
Abstract

 

This paper introduces GRASP (Generic seaRch Algorithm
for the Satisfiability Problem), an integrated algorithmic frame-
work for SAT that unifies several previously proposed search-
pruning techniques and facilitates identification of additional
ones. GRASP is premised on the inevitability of conflicts during
search and its most distinguishing feature is the augmentation of
basic backtracking search with a powerful conflict analysis pro-
cedure. Analyzing conflicts to determine their causes enables
GRASP to backtrack non-chronologically to earlier levels in the
search tree, potentially pruning large portions of the search space.
In addition, by “recording” the causes of conflicts, GRASP can
recognize and preempt the occurrence of similar conflicts later on
in the search. Finally, straightforward bookkeeping of the causal-
ity chains leading up to conflicts allows GRASP to identify
assignments that are necessary for a solution to be found. Experi-
mental results obtained from a large number of benchmarks,
including many from the field of test pattern generation, indi-
cate that application of the proposed conflict analysis techniques
to SAT algorithms can be extremely effective for a large number
of representative classes of SAT instances.

 

1 Introduction

 

The Boolean satisfiability problem (SAT) appears in
many contexts in the field of computer-aided design of inte-
grated circuits including automatic test pattern generation
(ATPG), timing analysis, delay fault testing, and logic verifi-
cation, to name just a few. Though well-researched and
widely investigated, it remains the focus of continuing inter-
est because efficient techniques for its solution can have great
impact. SAT belongs to the class of NP-complete problems
whose algorithmic solutions are currently believed to have
exponential worst case complexity [6]. Over the years, many
algorithmic solutions have been proposed for SAT, the most
well known being the different variations of the Davis-Put-
nam procedure [3]. The best known version of this proce-
dure is based on a backtracking search algorithm that, at
each node in the search tree, elects an assignment and prunes
subsequent search by iteratively applying the 

 

unit clause

 

 and
the 

 

pure literal

 

 rules [18]. Iterated application of the unit
clause rule is commonly referred to as 

 

Boolean Constraint
Propagation

 

 (BCP) or as 

 

derivation of implications

 

 in the elec-
tronic CAD literature [1].

Most of the recently proposed improvements to the
basic Davis-Putnam procedure [5, 10, 17, 18] can be distin-
guished based on their decision making heuristics or their

use of preprocessing or relaxation techniques. Common to
all these approaches, however, is the chronological nature of
backtracking. Nevertheless, non-chronological backtracking
techniques have been extensively studied and applied to dif-
ferent areas of Artificial Intelligence, particularly Truth
Maintenance Systems (TMS), Constraint Satisfaction Prob-
lems (CSP) and Automated Deduction, in some cases with
very promising experimental results. (Bibliographic refer-
ences to the work in these areas can be found in [15].)

Interest in the direct application of SAT algorithms to
electronic design automation (EDA) problems has been on
the rise recently [2, 10, 17]. In addition, improvements to
the traditional structural (path sensitization) algorithms for
some EDA problems, such as ATPG, include search-pruning
techniques that are also applicable to SAT algorithms in gen-
eral [8, 9, 13]. The main purpose of this paper is to intro-
duce a procedure for the analysis of conflicts in search
algorithms for SAT. Even though the conflict analysis proce-
dure is described in the context of SAT, it can be naturally
extended to EDA-specific algorithms, thus complementing
other well-known search-pruning techniques [2, 9].

The proposed conflict analysis procedure has been
incorporated in GRASP (

 

Generic seaRch Algorithm for the
Satisfiability Problem

 

), an integrated algorithmic framework
for SAT. Several features distinguish the conflict analysis pro-
cedure in GRASP from others used in TMSs and CSPs.
First, conflict analysis in GRASP is tightly coupled with BCP
and the causes of conflicts need not necessarily correspond to
decision assignments. Second, clauses can be added to the
original set of clauses, and the number and size of added
clauses is user-controlled. This is in explicit contrast with
nogood recording techniques developed for TMSs and CSPs.
Third, GRASP employs techniques to prune the search by
analyzing the implication 

 

structure

 

 generated by BCP.
Exploiting the “anatomy” of conflicts in this manner has no
equivalent in other areas.

Some of the proposed techniques have also been applied
in several structural ATPG algorithms [8, 16], among others.
The GRASP framework, however, permits a unified repre-
sentation of all known search-pruning methods and potenti-
ates the identification of additional ones. The basic SAT
algorithm in GRASP is also customizable to take advantage
of application-specific characteristics to achieve additional
efficiencies [13]. Finally, the framework is organized to allow
easy adaptation of other algorithmic techniques, such as
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those in [2, 9], whose operation is orthogonal to those
described here.

The remainder of this paper is organized in four sec-
tions. In Section 2, we introduce the basics of backtracking
search, particularly our implementation of BCP, and describe
the overall architecture of GRASP. This is followed, in Sec-
tion 3, by a detailed discussion of the procedures for conflict
analysis and how they are implemented. Extensive experi-
mental results on a wide range of benchmarks, including
many from the field of ATPG, are presented and analyzed in
Section 4. In particular, GRASP is shown to outperform two
recent state-of-the-art SAT algorithms [5, 17] on most, but
not all, benchmarks. The paper concludes in Section 5 with
some suggestions for further research.

 

2 Definitions

 

2.1  Basic Definitions and Notation

 

A conjunctive normal form (CNF) formula  on 

 

n

 

binary variables  is the conjunction (AND) of 

 

m

 

clauses 

 

 each of which is the disjunction (OR) of
one or more literals, where a literal is the occurrence of a
variable or its complement. A formula  denotes a unique

 

n

 

-variable Boolean function  and each of its
clauses corresponds to an implicate of 

 

f

 

. Clearly, a function 

 

f

 

can be represented by many equivalent CNF formulas. A for-
mula is complete if it consists of the entire set of prime
implicates for the corresponding function. In general, a com-
plete formula will have an exponential number of clauses.
We will refer to a CNF formula as a 

 

clause database

 

 and use
“formula,” “CNF formula,” and “clause database” inter-
changeably. The satisfiability problem (SAT) is concerned
with finding an assignment to the arguments of

 that makes the function equal to 1 or proving
that the function is equal to the constant 0.

A backtracking search algorithm for SAT is imple-
mented by a 

 

search process

 

 that implicitly traverses the space
of  possible binary assignments to the problem variables.
During the search, a variable whose binary value has already
been determined is considered to be 

 

assigned

 

; otherwise it is

 

unassigned

 

 with an implicit value of . A 

 

truth
assignment

 

 for a formula  is a set of assigned variables and
their corresponding binary values. It will be convenient to
represent such assignments as sets of variable/value pairs; for
example . Alternatively,
assignments can be denoted as

. Sometimes it is conve-
nient to indicate that a variable 

 

x

 

 is assigned without specify-
ing its actual value. In such cases, we will use the notation

 to denote the binary value assigned to 

 

x

 

. An assign-
ment 

 

A

 

 is complete if ; otherwise it is partial. Evalu-
ating a formula  for a given truth assignment 

 

A

 

 yields three
possible outcomes:  and we say that  is satisfied
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and refer to 

 

A

 

 as a 

 

satisfying assignment

 

;  in which
case  is unsatisfied and 

 

A

 

 is referred to as an 

 

unsatisfying
assignment

 

; and  indicating that the value of 
cannot be resolved by the assignment. This last case can only
happen when 

 

A

 

 is a partial assignment. An assignment parti-
tions the clauses of  into three sets: satisfied clauses (evalu-
ating to 1); unsatisfied clauses (evaluating to 0); and
unresolved clauses (evaluating to 

 

X

 

). The unassigned literals
of a clause are referred to as its 

 

free literals

 

. A clause is said to
be 

 

unit

 

 if the number of its free literals is one.

 

2.2  Formula Satisfiability

 

Formula satisfiability is concerned with determining if a
given formula  is satisfiable and with identifying a satisfy-
ing assignment for it. Starting from an empty truth assign-
ment, a backtrack search algorithm traverses the space of
truth assignments implicitly and organizes the search for a
satisfying assignment by maintaining a 

 

decision tree

 

. Each
node in the decision tree specifies an elective assignment to
an unassigned variable; such assignments are referred to as

 

decision assignments

 

. A 

 

decision level

 

 is associated with each
decision assignment to denote its depth in the decision tree;
the first decision assignment at the root of the tree is at deci-
sion level 1. The search process iterates through the steps of:

1. Extending the current assignment by making a decision
assignment to an unassigned variable. This 

 

decision process

 

is the basic mechanism for exploring new regions of the
search space. The search terminates successfully if all
clauses become satisfied; it terminates unsuccessfully if
some clauses remain unsatisfied and all possible
assignments have been exhausted.

2. Extending the current assignment by following the logical
consequences of the assignments made thus far. The
additional assignments derived by this 

 

deduction process

 

are referred to as 

 

implication assignments

 

 or, more simply,

 

implications

 

. The deduction process may also lead to the
identification of one or more unsatisfied clauses implying
that the current assignment is not a satisfying assignment.
Such an occurrence is referred to as a 

 

conflict

 

 and the
associated unsatisfying assignments, called 

 

conflicting
assignments

 

.
3. Undoing the current assignment, if it is conflicting, so that

another assignment can be tried. This 

 

backtracking process

 

is the basic mechanism for retreating from regions of the
search space that do not correspond to satisfying
assignments.

The decision level at which a given variable 

 

x 

 

is either elec-
tively assigned or forcibly implied

 

 

 

will be

 

 

 

denoted by .
When relevant to the context, the assignment notation intro-
duced earlier may be extended to indicate the decision level
at which the assignment occurred. Thus,  would be
read as “

 

x

 

 becomes equal to 

 

v

 

 at decision level 

 

d

 

.”
The average complexity of the above search process

depends on how decisions, deductions, and backtracking are

ϕ
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made. It also depends on the formula itself. The implications
that can derived from a given partial assignment depend on
the set of available clauses. In general, a formula consisting of
more clauses will enable more implications to be derived and
will reduce the number of backtracks due to conflicts. The
limiting case is the complete formula that contains all prime
implicates. For such a formula no conflicts can arise since all
logical implications for a partial assignment can be derived.
This, however, may not lead to shorter execution times since
the size of such a formula may be exponential.

 

2.3  Function Satisfiability

 

Given an initial formula  many search systems
attempt to augment it with additional implicates to increase
the deductive power during the search process. This is usu-
ally referred to as “learning” [12] and can be performed
either as a preprocessing step (static learning) or during the
search (dynamic learning). Even though learning as defined
in [10, 12] only yields implicates of size 2 (i.e. non-local
implications), the concept can be readily extended to impli-
cates of arbitrary size.

Our approach can be classified as a dynamic learning
search mechanism based on diagnosing the causes of con-
flicts. It considers the occurrence of a conflict, which is
unavoidable for an unsatisfiable instance unless the formula
is complete, as an opportunity to “learn from the mistake
that led to the conflict” and introduces additional implicates
to the clause database only when it stumbles. 

 

Conflict diag-
nosis

 

 produces three distinct pieces of information that can
help speed up the search:

1. New implicates that did not exist in the clause database
and that can be identified with the occurrence of the
conflict. These clauses may be added to the clause database
to avert future occurrence of the same conflict and
represent a form of 

 

conflict-based equivalence

 

 (CBE).
2. An indication of whether the conflict was ultimately due

to the most recent decision assignment or to an earlier
decision assignment.
a. If that assignment was the most recent (i.e. at the

current decision level), the opposite assignment (if it
has not been tried) is immediately implied as a
necessary consequence of the conflict; we refer to this
as a 

 

failure-driven assertion

 

 (FDA).
b. If the conflict resulted from an earlier decision

assignment (at a lower decision level), the search can
backtrack to the corresponding level in the decision
tree since the subtree rooted at that level corresponds to
assignments that will yield the same conflict. The
ability to identify a backtracking level that is much
earlier than the current decision level is a form of non-
chronological backtracking that we refer to as 

 

conflict-
directed backtracking

 

 (CDB), and has the potential of
significantly reducing the amount of search.

These conflict diagnosis techniques are discussed further in

ϕ

 

Section 3.

 

2.4  Structure of the Search Process

 

The basic mechanism for deriving implications from a
given clause database is Boolean constraint propagation
(BCP) [5, 18]. Consider a formula  containing the clause

 and assume . For any satisfying
assignment to ,  requires that 

 

x

 

 be equal to 1, and we say
that  implies  due to . In general, given a
unit clause  of  with free literal , consis-
tency requires  since this represents the only possibil-
ity for the clause to be satisfied. If , then the
assignment  is required; if  then  is
required. Such assignments are referred to as 

 

logical implica-
tions

 

 (implications, for short) and correspond to the applica-
tion of the unit clause rule proposed by M. Davis and H.
Putnam [3]. BCP refers to the iterated application of this
rule to a clause database until the set of unit clauses becomes
empty or one or more clauses become unsatisfied.

Let the assignment of a variable 

 

x

 

 be implied due to a
clause . The 

 

antecedent assignment

 

 of 

 

x

 

,
denoted as , is defined as the set of assignments to vari-
ables other than 

 

x

 

 with literals in . Intuitively, 

 

 

 

desig-
nates those variable assignments that are directly responsible
for implying the assignment of 

 

x

 

 due to . For example, the
antecedent assignments of 

 

x

 

, 

 

y

 

 and 

 

z

 

 due to the clause
 are, respectively,

, , and
. Note that the antecedent assign-

ment of a decision variable is empty.
The sequence of implications generated by BCP is cap-

tured by a directed 

 

implication graph

 

 

 

I

 

 defined as follows
(see Figure 1):

1. Each vertex in 

 

I

 

 corresponds to a variable assignment
.

2. The predecessors of vertex  in 

 

I 

 

are the
antecedent assignments  corresponding to the unit
clause  that led to the implication of 

 

x

 

. The directed
edges from the vertices in  to vertex  are
all labeled with . Vertices that have no predecessors
correspond to decision assignments. 

3. Special conflict vertices are added to I to indicate the
occurrence of conflicts. The predecessors of a conflict
vertex  correspond to variable assignments that force a
clause  to become unsatisfied and are viewed as the
antecedent assignment . The directed edges from
the vertices in  to  are all labeled with .

The decision level of an implied variable x is related to those
of its antecedent variables according to:

(1)

2.5  Search Algorithm Template

The general structure of the GRASP search algorithm is
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shown in Figure 2. We assume that an initial clause database
 and an initial assignment A, at decision level 0, are given.

This initial assignment, which may be empty, may be viewed
as an additional problem constraint and causes the search to
be restricted to a subcube of the n-dimensional Boolean
space. As the search proceeds, both  and A are modified.
The recursive search procedure consists of four major opera-
tions:

1. Decide(), which chooses a decision assignment at each
stage of the search process. Decision procedures are
commonly based on heuristic knowledge. For the results
given in Section 4, the following greedy heuristic is used:

At each node in the decision tree evaluate the number
of clauses directly satisfied by each assignment to each
variable. Choose the variable and the assignment that
directly satisfies the largest number of clauses.

Other decision making procedures have been incorporated
in GRASP, as described in [15].

2. Deduce(), which implements BCP and (implicitly)
maintains the resulting implication graph. (See [15] for
the details of Deduce().)

3. Diagnose(), which identifies the causes of conflicts
and can augment the clause database with additional
implicates. Realization of different conflict diagnosis
procedures is the subject of Section 3.

4. Erase(), which deletes the assignments at the current
decision level.

We refer to Decide(), Deduce() and Diag-
nose() as the Decision, Deduction and Diagnosis engines,

Figure 1: Clause database and partial implication graph
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respectively. Different realizations of these engines lead to
different SAT algorithms. For example, the Davis-Putnam
procedure can be emulated with the above algorithm by
defining a decision engine, requiring the deduction engine to
implement BCP and the pure literal rule, and organizing the
diagnosis engine to implement chronological backtracking.

3 Conflict Analysis Procedures

When a conflict arises during BCP, the structure of the
implication sequence converging on a conflict vertex  is
analyzed to determine those (unsatisfying) variable assign-
ments that are directly responsible for the conflict. The con-
junction of these conflicting assignments is an implicant that
represents a sufficient condition for the conflict to arise.
Negation of this implicant, therefore, yields an implicate of
the Boolean function f (whose satisfiability we seek) that

// Global variables:  Clause database 
//  Variable assignment A
// Return value:  FAILURE or SUCCESS
// Auxiliary variables:  Backtracking level 
//
GRASP()
{

return (Search (0, ) != SUCCESS) ?
FAILURE : SUCCESS;

}

// Input argument: Current decision level d
// Output argument: Backtracking level 
// Return value: CONFLICT or SUCCESS
//
Search (d, & )
{

if (Decide (d) == SUCCESS)
return SUCCESS;

while (TRUE) {
if (Deduce (d) != CONFLICT) {

if (Search (d + 1, ) == SUCCESS)
return SUCCESS;

else if (  != d) {
Erase(); return CONFLICT;

}
}
if (Diagnose (d, ) == CONFLICT) {

Ease(); return CONFLICT;
}
Erase();

}
}

Diagnose (d, & )
{

 = Conflict_Induced_Clause(); // From (4)
Update_Clause_Database ( );
 = Compute_Max_Level();  // From (7)

if (  != d) {
add new conflict vertex  to I;
record ;
return CONFLICT;

}
return SUCCESS;

}
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β

β

β

β

β

β

β
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β
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Figure 2: Description of GRASP
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does not exist in the clause database . This new implicate,
referred to as a conflict-induced clause, provides the primary
mechanism for implementing failure-driven assertions, non-
chronological conflict-directed backtracking, and conflict-
based equivalence (see Section 2.3). In TMS [16] and in
some algorithms for CSP [11], “nogoods” provide conditions
similar to conflict-induced clauses. Nevertheless, the basic
mechanism for creating conflict-induced clauses differs.

We denote the conflicting assignment associated with a
conflict vertex  by  and the associated conflict-
induced clause by . The conflicting assignment is
determined by a backward traversal of the implication graph
starting at . Besides the decision assignment at the current
decision level, only those assignments that occurred at previ-
ous decision levels are included in . This is justified
by the fact that the decision assignment at the current deci-
sion level is directly responsible for all implied assignments at
that level. Thus, along with assignments from previous levels,
the decision assignment at the current decision level is a suf-
ficient condition for the conflict. To facilitate the computa-
tion of  we partition the antecedent assignments of

 as well as those for variables assigned at the current deci-
sion level into two sets. Let x denote either  or a variable
that is assigned at the current decision level. The partition of

 is then given by:

(2)

For example, referring to the implication graph of Figure 1,
 and .

Determination of the conflicting assignment  can
now be computed using the following recursive definition:

(3)

and starting with . The conflict-induced clause corre-
sponding to  is now determined according to:

(4)

where, for a binary variable x,  and . Applica-
tion of (2)-(4) to the conflict depicted in Figure 1 yields the
following conflicting assignment and conflict-induced clause
at decision level 6:

(5)

3.1  Standard Conflict Diagnosis Engine

The identification of a conflict-induced clause 
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enables the derivation of further implications that help
prune the search. Immediate implications of  include
asserting the current decision variable to its opposite value
and determining a backtracking level for the search process.
Such immediate implications do not require that  be
added to the clause database. Augmenting the clause data-
base with , however, has the potential of identifying
future implications that are not derivable without .
In particular, adding  to the clause database insures
that the search engine will not regenerate the conflicting
assignment that led to the current conflict.

3.1.1Failure-Driven Assertions.   If  involves the
current decision variable, erasing the implication sequence at
the current decision level makes  a unit clause and
causes the immediate implication of the decision variable to
its opposite value. We refer to such assignments as failure-
driven assertions (FDAs) to emphasize that they are implica-
tions of conflicts and not decision assignments. We note fur-
ther that their derivation is automatically handled by our
BCP-based deduction engine and does not require special
processing. This is in contrast with most search-based SAT
algorithms that treat a second branch at the current decision
level as another decision assignment. Using our running
example (see Figure 1) as an illustration, we note that after
erasing the conflicting implication sequence at level 6, the
conflict-induced clause  in (5) becomes a unit clause
with  as its free literal. This immediately implies the
assignment  and  is said to be asserted.

3.1.2Conflict-Directed Backtracking.   If all the literals in
 correspond to variables that were assigned at deci-

sion levels that are lower than the current decision level, we
can immediately conclude that the search process needs to
backtrack. This situation can only take place when the con-
flict in question is produced as a direct consequence of diag-
nosing a previous conflict and is illustrated in Figure 3 (a) for
our working example. The implication sequence generated
after asserting  due to conflict  leads to another
conflict . The conflicting assignment and conflict-induced
clause associated with this new conflict are easily determined
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ωC κ( )
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Figure 3: Non-chronological backtracking
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to be

(6)

and clearly show that the assignments that led to this second
conflict were all made prior to the current decision level.

In such cases, it is easy to show that no satisfying assign-
ments can be found until the search process backtracks to the
highest decision level at which assignments in  were
made. Denoting this backtrack level by , it is simply calcu-
lated according to:

(7)

When , where d is the current decision level, the
search process backtracks chronologically to the immediately
preceding decision level. When , however, the
search process may backtrack non-chronologically by jump-
ing back over several levels in the decision tree. It is worth
noting that all truth assignments that are made after decision
level  will force the just-identified conflict-induced clause

 to be unsatisfied. A search engine that backtracks
chronologically may, thus, waste a significant amount of
time exploring a useless region of the search space only to
discover after much effort that the region does not contain
any satisfying assignments. In contrast, the GRASP search
engine jumps directly from the current decision level back to
decision level . At that point,  is used to either
derive a FDA at decision level  or to calculate a new back-
tracking decision level.

For our example, after occurrence of the second conflict
the backtrack decision level is calculated, from (7), to be 3.
Backtracking to decision level 3, the deduction engine cre-
ates a conflict vertex corresponding to . Diagnosis of
this conflict leads to a FDA of the decision variable at level 3
(see Figure 3 (b)).

The pseudo-code illustrating the main features of the
diagnosis engine in GRASP is shown in Figure 2. General
proofs of the soundness and completeness of GRASP can be
found in [7, 14].

3.2  Variations on the Standard Diagnosis Engine

The standard conflict diagnosis, described in the previ-
ous section, suffers from two drawbacks. First, conflict analy-
sis introduces significant overhead which, for some instances
of SAT, can lead to large run times. Second, the size of the
clause database grows with the number of backtracks; in the
worst case such growth can be exponential in the number of
variables.

The first drawback is inherent to the algorithmic frame-
work we propose. Fortunately, the experimental results pre-
sented in Section 4 clearly suggest that, for specific instances
of SAT, the performance gains far outweigh the procedure’s
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additional overhead.
One solution to the second drawback is a simple modifi-

cation to the conflict diagnosis engine that guarantees the
worst case growth of the clause database to be polynomial in
the number of variables. The main idea is to be selective in
the choice of clauses to add to the clause database. Assume
that we are given an integer parameter k. Conflict-induced
clauses whose size (number of literals) is no greater than k are
marked green and handled as described earlier by the stan-
dard diagnosis engine. Conflict-induced clauses of size
greater than k are marked red and kept around only while
they are unit clauses. Implementation of this scheme requires
a simple modification to procedure Erase(), which must
now delete red clauses with more than one free literal, and to
the diagnosis engine, which must attach a color tag to each
conflict-induced clause. With this modification the worst
case growth becomes polynomial in the number of variables
as a function of the fixed integer k.

Further enhancements to the conflict diagnosis engine
involve generating stronger implicates (containing fewer lit-
erals) by more careful analysis of the structure of the implica-
tion graph. Such implicates are associated with the
dominators [15] of the conflict vertex . These dominators,
referred to as unique implication points (UIPs), can be identi-
fied in linear time with a single traversal of the implication
graph. Additional details of the above improvements to the
standard diagnosis engine can be found in [15].

4 Experimental Results

In this section we present an experimental comparison
of GRASP with two state-of-the-art and publicly available
SAT programs, TEGUS [17] and POSIT [5]. TEGUS was
adapted to read CNF formulas and augmented to continue
searching when all its default options were exhausted in
order to abort fewer faults. No changes were made to POSIT.

GRASP and POSIT have been implemented in C++,
whereas TEGUS has been implemented in C. The programs
were compiled with GCC 2.7.2 and run on a SUN SPARC
5/85 machine with 64 MByte of RAM. The experimental
evaluation of the three programs is based on two different
sets of benchmarks:
• The UCSC benchmarks [4], developed at the University

of California, Santa Cruz, that include instances of SAT
commonly encountered in test pattern generation of
combinational circuits for bridging and stuck-at faults.

• The DIMACS challenge benchmarks [4], that include
instances of SAT from several authors and from different
application areas.

For the experimental results given below, GRASP was
configured to use the decision engine described in Section
2.5, to allow the generation of clauses based on UIPs, and to
limit the size of clauses added to the clause database to 20 or
fewer literals. All SAT programs were run with a CPU time

κ



limit of 10,000 seconds (about three hours).
For the tables of results the following definitions apply.

A benchmark suite is partitioned into classes of related
benchmarks. In each class, #M denotes the total number of
class members; #S denotes the number of class members for
which the program terminated in less than the allowed
10,000 CPU seconds; and Time denotes the total CPU
time, in seconds, taken to process all members of the class.

The results obtained for the UCSC benchmarks are
shown in Table 1. The BF and SSA benchmark classes
denote, respectively, CNF formulas for bridging and stuck-at
faults. For these benchmarks GRASP performs significantly
better than the other programs. Both POSIT and TEGUS
abort a large number of problem instances and require much
larger CPU times. These benchmarks are characterized by
extremely sparse CNF formulas for which BCP-based con-
flict analysis works particularly well. The performance differ-
ence between GRASP and TEGUS, a very efficient ATPG
tool, clearly illustrates the power of the search-pruning tech-
niques included in GRASP.

An experimental study of the effect of the growth of the
clause database on the amount of search and the CPU time
can be found in [15]. In general, adding larger clauses helps
reducing the number of backtracks and the CPU time. This
holds true until the overhead introduced by the additional
clauses offsets the gains of reducing the amount of search.

GRASP was also compared with the other algorithms
on the DIMACS benchmarks [4], and the results are
included in Table 1. We can conclude that for classes of
benchmarks where GRASP performs better the other pro-
grams either take a very long time to find a solution or are
unable to find a solution in less than 10,000 seconds. We can
also observe that benchmarks on which POSIT performs
better than GRASP can also be handled by GRASP; only the
overhead inherent to GRASP becomes apparent.

Another useful experiment is to measure how well con-
flict analysis works in practice. For this purpose statistics
regarding some DIMACS benchmarks are shown in Table 2,
where #B denotes the number of backtracks, #NCB denotes
the number of non-chronological backtracks, #LJ is the size
of the largest non-chronological backtrack, #UIP indicates
the number of unique implication points found, %G
denotes the variation in size of the clause database, and Time
is the CPU time in seconds. From these examples several
conclusions can be drawn. First, the number of non-chrono-
logical backtracks can be a significant percentage of the total
number of backtracks. Second, the jumps in the decision tree
can save a large amount of search work. As can be observed,
in some cases the jumps taken potentially save searching mil-
lions of nodes in the decision tree. Third, the growth of the
clause database is not necessarily large. Fourth, UIPs do
occur in practice and for some benchmarks a reasonable
number is found given the number of backtracks. Finally, for

most of these examples conflict analysis causes GRASP to be
much more efficient than POSIT and TEGUS. Nevertheless,
either POSIT or TEGUS can be more efficient in specific
benchmarks, as the examples of the last three rows of Table 2
indicate. TEGUS performs particularly well on these
instances because they are satisfiable and because TEGUS
iterates several decision making procedures.

5 Conclusions and Research Directions

This paper introduces a procedure for conflict analysis
in satisfiability algorithms and describes a configurable algo-
rithmic framework for solving SAT. Experimental results
indicate that conflict analysis and its by-products, non-chro-
nological backtracking and identification of equivalent con-
flicting conditions, can contribute decisively for efficiently
solving a large number of classes of instances of SAT. For this
purpose, the proposed SAT algorithm is compared with
other state-of-the-art algorithms.

The natural evolution of this research work is to apply
GRASP to different EDA applications, in particular test pat-
tern generation, timing analysis, delay fault testing and
equivalence checking, among others. Despite being a fast
SAT algorithm, GRASP introduces noticeable overhead that
can become a liability for some of these applications. Conse-

Benchmark
Class

#M
GRASP TEGUS POSIT

#S Time #S Time #S Time

BF-0432 21 21 47.6 19 53,852 21 55.8

BF-1355 149 149 125.7 53 993,915 64 946,127

BF-2670 53 53 68.3 25 295,410 53 2,971

SSA-0432 7 7 1.1 7 1,593 7 0.2

SSA-2670 12 12 51.5 0 120,000 12 2,826

SSA-6288 3 3 0.2 3 17.5 3 0.0

SSA-7552 80 80 19.8 80 3,406 80 60.0

AIM-100 24 24 1.8 24 107.9 24 1,290

AIM-200 24 24 10.8 23 14,059 13 117,991

BF 4 4 7.2 2 26,654 2 20,037

DUBOIS 13 13 34.4 5 90,333 7 77,189

II-32 17 17 7.0 17 1,231 17 650.1

PRET 8 8 18.2 4 42,579 4 40,691

SSA 8 8 6.5 6 20,230 8 85.3

AIM-50 24 24 0.4 24 2.2 24 0.4

II-8 14 14 23.4 14 11.8 14 2.3

JNH 50 50 21.3 50 6,055 50 0.8

PAR-8 10 10 0.4 10 1.5 10 0.1

PAR-16 10 10 9,844 10 9,983 10 72.1

II-16 10 9 10,311 10 269.6 9 10,120

H 7 5 27,184 4 32,942 6 11,540

F 3 0 30,000 0 30,000 0 30,000

G 4 0 40,000 0 40,000 0 40,000

PAR-32 10 0 100,000 0 100,000 0 100,000

Table 1: Results on the UCSC and DIMACS benchmarks



quently, besides the algorithmic organization of GRASP, spe-
cial attention must be paid to the implementation details.
One envisioned compromise is to use GRASP as the second
choice SAT algorithm for the hard instances of SAT when-
ever other simpler, but with less overhead, algorithms fail to
find a solution in a small amount of CPU time.

Future research work will emphasize heuristic control of
the rate of growth of the clause database. Another area for
improving GRASP is related with the deduction engine.
Improvements to the BCP-based deduction engine are
described in [14] and consist of different forms of probing
the CNF formula for creating new clauses. This approach
naturally adapts and extends other deduction procedures,
e.g. recursive learning [9] and transitive closure [2].
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