⊥, while emitting theei

message. Networks of such automata can be composed by unifying the output of a task
with the inputs of the tasks that it precedes. Additional automata can be introduced to
model schedulers, buffers, admission controllers, and more to yield complex systems
exhibiting pipelining and concurrent processing. For suchsystems, the reduced model
generated by our technique provides an approximation of theinput-output behavior re-
stricted to the arrival and termination of jobs. Such modelscan be used to approximate
the system throughput, find conditions on the inter-arrivaltimes of jobs that cause buffer
overflow, and can be plugged as a single component into a modelof a larger network.

0′

x+/c := 0

1x−/c := 0

c ∈ [l, u]/

y−, c := ⊥

c ∈ [l, u]/

y+, c := ⊥

0

1′

c < u, x−/c := ⊥

c < u, x+/c := ⊥

(b)

⊥ A

si/ci := 0

ci ∈ [li, ui]/ei, c := ⊥

(a)

Fig. 2. (a) A timed automaton for a task; (b) a timed automaton for a circuit delay element. The
⊥ symbol indicates that the clock is inactive as its corresponding state variable is stable.

The second class of models is that of digital circuits with delays. We decompose
every gate which realizes a Boolean functionx = f(x1, x2) into two parts, aninstanta-
neouspart whose output signalx is always the value off applied to the current values
of x1 andx2, and adelay elementwhich takesx as input and outputs a signaly whose
value followsx within t ∈ [l, u] time. The automaton for modeling this delay element
is similar to the task automaton, but has two “stable” states, 0 and1 where the input and
output agree and two “unstable” states0′ and1′ where the input has changed but the
process of propagation to the output has not yet completed, as can be seen if Figure 2-
(b). When in a stable state like0, the automaton is inactive, until the value of the input
changes (denoted in the figure byx+) and the automaton moves to the excited state0′

in which the output is still0 but the clockc is reset. Then, after somet ∈ [l, u] time, the
output catches up with the input and the automaton moves to the stable state1 and so
on.

These two automata have similar features. Both have stable states that cannot be
exited from without an input event (s in the task automaton) or a change in the input

value (x+ to leave0 andx− to leave1 in the delay automaton). On the other hand the
duration of their sojourn in the active/excited states is bounded byu. More generally
they have the property that all their cycles are labeled by atleast one input event. This
means that for every input which becomes stable at some point, all the behaviors it
induces in the automaton become stable as well within some bounded delay. This is an
important property for this class of systems and we leave it as an exercise to the reader
to prove that it is preserved by (acyclic, loop-free) composition.

An important issue that we have ignored in the task model but have taken care
of in the gate delay model is the following: what happens whena new event arrives
while the automaton is in an active/excited state, still digesting the previous event?
The transition indicated by dashed arrows in the delay automaton provide one possible
modeling solution (which is not electrically correct): ifx goes down again before its
rising has propagated to the output, the automaton returns to the stable state0 and
forgets the whole episode. Another solution would be make anerror transition when this
happens. In the task automaton, we can make an error transition when a news arrives at
stateA, or simply ignore it. Whatever the solution taken, it is clearthat no system can
digest an unbounded number of events in finite time, and this topic is closely related to
various bounded-variability assumptions concerning the input. In the rest of the paper
we use the circuit delay model with “regret” transition, butthe whole methodology can
be easily adapted to event-based semantics and to other approaches for treating inputs
that exhibit excessive variability.

Before proceeding let us mention a special property of the timed automata that we
use which is preserved by our transformations. These automata are non-blocking in the
sense that there is always a guard satisfied at the right boundary of an invariant.

2.2 Basic Definitions

We now move to the formalizing of our abstraction technique.As a semantic domain
we use Boolean signals defined as follows.

Definition 1 (Signals).LetR+ be the set of non-negative real numbers. Ann-dimensional
Boolean signal is a functionξ : R+ → B

n such that for everyσ ∈ B
n, ξ−1(σ) is a

countable union ofleft-closed right-openintervals.

We use the notationξ = σt1
1 ·σt2

2 · · · with σi 6= σi+1 to denote a signal whose value isσ1

in [0, t1), σ2 in the interval[t1, t1+t2) etc. Theuntimingof the signal,µ(ξ) = σ1 ·σ2 · · ·
is thesequenceof values the signal goes through without the duration information. In
the context of automata such an untiming will be called aqualitative behavior. A partial
signal is a restriction of a signal to some interval[a, b), in such a case we denote the
duration of the signal by|ξ| = b − a. We will typically use sets of Boolean variables
whose valuations constitute the elements of the alphabet. We denote the sets of signals
and partial signals over these valuationsSω(X) andS∗(X), respectively.

In the same manner that automata realize sequential functions (transductions) on
sequences, a timed automaton realizes a (possibly non deterministic) length-preserving
sequential function from signals over its input variables to signals over its output vari-
ables.

Definition 2 (Timed Transduction). A functionf : Sω(X) → 2Sω(Z) is a timed
transduction if for everyu ∈ S∗(X), v, v′ ∈ S∗(Z) such that|u| = |v| = |v′| and
everyα ∈ Sω(X) andβ ∈ Sω(Z)

f(u · α) = v · β andf(u · α′) = v′ · β′ impliesv = v′.

In other words, the value off(α) at t may depend only on the values{α[t′] : t′ ≤ t}.
Composition of two transductions can be defined naturally where the output of the first
becomes the input of the second. A signal isultimately-constantif it is constant from
somet onwards. A transduction isstableif it maps every ultimately-constant signal to
a set of ultimately-constant signals.

Definition 3 (Abstraction). Let f and f ′ be two signal transductions over the same
domains. We say thatf ′ is an abstraction off if f(ξ) ⊆ f ′(ξ) for every signalξ. We
denote this fact byf ¹ f ′.

As the mechanical device for realizing timed transduction we use a variant of timed
automata with input and output which differs slightly from the classical definitions
[AD94,HNSY94] as it reads multi-dimensionaldense-timeBoolean signals, and out-
puts Boolean signals. Hence the input and output alphabet letters are associated with
statesrather than withtransitions. We also extend the domain of clock values to in-
clude the special symbol⊥ indicating that the clock is currentlyinactive.

The set of valuations of a setC = {c1, . . . , cn} of clock variables, each denoted
asv = (v1, . . . , vn), defines the clock spaceH = (R+ ∪ {⊥})n. A configurationof
a timed automaton is a pair(q, v) consisting of a discrete state and a clock valuation.
For a valuationv = (v1, . . . , vn), v + t is the valuation(v′

1, . . . , v
′
n) such thatv′

i = vi

if vi = ⊥ andv′
i = vi + t otherwise. Aclock inequalityis any conditions of the form

θ ≤ d, θ < d, θ ≥ d or θ > d for some integerd andθ which is either a clock variable
c or a differencec − c′ between two clock variables. Aclock conditionis a Boolean
combination of clock constraints. The set of all valuationssatisfying a clock condition
is called atimed polyhedron. A timed polyhedron isconvexif it can be expressed using
aconjunctionof clock conditions and in this case it is called azone. A timed polyhedron
Z is time-convexif it satisfies the following weaker property: ifv ∈ Z andv + t ∈ Z
for somet > 0 thenv + t ∈ Z for everyt′ ∈ [0, t). These notions are illustrated in
Figure 3.

(c)(b)(a)

Fig. 3. (a) A timed polyhedron; (b) time-convex timed polyhedron; (c) a convex polyhedron
(zone).

Definition 4 (Timed Signal Transducer).
A timed signal transducer is a tupleA = (Σ,Q, Γ, C, λ, γ, q0, I,∆) whereΣ is the
input alphabet, (Bn in this paper),Q is a finite set of discrete states,Γ is the output
alphabet andC is a set of clock variables. The input labeling functionλ : Q → Σ
associates an input letter to every state while the output functionγ : Q → Γ assigns
output letters. The initial state isq0 and the staying condition (invariant)I assigns
to every stateq a time-convex subsetIq of H. The transition relation∆ consists of
elements of the form(q, g, ρ, q′) whereq andq′ are discrete states, the transition guard
g is a zone inH andρ is the update function, a transformation ofH defined by a set of
assignments of the formc := 0, c := c′ or c := ⊥.

Although input-output labels are associated with states, they induce an implicit labeling
on the transition and we will consider a transition fromq to q′ such thatλ(q) 6= λ(q′)
as labelled by the changes in the input variables whose values inλ(q′) that are different
from their values inλ(q), for examplex1↑ orx2↓. We use the same convention for output
events. The underlyingtransition graphof A is the result of removing the clocks, the
invariants, the transition guards and the clock updates to obtain an ordinary automaton.

The behavior of a timed transducer as it reads a signalξ consists of an alternation
betweentime progressperiods where the automaton stays in a stateq as long asξ[t] =
λ(q) andIq holds, anddiscrete instantaneous transitionsguarded by clock conditions.
Formally, astepof the automaton is one of the following:

– A time step:(q, v)
σt/τt

−→ (q, v + t), t ∈ R+ such thatσ = λ(q), τ = γ(q), and3

v + t ∈ cl(Iq). We will write time steps as(q, v)
t

−→ (q, v + t) when we do not
care about the labeling.

– A discrete step:(q, v)
δ

−→ (q′, v′), for some transitionδ = (q, g, ρ, q′) ∈ ∆, such
thatv ∈ g andv′ = ρ(v)

A run of the automaton starting from a configuration(q0, v0) is a finite or infinite se-
quence of alternating time steps and discrete steps of the form

ξ : (q0, v0)
σ

t1
1

/τ
t1
1−→ (q0, v0 + t1)

δ1−→ (q1, v1)
σ

t2
2

/τ
t2
2−→ (q1, v1 + t2)

δ2−→ · · · ,

such that
∑

ti diverges. The input signal carried by the run isσt1
1 ·σt2

2 · · · and the output
is τ t1

1 ·τ t2
2 · · ·. The automaton realizes a timed transductionfA over its input and output

alphabets defined byξ′ ∈ fA(ξ) iff one of the runs induced by the input signalξ outputs
the signalξ′.

One can define parallel and cascadecompositionof transducers where in the for-
mer the same input is read by two automata in parallel while inthe latter the output
of the first automaton is the input of the second. We will avoidthe tedious but not sur-
prising formal definitions. Clearly the effect of cascade composition of two transducers
amounts to the composition of their transductions.

We say that a stateq of a transducer isstable if all the clock are inactive in this
state and the only outgoing transitions are due to change in the input, that is, if there is

3 We usecl to denote topological closure. This is needed when the invariant is open, e.g.c < d.

a transition fromq to q′ thenλ(q) 6= λ(q′). A transducer isinput-dependentif all the
cycles in its transition graph contain at least one transition labeled by an input event and
all stable states have bounded invariants. The following are simple observations: 1) The
basic automata of Figure 2 are input-dependent; 2) IfA1 andA2 are input dependent, so
is their composition (a cycle in a composition of two automata must amounts to a cycle
in each of the components); 3) an input-dependent transducer realizes an ultimately-
stable transduction. From now on we restrict ourselves to input-dependent transducers.

We say that a timed transducerA′ which differs fromA only in its invariants and
guards is more permissive thanA if for every q, Iq ⊆ I ′q and for every transition
(q, g, ρ, q′) ∈ ∆ there is a transition(q, g′, ρ, q′) ∈ ∆′ such thatg ⊆ g′. We denote
this fact byA ¹ A′. ClearlyA ¹ A′ impliesfA ¹ fA′ .

3 Adding Input Clocks

Before describing the first transformation, that is, fromA to At, let us contemplate
on the life and death of an input event in an acyclic network oftimed components
such as the one depicted in Figure 1-(b). To facilitate the discussion we assume that all
components have identical lower and upper boundsl andu on their reaction time. When
such an event occurs it may excite one or more of the components to which it is a direct
input. In the absence of additional events, each of those components, stabilizes within
somet ∈ [l, u] and emits a change in its output, which may trigger reactionsin some
further components, and so on. Due to acyclicity, a component which has reacted to an
input event cannot be influenced anymore by the same event. Consequently all input
events leave the system within a finite amount of time, bounded byd · u, whered is the
depthof the network, the maximal number of sequentially-connected components.

A second observation is that in the circuit model (Figure 2-(b)), every two changes
in the value of the same variable must be separated by at leastl time in order for both to
be alive in the system, otherwise the second change aborts the first via a “regret” tran-
sition. Hence the maximal number of live events for each input variable is bounded by
m = d · u/l. Similar bounds will hold for other approaches for treatingexcessive input
variability and, in fact, one may see that the number of living events in a network is
always bounded by the number of its components. These are upper bounds and in prac-
tice the maximal number of live events can be much smaller dueto logical interference
and stronger bounded-variability assumptions.

AutomatonAt is obtained by augmentingA with additional state variables that
keep track of live events and additional clocks that measurethe age of these events. The
discrete state variables are countersix1

, . . . ixn
, one for each input variable, ranging

over M = {0, 1, . . . ,m} wherem is the previously-mentioned upper bound, and a
dedicated structure that we callevent-recording table.

Definition 5 (Event Recording Table).An event recording table for a timed trans-
ducerA havingX as input variables andC as clocks isE : X ×M → 2C whose value
at a given state has the following intended meaning:c ∈ E(x, i) if clock c is active and
its value is causally related to the time elapsed since the occurrence of theith oldest
x-event in the system.

We denote the (finite) set of valuations of the event recording table byEA. We denote
by Ĉ the set of additional clocks of the formcxj

[i], each measuring the time since the
ith oldest change in the value ofxj , for 1 ≤ j ≤ n and1 ≤ i ≤ m.

Definition 6 (Transducer At). LetA = (Σ,Q, Γ, C, λ, γ, q0, I,∆) be a timed signal
transducer. Its extension with input clocks is the transducerAt = (Σ,Qt, Γ, Ct, λt, γt, qt

0, I
t,∆t)

whereQt = Q×Mn ×EA, Ct = C ∪ Ĉ andλt, γt andIt are simple extensions ofλ, γ
andI, respectively, for example,λt((q, u, E) = λ(q). The initial state isqt

0 = (q0,0, E0)
with 0 being a vector of zeros for the counters andE0 satisfyingE0(x, i) = ∅ for every
x and i. Then for every(q, u, E) ∈ Qt and every transitionδ = (q, g, ρ, q′) ∈ ∆ we
create a transition((q, u, E), g, ρt, (q′, u′, E ′)) in ∆t whereu′, E ′ andρt are the result
of applying the following transition-dependent transformation tou, E andρ:

1. If δ is labeled by an input eventx and resets clockc, thenix := ix + 1, E(x, ix) :=
{c} andρ := ρ ∪ {cx[ix] := 0} ;

2. If a clock c ∈ E(x, i) appears ing and the transition resets a clockc′, then
E(x, i) := E(x, i) ∪ {c′};

3. If δ is labeled byc := ⊥ thenE(x, i) := E(x, i) − {c} for everyx andi such that
c ∈ E(x, i). If this operation renders someE(x, i) empty, we perform event and
clockshifting, that is, for everyk ≥ i we letE(x, k) := E(x, k + 1), add toρt the
assignmentscx[k] := cx[k + 1] andcx[ix] = ⊥ and finally letix := ix − 1.

Rule 1 corresponds to the arrival of a new event and the generation and resetting of its
clock. Rule 2 follows the propagation of the event to a subsequent component. Rule 3
represent the stabilization of a component after reacting to an event. If this was the last
component in the circuit excited by the event, this signifiesdeath of that event in the
system. Clock shifting is just a technical means to utilize the same finite pool of clocks.

Proposition 1. AutomatonAt is an ordinary timed transducer which is semantically
equivalent toA.

The set of states is finite due to finiteness ofMn andEA. The extra event-recording
machinery does not interfere with the original dynamics ofA, neither in the guards, in
resetting the clocks ofA, nor in the assignment of input-output symbols to states. In
other words, the projection ofQt on Q defines a behavior-preserving homomorphism
fromAt toA.

4 The Reachable Automaton

To determine the possible behaviors of a timed automaton (and verify whether all of
them satisfy certain properties) one must analyze the infinite transition system which
the automaton represents. The problem is more complicated than in ordinary finite-state
automata because of the clock variables. We recall some definitions commonly used
in the verification of timed automata [HNSY94,Y97,LPY97,BDM+98]. A symbolic
state is a pair(q, Z) whereq is a discrete state andZ is a zone. It denotes the set
of configurations{(q, v) : v ∈ Z}. Symbolic states are closed under the following
operations:

– The time successorof (q, Z) is the set of configurations which are reachable from
(q, Z) by letting time progress without violating the staying condition of q:

Postt(q, Z) = {(q, v + r) : v ∈ Z, r ≥ 0, v + r ∈ cl(Iq)}.

We say that(q, Z) is time-closedif (q, Z) = Postt(q, Z).
– The δ-transition successorof (q, Z) is the set of configurations reachable from

(q, Z) by taking the transitionδ = (q, g, ρ, q′) ∈ ∆:

Postδ(q, Z) = {(q′, ρ(v)) : v ∈ Z ∩ g}.

– Theδ-successorof a time-closed symbolic state(q, Z) is the set of configurations
reachable by aδ-transition followed by passage of time:

Succδ(q, Z) = Postt(Postδ(q, Z)).

The forward reachability algorithm for TA starts with an initial zone and generates all
successors until termination, while doing so it generates the reachability graph(also
known as thesimulation graph).

Definition 7 (Reachability Graph). The reachability graph associated with a timed
automatonA is a directed graphG = (N,→, n0) such thatN is the smallest set of
symbolic states containingn0 = Postt(q0, {0}) and closed underSuccδ. The edges
are all pairs of symbolic states related bySuccδ.

The fundamental property of the reachability graph is that it admits a path from(q, Z) to
(q′, Z ′) if and only if for everyv′ ∈ Z ′ there exists a clock valuationv ∈ Z and a run of
the automaton from(q, v) to (q′, v′). Hence the union of all symbolic states inN gives
exactly the configurations ofA reachable from(q0, 0). From the reachability graphG of
a timed transducerA, one can build a timed transducerAr with an equivalent behavior,
that is,fA = fAr .

Definition 8 (Interpreted Timed Transducer). Let A = (Σ,Q, Γ, C, λ, γ, q0, I,∆)
be a timed transducer and letG = (N,→, n0) be its reachability graph. The inter-
preted timed transducer ofA is Ar = (Σ,N, Γ, C, λr, γr, n0, I

r,∆r) where for every
(q, Z) ∈ N , λr(q, Z) = λ(q), γr(q, Z) = γ(q), Ir(q, Z) = Z and for every edge
(q, Z) → (q′, Z ′) in G, associated with transitionδ = (q, g, ρ, q′) ∈ ∆, we fix a
transition((q, Z), g ∩ Z, ρ, (q′, Z ′)) ∈ ∆r.

An additional important property of the interpreted timed transducer is that if we relax
completely its timing constraints, still each of its input-output behaviors is an untiming
of some behavior of the original transducerA. More concisely, with abuse of notation,
this can be phrased as:

µ(fA) = fµ(A).

Applying the construction of interpreted timed transducerto At we obtain the automa-
tonAr which is equivalent toA.

5 Clock Projection

The next step is to project all the timing constraints inAr on the input clockŝC to obtain
Ap which is an abstraction ofA and satisfiesfAr ¹ fAp . Moreover, due to the property
of the reachability graph the untiming offAp is equivalent to that offAr . To gain some
intuition on the type of information which is lost and that which is preserved in the
procedure, let us look at the example depicted in Figure 4, which consists of a network
with two componentsA1,A2 which simply propagate the value ofx after some delay
to y1 and later toy2. Clocksc1 andc2 are the clocks of the components and clockcx is
the added input clock.4

A1

x

A2

y1

y2

100

c1 ∈ [l, u]/y+

1 , c2 := 0

000

x+/cx := 0, c1 := 0

110

c2 ∈ [l, u]/y+

2

111

Fig. 4.(a) A network consisting of two timed components; (b) its timed automatonAt augmented
with one input clock.

Performing reachability computation on this automaton we obtain the automaton
Ar with the same structure in which transitionsy+

1 andy+
2 are guarded, respectively,

by the following zones:

Z1 = (l ≤ c1 ≤ u ∧ cx = c1) Z2 = (l ≤ c2 ≤ u ∧ l ≤ c2 − cx ≤ u)

After projection we obtain the automatonAp with zones

Ẑ1 = (l ≤ cx ≤ u) Ẑ2 = (2l ≤ cx ≤ 2u)

To understand the difference in the semantics of the two automata let us look at the
two behaviors depicted in Figure 5. Both behaviors consist of x+ at some timet0,
theny+

1 at somet1 andy+
2 at timet2. In the original automaton these should satisfy

l ≤ t1 − t0 ≤ u andl ≤ t2 − t1 ≤ u. The first condition is reflected byZ1 because at
any timet, c1 = t − t0, and the second condition is imposed byZ2 because at timet,
c2 = t − t1. After the projection, the relation betweent1 andt2 is broken and only the
constraint2l ≤ cx ≤ 2u, which was redundant inZ2, remains inẐ2, which allowsy+

2

to occur att2 6∈ [t1 + l, t1 + u]. The abstraction technique proposed in [ZMM03] for
timed Petri nets has the same effect.

Formally, if Z is a zone consisting of valuations(v, v̂) for the clocksC ∪ Ĉ. Its
projection on the input clocks is

Z↓= {v̂ : ∃v(v, v̂) ∈ Z}

4 To simplify the discussion we consider only one input event.

(a)

t0 t1 t2

x

y1

y2

t0 t1 t2

(b)

x

y1

y2

Fig. 5. (a) A behavior ofAt; (b) a behavior ofAp in which t2 ∈ [t0 + 2l, t0 + 2u] but t2 6∈

[t1 + l, t1 + u].

Syntactically this operation is performed by adding to the description ofZ all the min-
imal constraints of the formc ≤ d andc − c′ ≤ d which are implied by the constraints
in Z and then removing all the constraints that mention clocks inC. The remaining
constraints definêZ and this operation is easily implemented using difference-bounds
matrices (DBM). The automatonAp is obtained fromAr by simply applying the pro-
jection operation to all guards, invariants and clock updates. An important property of
Ap is that all its clocks are input clocks which arenot reset to zeroby any transition in
an internal component which is not labeled by an input event.

6 State Minimization

AutomatonAp has less clocks but its discrete state space is still large asit makes dis-
tinctions between states that differ only in the value of internal variables. Our goal is
to produce a small-size abstraction for reducing the complexity of verification when
using the reduced model of the component inside a larger network. Our last step is
to merge such states and reduce the automaton as much as possible without changing
significantly its semantics. Contrary to what one may prematurely think, careless merg-
ing of states that agree on observable variables may not be faithful to the semantics
because such states may admitdifferent observable futures. We will sketch below two
minimization procedures. The first one is more aggressive and preserves the reachable
configurations ofAp but may admit more behaviors.5 The other minimization technique
restricts the merging to states which are equivalent with respect to a time-abstracting
bisimulation and hence it does preserve the semantics. When states are merged, silent
transitions between them disappear and their invariants are combined to yield the in-
variant of the merged state.

5 At this point we are not sure whether, for the special class of timed automata that we use, this
reduction preserves the semantics, so we prefer to consider it as an over-approximation.

We say that a transition ofAp is observableif it is associated with at least one input
event, output event or clock shifting (death of an input event). A transition which is not
observable is calledsilent and is denoted byτ . A silent run is a run consisting solely
of time passage and silent transitions. Note that since our automata are input-dependent
there are no silent cycles and every silent run has a finite number of transitions and a
finite maximal duration until it reaches a stable state. A state ofAp is calledrigid if all
its incoming transitions are observable. Given a timed automaton with a set of statesQ,
we denote byΩ(Q) the set of its rigid states. The set of silent successors of a rigid state
q (includingq itself) is denoted bySuccτ (q). Note that all elements ofSuccτ (q) have
the same input/output labels.

The first minimization procedure is based on having one statecorresponding to each
rigid state and all its silent successors.

Definition 9 (Minimized Timed Transducer). Let Ap = (Σ,Q, Γ, C, λ, γ, q0, I,∆)
be a timed transducer obtained by the sequence of steps previously described. Its mini-
mization isAm = (Σ,Qm, Γ, C, λm, γm, qm

0 , Im,∆m) whereQm = Ω(Q),

Im
q =

⋃

q′∈Succτ (q)

Iq′ ,

and∆m is constructed from∆ as follows: for every observable transitionδ = (p, g, ρ, p′) ∈
∆ and everyq, q′ such thatp ∈ Succτ (q) andp′ ∈ Succτ (q′) we define a transition
(q, g, ρ, q′) in ∆m. The labeling functionsλm andγm are the restrictions ofλ andγ to
Ω(Q).

Proposition 2. The following two statements are equivalent:

1. There is a silent runξ of Ap from (q, v) to (q′, v + t);
2. There is a time step ofAm from (q, v) to (q, v + t).

Proof: see appendix.
Unfortunately this property is not sufficient by itself for preserving the behavior as

the example in Figure 6 shows. In this example states{ri, pi} are merged with some
rigid stateqi. Suppose that the visible transitiona is possible inAp at r1 but not at any
of its silentpredecessors, and that visible transitionb is possible atp2 and not in any
of its silentsuccessors. After merging we may create the possibility of an observable
sequencea, b which is not possible inAp. Note that the situation here is more subtle
then in purely-discrete abstraction because the original transition guards are preserved
in Am and may prevent this false transitivity. Because of the monotonicity of the guards
along silent paths (clocks are not reset), the only reason for b not to be enabled atr2 is
logical, but then due to some confluence properties of our automata, it might be the case
that p2 can always be reached via anothera-labeled path. But since we cannot prove
this at the moment of writing we are content with the fact thatAm over-approximates
the behavior ofAp and preserves, by construction, its set of reachable configurations.

The second minimization procedure is based on computing a congruence relation,
a variant of time-abstracting bisimulation [LY97,TY01] onthe states ofAp which de-
clares two states as equivalent if they admit the same set of future qualitative behaviors.

q1 q2

b

q3

a
ττ

b

τ

p1 p3p2

ττ

a

r1 r2

Ap Am

Fig. 6.The relation between abstract and concrete runs.

Let q
τ∗

−→ q′ denote the fact that there is a silent path fromq to q′ and leta stand for an
observable action. The relation∼ on the states ofAp is defined as the largest relation
satisfying for everyq andp

q ∼ p iff ∀a ∀q′ (q
τ∗

−→
a

−→
τ∗

−→ q′) ⇒ (∃p′ p
τ∗

−→
a

−→
τ∗

−→ p′ ∧ q′ ∼ p′).

Then, the minimized automaton is similar to Definition 9 except for the fact that merg-
ing is restricted to equivalence classes of∼. The question which minimization to prefer
is an empirical one concerning the tradeoff between faithfulness and complexity that
we hope to report in the final version of this paper.

7 Implementation Status and an Example

We have implemented a tool chain for performing the various steps in our abstrac-
tion technique. We start with a high level description of thesystem as a network of
Boolean gates with delays which is transformed into a network of timed automata. We
then perform time reachability computation while generating and maintaining input
clocks. Note that this involves the introduction of dynamicclocks whose denotation
may change over time, a fact which requires a special procedure for DBM normaliza-
tion. To avoid explosion due to interleaving we use our new BFS exploration algorithm
[BBM06] which merges symbolic states that are reached by confluent paths. We are in
the process of completing the adaptation of the minimization procedures. All in all, the
implementation effort consists of 43K lines of code, in addition to the standard IF code
base.

We demonstrate the effect of our abstraction on a small circuit with on inputx which
enters two delay elements with different delays whose outputs go into an AND gate (see
Figure 7). The delay bounds are[4, 6] and[10, 12] for the delay elements and[1, 2] for
the AND gate. With this parameters, twox-events may be alive simultaneously in the
system. The automatonAp obtained automatically by our tool is shown in Figure 8
before minimization. After minimization the number of states will be reduced from17
to 13. This saving is, of course, very small because this circuit has very few internal

variables, and will be much more significant when we apply thetechnique to circuits
with 10-20 gates after completing the implementation.

z

D2

D1

y1

y2

x

Fig. 7. A circuit with y1 andy2 being delays (with different parameters) ofx andz the delay of
y1 ∧ y2.

8 Discussion

We have developed a novel methodology for automatic abstraction of timed compo-
nents and implemented most of its ingredients. In addition to its potential contribution
to more efficient verification of timed automata, the new concepts introduced in this
work concerning the propagation of event “waves” in an acyclic networks of timed
components are of interest by themselves and may be useful for other approaches for
analyzing this kind of systems. We are currently completingthe implementation of the
minimization procedures in order to apply the technique to larger examples.

References

[AD94] R. Alur and D.L. Dill, A Theory of Timed Automata,Theoretical Computer Science
126, 183-235, 1994.

[BBM06] R. Ben Salah, M. Bozga and O. Maler, On Interleaving in Timed Automata,CON-
CUR’06, 465-476, LNCS 4137, 2006.

[BBM03] R. Ben Salah, M. Bozga and O. Maler, On Timing Analysis of Combinational Circuits,
FORMATS’03, 204-219, LNCS 2791, 2003.

[BGM02] M. Bozga, S. Graf and L. Mounier, IF-2.0: A Validation Environment for Component-
Based Real-Time Systems,CAV’02, LNCS 2404, Springer, 2002.

[BDM+98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine, Kronos: a
Model-Checking Tool for Real-Time Systems,Proc. CAV’98, LNCS 1427, Springer,
1998.

[HNSY94] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, SymbolicModel-checking for
Real-time Systems,Information and Computation111, 193-244, 1994.

[LPY97] K.G. Larsen, P. Pettersson and W. Yi, UPPAAL in a Nutshell,Software Tools for
Technology Transfer1/2, 1997.

[LY97] K.G Larsen and W. Yi: Time-abstracted Bisimulation: Implicit Specifications and De-
cidability, Information and Computation134, 75-101, 1997.

[MP95] O. Maler and A. Pnueli, Timing Analysis of Asynchronous Circuitsusing Timed Au-
tomata,CHARME’95, 189-205, LNCS 987, Springer, 1995.

[TY01] S. Tripakis and S. Yovine, Analysis of Timed Systems Using Time-Abstracting Bisim-
ulations,Formal Methods in System Design18, 25-68 2001.

[Y97] S. Yovine, Kronos: A verification tool for real-time systems,International Journal of
Software Tools for Technology Transfer1, 1997.

[ZMM03] H. Zheng, E. Mercer, and C.J. Myers, Modular verificationof timed circuits using
automatic abstraction,IEEE Trans. on CAD22, 2003.

0000

y2↑
c0 ∈ [10, 12]

z↑
c0 ∈ [11, 14]

kill(c0)

c0 ∈ [10, 14]
c1 ∈ [0, 2]

c0 − c1 ∈ [10, 14]
kill(c1)

x↑

z↑
c0 ∈ [11, 14]
c1 ∈ [0, 2]

c0 − c1 ∈ [10, 14]
c0 := c1

kill(c1) x↓
c0 := 0

x↓

c1 ∈ [0, 2]
c0 − c1 ∈ [4, 8]

c0 := 0

c0 ∈ [4, 8]

c0 := c1

kill(c1)

c0 ∈ [5, 8]
z↓

c1 ∈ [0, 2]
c0 − c1 ∈ [4, 8]

c0 := c1

kill(c1)

c0 ∈ [5, 8]
z↓

c1 ∈ [0, 2]
c0 − c1 ∈ [4, 8]

c0 ∈ [4, 8]
x↑

c0 := 0
c0 − c1 ∈ [4, 8]

c1 ∈ [0, 2]

x↓
c0 ∈ [4, 8]
c1 := 0

x↑
c0 ∈ [0, 12]

c0 := 0

x↓
c0 ∈ [0, 6]
c0 := 0

c0 ∈ [4, 8]
x↑

c0 − c1 ∈ [4, 8]
c1 ∈ [0, 2]

kill(c1)

0110

c0 ∈ [4, 8]
c1 ∈ [0, 2]

c0 − c1 ∈ [4, 8],

1110

00100010

1111

1100 0100

1000

c0 ∈ [0, 6]

c0 ∈ [4, 12]c0 ∈ [0, 6]c0 ∈ [0, 12]

c0 ∈ [10, 14]

1110

0111

c0 ∈ [0, 6]

0011

c0 ∈ [4, 8]
c1 ∈ [0, 2]

c0 − c1 ∈ [4, 8],

c0 ∈ [0, 12]c0 ∈ [0, 6]c0 ∈ [5, 12]

c0 ∈ [4, 8]

1100

1011

c0 ∈ [4, 8]
c1 ∈ [0, 2]

c0 − c1 ∈ [4, 8],

1010

y1↑
c0 ∈ [4, 6]

c0 ∈ [5, 8]
z↑

c1 ∈ [0, 2]
c0 − c1 ∈ [4, 8]

c0 := c1

kill(c1)

y2↓
c0 ∈ [10, 12]

kill(c0)

kill(c0)
c0 ∈ [10, 12]

y2↓

z↓
c0 ∈ [5, 8]

c0 ∈ [10, 14]
c1 ∈ [0, 2]

c0 − c1 ∈ [10, 14],

y1↑
c0 ∈ [4, 6]

y1↓
c0 ∈ [4, 6]

c0 := 0
c0 ∈ [0, 6]

x↑

c0 := 0
c0 ∈ [0, 12]

x↓

z↑
c0 ∈ [5, 8]
kill(c0)

x↑
c0 := 0

x↓
c0 ∈ [0, 6]
kill(c0)c0 ∈ [4, 6]

y1↓

x↓
c0 ∈ [4, 12]

c0 := 0y2↑
c0 ∈ [10, 12]

kill(c0)

x↓
c0 ∈ [10, 14]

c1 := 0

x↑
c0 ∈ [4, 8]
c1 := 0

x↑
c0 ∈ [0, 6]
kill(c0)

x↑
c0 ∈ [5, 12]

c0 := 0

0110

0011

c0 ∈ [4, 8]

Fig. 8.The automatonAp obtained for the circuit of Figure 7. It uses two input clocks,c0 andc1.
The candidates for merging are shaded.

Appendix

Proposition 2. The following two statements are equivalent:

1. There is a silent runξ of Ap from (q, v) to (q′, v + t);
2. There is a time step ofAm from (q, v) to (q, v + t).

Proof: Let us prove that first direction,1 ⇒ 2, by induction on the number of discrete
transitions inξ. In the base case when there are no discrete transitions,q = q′ and the
two statements are identical. The proof of the inductive step from runs withk discrete
transitions to runs withk + 1 transitions goes as follows. Such a run has the following
form:

(q, v)
t1−→ (q, v+t1)

τ1−→ (q1, v+t1) · · · (qk, t)
tk+1

−→ (qk, v+t+tk+1)
τk+1

−→ (q′, t+tk+1)

with t = t1 + . . . + tk. According to the inductive hypothesis there is a matching time

step(q, v)
t

−→ (q, v + t) in Am and what remains to show is that it can be prolonged
by tk+1 time. Sincev + t + tk+1 satisfiesIqk

andIqk
⊆ Im

q we have indeed the time

step(q, v)
t+tk+1

−→ (q, v + t + tk+1).

To prove the direction2 ⇒ 1 we assume a time step(q, v)
t

−→ (q, v′) in Am.
Clearly,v′ ∈ Im

q and hencev′ ∈ Iq′ for someq′ ∈ Succτ (q). If q = q′ we are done

as(q, v)
t

−→ (q, v′) is also a time step ofAp. Otherwise, due to the properties of the
simulation graph, there is somet′ > 0 andq′′ ∈ Succτ (q) such that(q′′, v′ − t′)

τ
−→

(q′, v′ − t′)
t′

−→ (q′, v). If q′′ = q we are done otherwise we repeat the same argument
for (q′′, v′ − t′). Since all silent paths are acyclic we finally reach(q, v) and establish
the existence of the corresponding run. ut

