Automatic Abstraction of Timed Components

Ramzi Ben Salah Marius Bozga Oded Maler

VERIMAG, 2, av. de Vignate, 38610 Gieres, France
Ramzi.Salah@imag.fr Marius.Bozga@imag.fr Oded.Maler@imag.fr

Abstract. We develop a new technique for generatamgall-complexity abstrac-
tionsof timed automata that provide an approximation of thieied input-output
behavior This abstraction is obtained by first augmenting the automaton with
additionalinput clocks computing the “reachable” timed automaton that corre-
sponds to the augmented model, projecting the timing constraints on the input
clocks and finally hiding internal transitions and minimizing the automaton. As
a result we obtain a timed automaton in which output transitions are conditioned
on the time elapsed since the relevant input transitions that triggered them. T
abstract model does not allow any qualitative behavior which is infeagilgeéo
timing constraints, and maintains a relaxed form of the timing constraints asso
ciated with the feasible behaviors. We have implemented most of the ingtedie
of this technique and intend to apply it to examples from different application
domains.

1 Introduction

The basic premise of a component-based desigh methoddabgtia component (a
hardware IP block, a software module, a network router) eamded in the construction
of a system without deep knowledge of its intimate intertialcture but rather using
a more abstract description of its observable input-oub@itavior. This description
should be sufficiently detailed to prove the correct intdoacof the component with
the rest of the world, and sufficiently small to keep the asiagljractable. In the context
of discrete systems this means replacing an automdtwaith and automatopd’” with
less states and more behaviors.

In this work we apply this methodology to a more refined leviebescription,
namely that oftimed systems/here models represent not only the ordering relation
between input and output events, but also constraints ctethgoral distancbetween
them. We view a timed component as a reactive device thabmelspto input events
within a certain amount of time by emitting output events. 8¥e interested in the
analysis of large networks constructed from such compaenémsuch networks many
processes may be active simultaneously and the qualitagiavior of the overall sys-
tem often depends on the relative speeds of the processeds aey hard to analyze
as the number of components grows. Examples of timed commp®iclude digital
circuits (when propagation delays are taken into accowotymunication channels,
software modules (when execution times are considered)afatt, any other system
consisting of processes that consume some time betweéationitand termination.
Each timed component is modeled as a timed automaton, amatto augmented

clock variables whose role is to model and impose the timimgstraints associated
with the input-output behavior of the component.

i1
Al
1 —] o
- e
1] — =] 01
ia iy —| 02
S e T -
K3
o — 1 LI
t . o
(b)

Fig. 1. (a) A timed component and part of its semantics; (b) A network of timedpmments; (c)
An abstraction produced by our technique.

Figure 1 summarizes the contribution of the paper. At thewefsee a timed com-
ponent with an input channéland output channel and an illustration of its semantics
as atimed transducethat maintains some relationship between input and outparite
(or state changes). We assume uncertainty in timing infdomao that the transducer
is non deterministic and may produce several outputs to enginput. In the middle
of the figure we see eompound componenbnstructed as an acyclic network of such
elements with primary inputg, i, and primary outputs;, oo. Our technique analyzes
the network and produces a reduced model which gives a c@iser approximation
of the relation between the timing of input and output eveimtshe sense that every
input-output pair that may be exhibited by the network wéliroduced as well by the
abstract model. Thus, any correctness result or perforengnarantee obtained using
the abstract model will hold for the concrete model as well.

The major steps in our abstraction procedure, starting fiadimed automatomd
given as a product of the timed components, are the following

1. We transformA into an equivalent timed automato#f, which is A augmented
with additionalinput clocks Each input clock is created when an input event occurs
and is killed when the effect of this event has propagatesligin the systerh The
input clocks do not intervene with the dynamics of the autmmas they do not
participate in transition guards and are not reset whersitians are taken. Hence
the input/output behaviors o and.A! are identical. These event clocks serve to
represent the time elapsed since the occurrence of the event

2. We perform standard timed reachability computation4drwhich leads to an au-
tomaton. A", based on the simulation/reachability graph, whictsésnantically
equivalentto A%, but in which every path in the underlying transition graplin-
deed realizable. Transitions and states4éfare conditioned by conjunctions of

1 We will see later why in the systems that we consider, every event is gatgrh (or aborted)
within a finite amount of time and a finite number of clocks will suffice.

inequalities (zones) on all the clocks df, but the constraints involving the input
clocks are practically redundant in these zones.

3. Weprojectthe timing constraints itd” on the input clocks and get rid of all clocks
associated with the internal components (after they sewgeith eliminating im-
possible behaviors). In the resulting automati transitions and states are con-
ditioned by the time elapsed since the occurrence of inpemitsv This projection
relaxes some of the timing constraints and leads to morevimrksahan possible in
A", but the set of qualitative behaviors (sequences of tiansit is preserved.

4. We apply a minimization algorithm which merges stateglihthat are linked by
unobservable transitions to obtain the final automaddhwhich is semantically-
equivalent ta4r.2

Semantically speaking, we have the following relation kestvthe models:
[A] = [A] = [A] € [A] = [A™].

In terms of complexity,A has one clock per timed component and an untimed state
space exponential in the number of components, while thebeuwf clocks ind™ is
the maximal number of events that may be alive simultangpasd its state space is
much smaller.

We have developed a full tool chain starting from a high{l@escription of net-
works of timed components all the way down to the final abstnacdel and tested
its performance on several examples. We believe this tqoenwill have a significant
impact on system design.

The rest of the paper is organized as follows. In Section 2 me gpme intuition
about timed systems and components followed by the unavigidarmalization of the
basic notion used in the paper and in the analysis of timezhzata. We then move to a
step-by-step description of our abstraction techniqudirgginput clocks (Section 3),
timed reachability analysis (Section 4), clock project{&ection 5) and minimization
(Section 6).Finally we describe the accompanying impletatéon effort and report pre-
liminary experimental results.

2 Timed Systems

2.1 Intuition

The theory of timed behaviors and timed automata can be fatediusing either of
two semantic domains, one is event-based (timed-eventsegs, punctual discrete
events scattered along the real time axis) and one is statdi{signals, functions from
the positive reals to a discrete domain). To avoid repetitwee will use signals in the
formal definitions but will use both domains for motivatingaenples and benchmarks.
We describe below a class of event-based and a class ofostsg¢ettimed components
that can be substituted into the blocks of Figure 1-(b).

As a first class of examples consider a system consistingosf gach job decom-
posed into a partially-ordered set of tadks, . . ., T,, } whereT; < T} indicates that

2 Not yet sure. In the worst case it is an over approximation.

T; must terminate befor€; starts executing. The computation time of tdkcan vary
inside the intervall,, u;]. Each taskl; can be modeled as the simple timed automaton
depicted in Figure 2-(a). The automaton remains in an idgedt until it receives an
s; message, resets its cloeckto zero and moves to the active statén which it stays
for somet € [l;,u;] until it terminates and returns to state while emitting thee;
message. Networks of such automata can be composed byngnifg output of a task
with the inputs of the tasks that it precedes. Additionabawdta can be introduced to
model schedulers, buffers, admission controllers, ancenmiyield complex systems
exhibiting pipelining and concurrent processing. For ssig$tems, the reduced model
generated by our technique provides an approximation ahghw-output behavior re-
stricted to the arrival and termination of jobs. Such modals be used to approximate
the system throughput, find conditions on the inter-artivaés of jobs that cause buffer
overflow, and can be plugged as a single component into a nebddhrger network.

zt/c:=0
e 0 ~ o S
sifci =0 c<u,z” fe:=1L |0
L A ce[lul/ 0+€ [t,u)/
y ,c:i=1 yrei=1
¢i € [liyuil/ei,c:= L

(@) (b)

Fig. 2. (a) A timed automaton for a task; (b) a timed automaton for a circuit delagesie The
L symbol indicates that the clock is inactive as its corresponding state legisatiable.

The second class of models is that of digital circuits withage. We decompose
every gate which realizes a Boolean functios: f(x1, z2) into two parts, afnstanta-
neouspart whose output signalis always the value of applied to the current values
of z; andz,, and adelay elementvhich takesr as input and outputs a signalwhose
value followsz within ¢ € [I, «] time. The automaton for modeling this delay element
is similar to the task automaton, but has two “stable” st@tesid1 where the input and
output agree and two “unstable” statésand 1’ where the input has changed but the
process of propagation to the output has not yet completechmbe seen if Figure 2-
(b). When in a stable state like the automaton is inactive, until the value of the input
changes (denoted in the figure by) and the automaton moves to the excited state
in which the output is stild but the clocke is reset. Then, after somec [I, u] time, the
output catches up with the input and the automaton moveststtble staté and so
on.

These two automata have similar features. Both have stédtiessthat cannot be
exited from without an input event (n the task automaton) or a change in the input

value @+ to leave0 andz™ to leavel in the delay automaton). On the other hand the
duration of their sojourn in the active/excited states iarated byu. More generally
they have the property that all their cycles are labeled bBgast one input event. This
means that for every input which becomes stable at some,@irthe behaviors it
induces in the automaton become stable as well within soraedsal delay. This is an
important property for this class of systems and we leave #raexercise to the reader
to prove that it is preserved by (acyclic, loop-free) conitims.

An important issue that we have ignored in the task model bwetiaken care
of in the gate delay model is the following: what happens wharew event arrives
while the automaton is in an active/excited state, stilledigng the previous event?
The transition indicated by dashed arrows in the delay aatomprovide one possible
modeling solution (which is not electrically correct):ifgoes down again before its
rising has propagated to the output, the automaton retuoritiset stable staté and
forgets the whole episode. Another solution would be malkerar transition when this
happens. In the task automaton, we can make an error taangitien a nevg arrives at
stateA, or simply ignore it. Whatever the solution taken, it is cléet no system can
digest an unbounded number of events in finite time, and dlpis is closely related to
various bounded-variability assumptions concerning tipait. In the rest of the paper
we use the circuit delay model with “regret” transition, theg whole methodology can
be easily adapted to event-based semantics and to othexaapps for treating inputs
that exhibit excessive variability.

Before proceeding let us mention a special property of thedi automata that we
use which is preserved by our transformations. These auéoane non-blocking in the
sense that there is always a guard satisfied at the right boyoélan invariant.

2.2 Basic Definitions

We now move to the formalizing of our abstraction technigh® a semantic domain
we use Boolean signals defined as follows.

Definition 1 (Signals).LetR, be the set of non-negative real numbersrAdimensional
Boolean signal is a functiog : R, — B such that for every € B", £~ 1(0) is a
countable union ofeft-closed right-opeimtervals.

We use the notatiofi = o' -o%? - - - with ; # 0,1 to denote a signal whose valuesig

in [0,¢1), o2 inthe intervallt,, t; +t2) etc. Theuntimingof the signalu(§) = oq-09 - - -

is thesequenc®f values the signal goes through without the duration mfation. In
the context of automata such an untiming will be calleghalitative behaviorA partial
signal is a restriction of a signal to some inter{@lb), in such a case we denote the
duration of the signal by¢| = b — a. We will typically use sets of Boolean variables
whose valuations constitute the elements of the alphabedétiote the sets of signals
and partial signals over these valuatigit§ X') and.S*(X), respectively.

In the same manner that automata realize sequential funscftcansductions) on
sequences, a timed automaton realizes a (possibly nomieistic) length-preserving
sequential function from signals over its input variablesignals over its output vari-
ables.

Definition 2 (Timed Transduction). A functionf : S¥(X) — 257(%) is a timed
transduction if for everys € S*(X), v,v’ € S*(Z) such thatju| = |v| = || and
everya € S¥(X) andg € S¥(2)

flu-a)=v-Bandf(u-a') =" [impliesv =v'.

In other words, the value of(«) att may depend only on the valué¢a[t'] : ¢’ < t}.
Composition of two transductions can be defined naturallgretthe output of the first
becomes the input of the second. A signallimately-constanif it is constant from
somet onwards. A transduction stableif it maps every ultimately-constant signal to
a set of ultimately-constant signals.

Definition 3 (Abstraction). Let f and f’ be two signal transductions over the same
domains. We say that' is an abstraction off if f(£) C /(&) for every signak. We
denote this fact by < f’.

As the mechanical device for realizing timed transducti@use a variant of timed
automata with input and output which differs slightly frofmetclassical definitions
[AD94,HNSY94] as it reads multi-dimensiondense-timeéBoolean signals, and out-
puts Boolean signals. Hence the input and output alphatietdeare associated with
statesrather than withtransitions We also extend the domain of clock values to in-
clude the special symbdl indicating that the clock is currentlpactive

The set of valuations of a sét= {cy,...,c,} of clock variables, each denoted
asv = (vy,...,v,), defines the clock spadé = (R, U {L})". A configurationof
a timed automaton is a pa(g, v) consisting of a discrete state and a clock valuation.
For a valuatiorv = (vy,...,v,), v + t is the valuationv{, . .., v},) such that, = v,
if v; = L andv] = v; + t otherwise. Aclock inequalityis any conditions of the form
0<d,0<d,6>dorf > dfor some integed andd which is either a clock variable
c or a differencec — ¢’ between two clock variables. #lock conditionis a Boolean
combination of clock constraints. The set of all valuatisatisfying a clock condition
is called aimed polyhedronA timed polyhedron igonvexf it can be expressed using
aconjunctionof clock conditions and in this case it is calledane A timed polyhedron
Z is time-conveif it satisfies the following weaker property:if€ Z andv +t € Z
for somet > 0thenv +t € Z for everyt’ € [0,t). These notions are illustrated in
Figure 3.

(@) (b) (©

Fig. 3. (a) A timed polyhedron; (b) time-convex timed polyhedron; (c) a carpelyhedron
(zone).

Definition 4 (Timed Signal Transducer).

A timed signal transducer is a tupld = (X, Q,I,C, \,v,qo, I, A) where X is the
input alphabet, B™ in this paper),Q is a finite set of discrete stateg, is the output
alphabet andC is a set of clock variables. The input labeling function @ — X
associates an input letter to every state while the outputtian~y : Q — I" assigns
output letters. The initial state igy and the staying condition (invariant) assigns
to every state; a time-convex subsef, of H. The transition relationA consists of
elements of the fority, g, p, ¢’) whereq and¢’ are discrete states, the transition guard
g is a zone i andp is the update function, a transformationfdefined by a set of
assignments of the form:= 0, ¢ := ¢ or ¢ := L.

Although input-output labels are associated with stakes; induce an implicit labeling
on the transition and we will consider a transition frgrto ¢’ such that\(¢) # A(¢)
as labelled by the changes in the input variables whose vaiud ¢’) that are different
from their values im\(g¢), for examplec4] or 2| . We use the same convention for output
events. The underlyingransition graphof A is the result of removing the clocks, the
invariants, the transition guards and the clock updatebtaiman ordinary automaton.
The behavior of a timed transducer as it reads a sigralnsists of an alternation
betweertime progresperiods where the automaton stays in a sas long ag|[t] =
A(g) andI, holds, andliscrete instantaneous transitiogsiarded by clock conditions.
Formally, astepof the automaton is one of the following:
— A time step:(q,v) gt (g,v +1t),t € R, such thatr = \(q), 7 = v(q), and®
v+t € c(l,). We will write time steps a$q, v) % (q,v + t) when we do not
care about the labeling.

— A discrete step{q, v) LN (¢’,v"), for some transitiom = (¢, g, p,q’) € 4, such
thatv € g andv’ = p(v)

A run of the automaton starting from a configuratign, vo) is a finite or infinite se-
quence of alternating time steps and discrete steps of the fo

ty ,_t1 ta /) ta

ot/T F) 02 /T)
€: (go,v0) — (go,vo+t1) — (q1,v1) == (q1,v1+t2) — -,

such thay_ ¢; diverges. The input signal carried by the ruar{s- % - - - and the output
is Tfl -752 ---. The automaton realizes a timed transduciigrover its input and output
alphabets defined b € f4(¢) iff one of the runs induced by the input siggadutputs
the signak’.

One can define parallel and cascadenpositionof transducers where in the for-
mer the same input is read by two automata in parallel whilthénlatter the output
of the first automaton is the input of the second. We will avtbiel tedious but not sur-
prising formal definitions. Clearly the effect of cascadenposition of two transducers
amounts to the composition of their transductions.

We say that a statg of a transducer istableif all the clock are inactive in this
state and the only outgoing transitions are due to chandeimput, that is, if there is

3 We usec! to denote topological closure. This is needed when the invariant is ojen,< d.

a transition fromy to ¢’ then(q) # A(¢’). A transducer isnput-dependenif all the
cycles in its transition graph contain at least one tramsitbeled by an input event and
all stable states have bounded invariants. The followiegsample observations: 1) The
basic automata of Figure 2 are input-dependent; 2y land.A, are input dependent, so
is their composition (a cycle in a composition of two autoaaiust amounts to a cycle
in each of the components); 3) an input-dependent transdaaézes an ultimately-
stable transduction. From now on we restrict ourselvespatidependent transducers.

We say that a timed transducdf which differs from.A only in its invariants and
guards is more permissive tha if for every ¢, I, C I, and for every transition
(q,9,p,q¢") € A there is a transitionlg, ¢’, p,¢’') € A’ such thaty C ¢’. We denote
this fact by A < A’. ClearlyA < A’ implies f4 < fa-.

3 Adding Input Clocks

Before describing the first transformation, that is, frofrto A?, let us contemplate
on the life and death of an input event in an acyclic networkimed components
such as the one depicted in Figure 1-(b). To facilitate tseudision we assume that all
components have identical lower and upper bouraatglu on their reaction time. When
such an event occurs it may excite one or more of the compstemthich it is a direct
input. In the absence of additional events, each of thosgoaents, stabilizes within
somet € [l,u] and emits a change in its output, which may trigger reactios®me
further components, and so on. Due to acyclicity, a compioweith has reacted to an
input event cannot be influenced anymore by the same evensegaently all input
events leave the system within a finite amount of time, bodiye! - u, whered is the
depthof the network, the maximal number of sequentially-coneécomponents.

A second observation is that in the circuit model (Figurdp;(every two changes
in the value of the same variable must be separated by af liéast in order for both to
be alive in the system, otherwise the second change aberfsghvia a “regret” tran-
sition. Hence the maximal number of live events for eachtmauable is bounded by
m = d - u/l. Similar bounds will hold for other approaches for treatixgessive input
variability and, in fact, one may see that the number of Gvavents in a network is
always bounded by the number of its components. These argx bppnds and in prac-
tice the maximal number of live events can be much smalletaliegical interference
and stronger bounded-variability assumptions.

Automaton.A® is obtained by augmentingl with additional state variables that
keep track of live events and additional clocks that meath@&rage of these events. The
discrete state variables are countéss . ..i, , one for each input variable, ranging
overM = {0,1,...,m} wherem is the previously-mentioned upper bound, and a
dedicated structure that we callent-recording table

Definition 5 (Event Recording Table). An event recording table for a timed trans-
ducer.A having X as input variables and as clocks is€ : X x M — 2¢ whose value
at a given state has the following intended meaning:€(z,) if clock ¢ is active and
its value is causally related to the time elapsed since tlwiwence of the!” oldest
z-event in the system.

We denote the (finite) set of valuations of the event recgrtiable byE 4. We denote
by C the set of additional clocks of the form [:], each measuring the time since the
ith oldest change in the value of, for 1 < j <nandl <i < m.

Definition 6 (Transducer A?). Let A = (X,Q,I',C,\,v,qo, I, A) be a timed signal
transducer. Its extension with input clocks is the transdlut’ = (X, Q*, I, Ct, A, 4%, ¢b, I, AY)
whereQ! = Q x M™ x E4,Ct = CUC and\t, ! andI* are simple extensions af v

andI, respectively, for exampla!((q, u, £) = A(q). The initial state igj§, = (qo, 0, &)

with 0 being a vector of zeros for the counters afidsatisfying&y(z, i) = () for every

x andi. Then for every(q,u, &) € Q' and every transitiod = (q,g,p,q¢') € A we

create a transition((q, u, £), g, p, (¢, v/, £")) in A wherew’, £ and p* are the result

of applying the following transition-dependent transfation tou, £ and p:

1. If § is labeled by an input eventand resets clock, theni,, := i, + 1, E(x,i,) :=
{ctandp = pU{cy[iz] := 0} ;

2. If aclocke € &(z,i) appears ing and the transition resets a clodK, then
E(x, i) :=E(x,i) U{c'};

3. Ifdis labeled by := | then&(z,4) := E(x,4) — {c} for everyx andi such that
¢ € &(z,1). If this operation renders som&(z, i) empty, we perform event and
clockshifting, that is, for everyc > i we let€(z, k) := £(x, k + 1), add top' the
assignments, [k] := ¢, [k + 1] and¢,[i,] = L and finally leti,, := i, — 1.

Rule 1 corresponds to the arrival of a new event and the geme@nd resetting of its

clock. Rule 2 follows the propagation of the event to a subsatjcomponent. Rule 3
represent the stabilization of a component after reactiraptevent. If this was the last
component in the circuit excited by the event, this signifleath of that event in the
system. Clock shifting is just a technical means to utilieedame finite pool of clocks.

Proposition 1. AutomatonA! is an ordinary timed transducer which is semantically
equivalent toA.

The set of states is finite due to finitenesdéf andE 4. The extra event-recording
machinery does not interfere with the original dynamicsdoheither in the guards, in
resetting the clocks afl, nor in the assignment of input-output symbols to states. In
other words, the projection @® on @ defines a behavior-preserving homomorphism
from A to A.

4 The Reachable Automaton

To determine the possible behaviors of a timed automatod ¥arify whether all of
them satisfy certain properties) one must analyze the tafinansition system which
the automaton represents. The problem is more complicasedh ordinary finite-state
automata because of the clock variables. We recall someitd@fincommonly used
in the verification of timed automata [HNSY94,Y97,LPY97,BID98]. A symbolic
stateis a pair(q, Z) wheregq is a discrete state and is a zone. It denotes the set
of configurations{(q,v) : v € Z}. Symbolic states are closed under the following
operations:

— Thetime successoof (g, Z) is the set of configurations which are reachable from
(g, Z) by letting time progress without violating the staying citioeh of ¢:

Post'(¢,Z) = {(g,v+71):v € Z,7r > 0,v+7 € cl(l,)}.

We say thatq, Z) is time-closedf (¢, Z) = Post'(q, Z).
— The é-transition successoof (¢, Z) is the set of configurations reachable from
(¢, Z) by taking the transition = (q, g, p,¢') € A:

Post®(q,Z) = {(q'.p(v)) : v € ZN g}.

— The é-successoof a time-closed symbolic state, Z) is the set of configurations
reachable by a-transition followed by passage of time:

Succ® (q, Z) = Post'(Post’(q, Z)).

The forward reachability algorithm for TA starts with antial zone and generates all
successors until termination, while doing so it generdtegdachability graph(also
known as thesimulation graph.

Definition 7 (Reachability Graph). The reachability graph associated with a timed
automatonA is a directed graphG = (N, —, ng) such thatV is the smallest set of
symbolic states containing, = Post!(qo, {0}) and closed undeSucc’. The edges
are all pairs of symbolic states related Byicc’.

The fundamental property of the reachability graph is ttedinits a path fronig, Z) to
(¢', Z") ifand only if for everyv’ € Z' there exists a clock valuatiane Z and a run of
the automaton fronig, v) to (¢’, v"). Hence the union of all symbolic statesihgives
exactly the configurations of reachable froniqg, 0). From the reachability grap of
a timed transduced, one can build a timed transducéf with an equivalent behavior,
thatis,f4 = far-

Definition 8 (Interpreted Timed Transducer). Let A = (X, Q,,C, A\, v, qo, I, A)
be a timed transducer and 1€t = (N, —,nq) be its reachability graph. The inter-
preted timed transducer ol is A” = (X, N, I, C, A", 7", ng, I", A™) where for every
(¢,2) € N, XN'(¢q,Z) = Ma), " (¢,2) = ~(q), I"(q,Z) = Z and for every edge
(¢,Z) — (¢',Z') in G, associated with transitiod = (¢,9,p,¢') € A, we fix a
transition((¢, Z2),g N Z,p,(¢', Z")) € A".

An additional important property of the interpreted timeahsducer is that if we relax
completely its timing constraints, still each of its inputtput behaviors is an untiming
of some behavior of the original transducérMore concisely, with abuse of notation,
this can be phrased as:

p(fa) = fua-

Applying the construction of interpreted timed transduoed! we obtain the automa-
ton A” which is equivalent to4.

5 Clock Projection

The next step is to project all the timing constraintsfifion the input clocks to obtain
AP which is an abstraction ofl and satisfieg 4~ < f4». Moreover, due to the property
of the reachability graph the untiming ¢fi» is equivalent to that of 4-. To gain some
intuition on the type of information which is lost and thatialh is preserved in the
procedure, let us look at the example depicted in Figure 4;wtonsists of a network
with two components;, 4> which simply propagate the value ofafter some delay
to y; and later tay,. Clocksc; andc, are the clocks of the components and cloghs
the added input clock.

" Jee :=0,c1:=0 c2 € [l,ul/ys

z i
—|A .
| 100
=4, . 000 110 111

c1 € [lLul/yf,ca:=0

Fig. 4.(a) A network consisting of two timed components; (b) its timed automafoaugmented
with one input clock.

Performing reachability computation on this automaton Ww&im the automaton
A" with the same structure in which transitiop andy, are guarded, respectively,
by the following zones:

Z1=(10<c<uhcy=c) Zo=(1l<ca<uNl<ecy—cy <u)
After projection we obtain the automatotf with zones
Z}:(lgczgu) Zgz(ngchQu)

To understand the difference in the semantics of the tworaata let us look at the
two behaviors depicted in Figure 5. Both behaviors condist®o at some timety,
theny{r at somet; andy§r at timet,. In the original automaton these should satisfy
[<t —tg <wandl <ty —t; < u. The first condition is reflected by, because at
any timet, ¢; = t — tg, and the second condition is imposed Ly because at timg
co =t — t1. After the projection, the relation betweenandt, is broken and only the
constrain®l < ¢, < 2u, which was redundant iff,, remains inZ», which aIIows;ggr
to occur atty & [t1 + 1,1 + u]. The abstraction technique proposed in [ZMMO3] for
timed Petri nets has the same effect.

Formally, if Z is a zone consisting of valuatioris, ©) for the clocksC U C. Its
projection on the input clocks is

Zl={v:Jv(v,0) e Z}

4 To simplify the discussion we consider only one input event.

(€Y (b)

Fig. 5. (a) A behavior ofA’; (b) a behavior ofA? in whichts € [to + 2I,t0 + 2u] butts ¢
[tl —|— l,tl —|— u]

Syntactically this operation is performed by adding to thedtiption ofZ all the min-
imal constraints of the form < d andc — ¢’ < d which are implied by the constraints
in Z and then removing all the constraints that mention clock€'irThe remaining
constraints definé and this operation is easily implemented using differeiboends
matrices (DBM). The automatad? is obtained fromA” by simply applying the pro-
jection operation to all guards, invariants and clock upgafn important property of
AP is that all its clocks are input clocks which aret reset to zerty any transition in
an internal component which is not labeled by an input event.

6 State Minimization

AutomatonAP has less clocks but its discrete state space is still lardfenaakes dis-
tinctions between states that differ only in the value oéiinal variables. Our goal is
to produce a small-size abstraction for reducing the coxitglef verification when
using the reduced model of the component inside a largeranketvOur last step is
to merge such states and reduce the automaton as much dsigoastiout changing
significantly its semantics. Contrary to what one may premedy think, careless merg-
ing of states that agree on observable variables may notitéufeto the semantics
because such states may addifterent observable future$Ve will sketch below two
minimization procedures. The first one is more aggressidepaaserves the reachable
configurations of4? but may admit more behavio?sIhe other minimization technique
restricts the merging to states which are equivalent wigipeet to a time-abstracting
bisimulation and hence it does preserve the semantics. Whtas @re merged, silent
transitions between them disappear and their invariamts@mbined to yield the in-
variant of the merged state.

5 At this point we are not sure whether, for the special class of timed aitothat we use, this
reduction preserves the semantics, so we prefer to consider it agaagproximation.

We say that a transition 04? is observabléf it is associated with at least one input
event, output event or clock shifting (death of an input évektransition which is not
observable is calledilentand is denoted by. A silent run is a run consisting solely
of time passage and silent transitions. Note that sincetongata are input-dependent
there are no silent cycles and every silent run has a finitebeurof transitions and a
finite maximal duration until it reaches a stable state. Aestd A? is calledrigid if all
its incoming transitions are observable. Given a timedraaton with a set of stat&g,
we denote by2(Q) the set of its rigid states. The set of silent successorsigfdastate
¢ (includingq itself) is denoted bysucc™ (q). Note that all elements ducc” (¢) have
the same input/output labels.

The first minimization procedure is based on having one statesponding to each
rigid state and all its silent successors.

Definition 9 (Minimized Timed Transducer). Let A? = (X, Q,I,C, A\, 7, qo, I, A)
be a timed transducer obtained by the sequence of step®psgdyidescribed. Its mini-
mization isA™ = (X, Q™, I,C,\"™, 4™, qi*, I, A™) whereQ™ = 2(Q),

I = U I,

q’'€Succ™(q)

andA™ is constructed fromn\ as follows: for every observable transitién= (p, g, p,p’) €
A and everyy, ¢’ such thatp € Succ™(¢) andp’ € Succ™(¢') we define a transition
(q,9,p,¢") in A™. The labeling functiona™ and~™ are the restrictions ok and~ to

2(Q).
Proposition 2. The following two statements are equivalent:

1. Thereis a silent rug of A? from (¢, v) to (¢, v + t);
2. There is a time step of™ from (¢, v) to (¢, v + t).

Proof: see appendix.

Unfortunately this property is not sufficient by itself fargserving the behavior as
the example in Figure 6 shows. In this example stétesp; } are merged with some
rigid stateq;. Suppose that the visible transitians possible in4? atr; but not at any
of its silentpredecessorsand that visible transitioh is possible ap, and not in any
of its silentsuccessorsAfter merging we may create the possibility of an obser@abl
sequence, b which is not possible ind?. Note that the situation here is more subtle
then in purely-discrete abstraction because the origraakttion guards are preserved
in A™ and may prevent this false transitivity. Because of the rnamioity of the guards
along silent paths (clocks are not reset), the only reasohrfot to be enabled at, is
logical, but then due to some confluence properties of owmaata, it might be the case
thatp, can always be reached via anothelabeled path. But since we cannot prove
this at the moment of writing we are content with the fact tH&t over-approximates
the behavior of4? and preserves, by construction, its set of reachable caafiguns.

The second minimization procedure is based on computinghgraence relation,
a variant of time-abstracting bisimulation [LY97,TY01] time states of4? which de-
clares two states as equivalent if they admit the same satukf qualitative behaviors.

b
p1 o pe | ps
Lo . a b
L L T, SN P VA
; Q1 q2 q3
T1 B B T2
T
AP A™

Fig. 6. The relation between abstract and concrete runs.

Letq -, q' denote the fact that there is a silent path frgio ¢’ and leta stand for an
observable action. The relation on the states ofd? is defined as the largest relation
satisfying for every; andp

q~piff VaVq (q TLe, T d)= 3 p e P A ~p).

Then, the minimized automaton is similar to Definition 9 gptder the fact that merg-
ing is restricted to equivalence classes-ofThe question which minimization to prefer
is an empirical one concerning the tradeoff between fditlefss and complexity that
we hope to report in the final version of this paper.

7 Implementation Status and an Example

We have implemented a tool chain for performing the varidepsin our abstrac-
tion technique. We start with a high level description of Hystem as a network of
Boolean gates with delays which is transformed into a nétwbtimed automata. We
then perform time reachability computation while genexgtand maintaining input
clocks. Note that this involves the introduction of dynaroiocks whose denotation
may change over time, a fact which requires a special proeidu DBM normaliza-
tion. To avoid explosion due to interleaving we use our neviéBkploration algorithm
[BBMO6] which merges symbolic states that are reached bflwent paths. We are in
the process of completing the adaptation of the minimingpimcedures. All in all, the
implementation effort consists of 43K lines of code, in didai to the standard IF code
base.

We demonstrate the effect of our abstraction on a smallitingth on inputz which
enters two delay elements with different delays whose dstpoiinto an AND gate (see
Figure 7). The delay bounds &g 6] and[10, 12] for the delay elements arjdl, 2] for
the AND gate. With this parameters, tweevents may be alive simultaneously in the
system. The automatad? obtained automatically by our tool is shown in Figure 8
before minimization. After minimization the number of gswill be reduced from7
to 13. This saving is, of course, very small because this circa# Very few internal

variables, and will be much more significant when we applytéodnique to circuits
with 10-20 gates after completing the implementation.

Do Y2

Fig. 7. A circuit with y; andy. being delays (with different parameters)mofnd: the delay of
Y1 A y2.

8 Discussion

We have developed a novel methodology for automatic akgiraof timed compo-

nents and implemented most of its ingredients. In additboitstpotential contribution
to more efficient verification of timed automata, the new @pts introduced in this
work concerning the propagation of event “waves” in an acyoktworks of timed

components are of interest by themselves and may be usefatHfer approaches for
analyzing this kind of systems. We are currently completirgimplementation of the
minimization procedures in order to apply the techniquetgdr examples.

References

[AD94] R. Alur and D.L. Dill, A Theory of Timed Automatal heoretical Computer Science
126, 183-235, 1994.

[BBMO06] R. Ben Salah, M. Bozga and O. Maler, On Interleaving in Timadomata,CON-
CUR’06, 465-476, LNCS 4137, 2006.

[BBMO3] R.Ben Salah, M. Bozga and O. Maler, On Timing Analysis of @imational Circuits,
FORMATS’03204-219, LNCS 2791, 2003.

[BGMO02] M. Bozga, S. Graf and L. Mounier, IF-2.0: A Validation Enmirment for Component-
Based Real-Time SystenSAV’'02 LNCS 2404, Springer, 2002.

[BDM 98] M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. iMey Kronos: a
Model-Checking Tool for Real-Time Systent&oc. CAV'98 LNCS 1427, Springer,
1998.

[HNSY94] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, SymbdWodel-checking for
Real-time Systemdnformation and Computatiohl1, 193-244, 1994.

[LPY97] K.G. Larsen, P. Pettersson and W. Yi, UPPAAL in a Nutsh®tftware Tools for
Technology Transfet/2, 1997.

[LY97] K.G Larsen and W. Yi: Time-abstracted Bisimulation: Implicit Sifieations and De-
cidability, Information and Computatioh34, 75-101, 1997.

[MP95] O. Maler and A. Pnueli, Timing Analysis of Asynchronous Circuiing Timed Au-
tomata,CHARME’95 189-205, LNCS 987, Springer, 1995.

[TYO1l] S.TripakisandS. Yovine, Analysis of Timed Systems Using TilMstracting Bisim-
ulations,Formal Methods in System Desi8, 25-68 2001.

[Y97] S. Yovine, Kronos: A verification tool for real-time systenhsternational Journal of
Software Tools for Technology Transfierl997.

[ZMMO3] H. Zheng, E. Mercer, and C.J. Myers, Modular verificatiointimed circuits using
automatic abstractiohEEE Trans. on CA22, 2003.

i ‘TT (o oTTTTTTmTTTTTTS
2l | 3
co € [10 12] _ 2 1\ @€ [0, 6] :
]\1”(((]) . l Cco € [0 b] : i
yid Kill(co) |
co € [4,6] ; yil!
Eill(co) ; co € [4;6]
) : 3
,,,,,,,,,,,,,,, o €[0,6] ‘ v ;
(1100 ;=Y (0100 (1100)
{{co€[0,12] |- i co € [0, 6] 3 co € [4,12])
w | ek s |
co € 10,12 p ©0 :: 0 : :
al 3 | |
co € [10, 141 ,,,,,,,,,,,,,, e : ;
c1:=0 v ; 51]
o € [1[0, 1]4] Mm)i co € [10,12] ;
c1 €100,2 Y < :
o~ e o), o T\ €10, 14 1
A o€ [1[0. 1]41 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T !
c1 €[0,2 Y2l
co € [11,14] co <o e [10.14 . co € [10,12]
e1 €10,2] kill(c1) co € [11,14] kil (co)
cp—cC1 € [107 14] klll(CQ
Co = C1
kill(c1)----- | — x| 0 v
' Co =
{0111 111),
i_¢Co € [0, 6] o
3 3 o € fo 6] 2l
iyl v kill(co)
co i€ [4,6] : ' co € [3,2]
i B T N N 2
3 v €48 gt *Cclf(g ; e 6!5,8]
' ' — 0) -0 -— ;
(0L im0 | g {072] N kill(co)
D) o2 el " cliy)
R R 2| e lig 2|
co € [5,8] a € {0; 2} co € [5,8]
z| a1 €[0,2] co—c1 € 4,8 a1 € [0,2]
Cco € [578} cop—cC1 € [4,8] co:=0 cop—C1 € [4:7 8]
c0:=c1 c0:=cy
Kill(c:) kill(c1)
! x|
v co € [5,12] p7zzmmnn | s €0 € [0 6]
(0010) c:=0 i 1010 =0 3010)
Cco € [5, 12] i Cco € [0,6] z] Cco € [0 12]
o € }le (()6[0 12]
a € { coi€ [4,6] p co=0
o —001 €| 4 8] ew%zl 8]3 ;
o a 0110 co & el ‘
kill(cy) c1:=0 ! 1
e « A 1110)
o€ > we[48]]
to — C1 E 4 8 5 TT ,,,,,,,,,,,,,,,
co € 4,
c1 € 0, }
co—c1 € |4, 8]
kill(c

Fig. 8. The automatomd? obtained for the circuit of Figure 7. It uses two input clocksandc; .
The candidates for merging are shaded.

Appendix

Proposition 2. The following two statements are equivalent:

1. There is a silent rug of A? from (¢, v) to (¢/,v + t);
2. There is a time step of™ from (¢, v) to (¢, v + t).

Proof: Let us prove that first directior, = 2, by induction on the number of discrete
transitions in¢. In the base case when there are no discrete transitjoas;’ and the
two statements are identical. The proof of the inductive tem runs withk discrete
transitions to runs witt: + 1 transitions goes as follows. Such a run has the following
form:

t t
(g,v) =5 (g, v+t1) =5 (q1,v+t1) -+ (qrs t) = (e, v+Ht+tgsr) s (¢, t+trs1)

with ¢t = t; + ... + t. According to the inductive hypothesis there is a matchime t

step(q, v) N (¢,v +t) in A™ and what remains to show is that it can be prolonged
by ti41 time. Sincev + t + t 41 satisfiesl,, andl,, C I;* we have indeed the time

t+tg
Step(q71}) ml (q,v +t+tk+1)'

To prove the directio2 = 1 we assume a time step, v) SLIN (g,v") in A™,
Clearly,v" € I;* and hence’ € I, for someq’ € Succ”(q). If ¢ = ¢’ we are done
as(q,v) SN (¢,v") is also a time step afl”. Otherwise, due to the properties of the

T

simulation graph, there is sonte> 0 andq” € Succ”(q) such that(¢”,v' —t') —

(¢, v =) AN (¢',v). If ¢" = g we are done otherwise we repeat the same argument
for (¢”,v" — ¢'). Since all silent paths are acyclic we finally redghv) and establish
the existence of the corresponding run. O

