Графы и их применения — различия между версиями

Материал из Кафедра математической кибернетики
Перейти к: навигация, поиск
м (Программа курса: Исправил расписание по программу "1 раз в неделю")
 
Строка 15: Строка 15:
 
==Программа курса==
 
==Программа курса==
  
'''Алгоритмы на графах'''.
+
'''Лекция 1'''. Числа Рамсея. Верхняя и нижняя оценки.
  
'''Лекция 8'''. Поиск в глубину и поиск в ширину в графе. Нахождение остовного дерева графа поиском в глубину и поиском в ширину. Отыскание фундаментального множества циклов в графе. Критерий разделяющей вершины на основе поиска в глубину. Нахождение компонент двусвязности графа.
+
'''Лекция 2'''. Обобщение чисел Рамсея. Примеры их использования.
  
'''Лекция 9'''. Алгоритмы поиска кратчайшего остовного дерева. Матроиды и жадные алгоритмы. Теорема Радо-Эдмонса.
+
'''Лекция 3'''. Теоремы о раскрасках графа.
  
'''Лекция 10'''. Потоки в сетях. Максимальный поток в сети. Теорема Форда-Фалкерсона о величине максимального потока в сети. Алгоритмы отыскания максимального потока в сети.
+
'''Лекция 4'''. Поиск в глубину и поиск в ширину в графе. Нахождение остовного дерева графа поиском в глубину и поиском в ширину. Отыскание фундаментального множества циклов в графе. Критерий разделяющей вершины на основе поиска в глубину. Нахождение компонент двусвязности графа.
  
'''Лекция 11'''. Паросочетания в графах. Теорема Холла. Паросочетания в двудольных графах. Алгоритм отыскания наибольшего паросочетания двудольного графа на основе построения максимального потока в сети.
+
'''Лекция 5'''. Алгоритмы поиска кратчайшего остовного дерева. Матроиды и жадные алгоритмы. Теорема Радо-Эдмонса.
  
'''Лекция 12'''. Паросочетания в графах. Теорема Куна. Теорема Эдмонса. Алгоритмы отыскания наибольших паросочетаний в двудольных графах и в произвольных графах.  
+
'''Лекция 6'''. Потоки в сетях. Максимальный поток в сети. Теорема Форда-Фалкерсона о величине максимального потока в сети. Алгоритмы отыскания максимального потока в сети.
  
'''Лекция 13'''. Эйлеровы пути и циклы в графах. Критерий эйлеровости графа. Задача китайского почтальона. Гамильтоновы пути и циклы в графах. Достаточные условия гамильтоновости графа.
+
'''Лекция 7'''. Паросочетания в графах. Теорема Холла. Паросочетания в двудольных графах. Алгоритм отыскания наибольшего паросочетания двудольного графа на основе построения максимального потока в сети.
  
'''Лекция 14'''. Гамильтоновы циклы в графах. Задача коммивояжера с неравенством треугольника и без него. Приближенные алгоритмы. Переборные алгоритмы, дерево решений. Алгоритм перебора всех остовных деревьев графа.
+
'''Лекция 8'''. Паросочетания в графах. Теорема Куна. Теорема Эдмонса. Алгоритмы отыскания наибольших паросочетаний в двудольных графах и в произвольных графах.  
  
'''Лекция 15'''. Изоморфизм графов. Полиномиальный алгоритм проверки изоморфизма деревьев. Построение выпуклого n-угольника на достаточно большом множестве точек.
+
'''Лекция 9'''. Эйлеровы пути и циклы в графах. Критерий эйлеровости графа. Задача китайского почтальона. Гамильтоновы пути и циклы в графах. Достаточные условия гамильтоновости графа.
 +
 
 +
'''Лекция 10'''. Гамильтоновы циклы в графах. Задача коммивояжера с неравенством треугольника и без него. Приближенные алгоритмы. Переборные алгоритмы, дерево решений. Алгоритм перебора всех остовных деревьев графа.
 +
 
 +
'''Лекция 11'''. Изоморфизм графов. Полиномиальный алгоритм проверки изоморфизма деревьев. Построение выпуклого n-угольника на достаточно большом множестве точек.
  
 
==Программа семинарских занятий==
 
==Программа семинарских занятий==

Текущая версия на 13:21, 11 сентября 2019

Обязательный курс магистерской программы "Дискретные структуры и алгоритмы"

Курс читается в 1-м семестре магистратуры, 2 ч лекций, 1 ч семинаров

Лекторы: Селезнева Светлана Николаевна, Бухман Антон Владимирович

Объявления

Вопросы к экзамену

Экзамен для аспирантов состоится 8 января (в понедельник) в 9 ч в ауд. 503.

Экзамен для студентов 518/1 группы состоится по расписанию экзаменов.

Программа курса

Лекция 1. Числа Рамсея. Верхняя и нижняя оценки.

Лекция 2. Обобщение чисел Рамсея. Примеры их использования.

Лекция 3. Теоремы о раскрасках графа.

Лекция 4. Поиск в глубину и поиск в ширину в графе. Нахождение остовного дерева графа поиском в глубину и поиском в ширину. Отыскание фундаментального множества циклов в графе. Критерий разделяющей вершины на основе поиска в глубину. Нахождение компонент двусвязности графа.

Лекция 5. Алгоритмы поиска кратчайшего остовного дерева. Матроиды и жадные алгоритмы. Теорема Радо-Эдмонса.

Лекция 6. Потоки в сетях. Максимальный поток в сети. Теорема Форда-Фалкерсона о величине максимального потока в сети. Алгоритмы отыскания максимального потока в сети.

Лекция 7. Паросочетания в графах. Теорема Холла. Паросочетания в двудольных графах. Алгоритм отыскания наибольшего паросочетания двудольного графа на основе построения максимального потока в сети.

Лекция 8. Паросочетания в графах. Теорема Куна. Теорема Эдмонса. Алгоритмы отыскания наибольших паросочетаний в двудольных графах и в произвольных графах.

Лекция 9. Эйлеровы пути и циклы в графах. Критерий эйлеровости графа. Задача китайского почтальона. Гамильтоновы пути и циклы в графах. Достаточные условия гамильтоновости графа.

Лекция 10. Гамильтоновы циклы в графах. Задача коммивояжера с неравенством треугольника и без него. Приближенные алгоритмы. Переборные алгоритмы, дерево решений. Алгоритм перебора всех остовных деревьев графа.

Лекция 11. Изоморфизм графов. Полиномиальный алгоритм проверки изоморфизма деревьев. Построение выпуклого n-угольника на достаточно большом множестве точек.

Программа семинарских занятий

Семинар 1. Простейшие свойства графов (повторение). [5] Гл. 6: 1.3, 1.4, 1.5, 1.13, 1.16, 1.21, 1.22, 1.27, 1.28, 1.29, 1.31, 3.10, 3.14, задачи лекции 1.

Семинар 2. Связность, двусвязность графов. Остовные деревья. [5] Гл. 6: 1.24, 1.17, 3.15, задачи лекций 2 и 3.

Семинар 3. Раскраски графов. Хроматическое число и хроматический индекс графа. [5] Гл. 6: 2.18, 2.19, 2.20, 2.21, задачи лекций 4 и 5.

Семинар 4. Наследственные свойства графов. Числа Рамсея. [5] Гл. 6: 2.7, 2.8, 2.9, 2.10, 2.13, 2.17, задачи лекций 6 и 7.

Литература

Основная:

1. Емеличев В.А., Мельников О.И., Сарванов В.И., Тышкевич Р.И. Лекции по теории графов. М.: Либроком, 2009.

2. Bondy J.A., Murty U.S.R. Graph theory. Springer, 2008.

3. Харари Ф. Теория графов. М.: Мир, 1973.

4. Липский В. Комбинаторика для программистов. М.: Мир, 1988.

5. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004.

Дополнительная:

6. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012.

7. Алексеев В.Б. Введение в теорию сложности алгоритмов. М.: Издательский отдел ф-та ВМК МГУ имени М.В. Ломоносова, 2002.

8. Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи. М.: Мир, 1982.

9. Оре О. Теория графов. М.: Наука, 1980.

10. Робертс Ф.С. Дискретные математические модели с приложениями к социальным, биологическим и экологическим задачам. М.: Наука, 1986.

11. Форд Л.Р., Фалкерсон Д.Р. Потоки в сетях. М.: Мир, 1966.

12. Чашкин А.В. Лекции по дискретной математике. М.: Изд-во механико-математического ф-та МГУ имени М.В. Ломоносова, 2007.

13. Diestel R. Graph Theory. Springer, 2010.