Московский государственный университет имени М. В. Ломоносова

Факультет вычислительной математики и кибернетики

С. А. Ложкин

ЛЕКЦИИ ПО ОСНОВАМ КИБЕРНЕТИКИ

(вариант 2012 г., глава 3)

Москва 2012

Оглавление

3 (Син	нтез и сложность управляющих систем	7
-	§1	Задача синтеза. Простейшие методы синтеза	
		схем и связанные с ними верхние оценки	
		сложности функций	7
	§2	Простейшие нижние оценки сложности ФАЛ.	
		Нижние мощностные оценки функций	
		Шеннона	13
	§3	Метод каскадов для контактных схем и	
		схем из функциональных элементов.	
		Метод Шеннона	22
	$\S5$	Дизъюнктивно-универсальные множества	
		функций. Асимптотически наилучший	
		метод О. Б. Лупанова для синтеза	
		схем из функциональных элементов	
		в базисе $\{\&, \lor, \neg\}$	35
	§6	Регулярные разбиения единичного куба и	
		моделирование функций переменными.	
		Синтез схем для некоторых дешифраторов и	
		мультиплексоров	42
	§7	Методы синтеза формул в базисе $\{\&, \lor, \neg\}$, поведе	ение
		функции Шеннона для глубины ФАЛ	48
	§8	Асимптотически наилучший метод синтеза	
		контактных схем	51

Литература

3

 $\mathbf{58}$

Введение

Курс «Основы кибернетики» (ранее «Элементы кибернетики»), создателем и основным лектором которого был чл.-корр. РАН С. В. Яблонский, читается на факультете ВМиК МГУ с первых лет его существования. В настоящее время он читается в 6–8 семестрах и является обязательным для всех студентов, обучающихся по специальности 01.02 прикладная математика и информатика, а также бакалавров одноименного направления 510200 и направления 010400 информационные технологии. При этом объем и, в некоторой степени, программа курса «Основы кибернетики» варьируются в зависимости от специализации и направления.

Курс «Основы кибернетики» посвящен изложению теории дискретных управляющих систем, которая представляет собой часть дискретной математики и математической кибернетики. В ней разрабатываются и изучаются дискретные математические модели, описывающие функционирование и структуру сложных систем преобразования информации (интегральных схем, программ и т. п.). В основе этих моделей лежат различные способы задания функционирования управляющих систем с помощью дискретных функций и их структурная реализация в тех или иных классах графов (классах схем). При исследовании управляющих систем ставятся и решаются две основные задачи: задача анализа и задача синтеза.

Задача анализа состоит в нахождении функционирования данной схемы, а задача синтеза — в построении схемы, имеющей (реализующей) заданное функционирование. Каждая из этих задач может рассматриваться либо как инди-

Введение

видуальная задача, и тогда ее решением является конкретное функционирование (схема), либо как массовая задача, и тогда ее решением должен быть алгоритм нахождения функционирования (схемы). Задача синтеза имеет, как правило, множество решений, из которых выбирают решение, оптимальное по какому-либо критерию. Чаще всего в качестве такого критерия выступает сложность схемы, понимаемая как сумма сложностей составляющих ее элементов или задержка схемы, понимаемая как максимальная сумма задержек для последовательно соединенных элементов схемы.

С содержательной точки зрения различные критерии оптимальности отражают различные параметры моделируемых электронных схем или программ. Так, например, сложность может характеризовать стоимость, размеры или потребляемую мощность СБИС, а также время выполнения программы на одном процессоре. При этом задержка схемы характеризует время срабатывания СБИС или время выполнения программы на параллельных процессорах и т. п.

Если задача синтеза решена в одной модели, можно пытаться перенести это решение в другие модели с помощью структурного моделирования. Кроме того, полученное решение можно «улучшить» с помощью эквивалентных преобразований. С другой стороны, если задача синтеза решена для одних функций, можно пытаться «разбить» (декомпозировать) новую функцию на уже рассмотренные и построить из синтезированных для них схем схему для новой функции с помощью операции суперпозиции.

Указанные выше задачи рассматриваются в лекциях для всех основных классов схем (дизъюнктивные нормальные формы, формулы и схемы из функциональных элементов, контактные схемы), а также для некоторых модификаций этих классов.

Первая глава посвящена различным вопросам представ-

Введение

ления функций алгебры логики с помощью таблиц и дизъюнктивных нормальных форм (минимизация дизъюнктивных нормальных форм).

Вторая глава содержит описание структуры и функционирования схем из основных классов управляющих систем, а также из некоторых классов, представляющих собой их обобщения или модификации. В ней устанавливаются верхние оценки числа схем различных типов, рассматриваются особенности применения операции суперпозиции в различных классах схем и некоторые вопросы их структурного моделирования.

Во второй главе изучаются также эквивалентные преобразования схем на основе тождеств во всех основных классах управляющих систем. Для каждого из них приводится система «основных» тождеств, доказывается полнота этой системы и изучаются вопросы ее избыточности.

В третьей главе подробно рассматривается задача синтеза управляющих систем. В ней приводится целый спектр методов синтеза схем (от простейших до асимптотически оптимальных), устанавливаются нижние мощностные оценки функций Шеннона и оценки сложности ряда конкретных функций, доказывается минимальность некоторых схем.

В четвертой главе представлены некоторые вопросы надежности и контроля схем (построение теств для таблиц, синтез самокорректирующихся контактных схем).

Глава 3

Синтез и сложность управляющих систем

§1 Задача синтеза. Простейшие методы синтеза схем и связанные с ними верхние оценки сложности функций.

В общем виде задача синтеза состоит в построении по заданной системе функций реализующей ее схемы, которая принадлежит заданному классу и на которой достигается минимальное значение заданного функционала сложности. Частным случаем этой задачи является рассмотренная в §7 главы 1 задача минимизации ДНФ. Дадим основные определения, связанные с задачей синтеза схем, и введем необходимые обозначения.

Пусть \mathcal{U} — один из введенных в главе 2 классов схем, который является полным в том смысле, что каждую систему ФАЛ F можно реализовать некоторой его схемой Σ , а Ψ — какой-либо функционал сложности схем класса \mathcal{U} , то есть отображение \mathcal{U} во множество неотрицательных действительных чисел. Будем считать, что функционал сложности Ψ обладает свойством *монотонности*, то есть $\Psi(\Sigma) \ge$ $\Psi(\Sigma')$, если $\Sigma, \Sigma' \in \mathcal{U}$, и Σ' получается из Σ в результате удаления вершин или ребер (ср.с §7 гл. 1). Все введенные в главе 2 функционалы сложности этим свойством обладают. Определим сложность $\Psi(F)$ системы ФАЛ F относительно

функционала Ψ в классе \mathcal{U} как минимальное значение величины $\Psi(\Sigma)$ на множестве тех схем Σ из \mathcal{U} , которые реализуют F. При этом схема Σ , принадлежащая классу \mathcal{U} , которая реализует F и для которой $\Psi(\Sigma) = \Psi(F)$, называется *минимальной схемой* в классе \mathcal{U} относительно функционала Ψ . В силу монотонности функционала Ψ , минимальная схема всегда может быть найдена среди приведенных схем.

Величину $\Psi(F)$, в том случае когда функционал Ψ совпадает с введенным в главе 2 функционалом L(D, R, и т. д.), будем называть сложсностью (соответственно глубиной, рангом, и т. д.) системы $\Phi A \pi F$. Введем функцию

$$\Psi\left(n\right) = \max_{f \in P_{2}(n)} \Psi\left(f\right),$$

которая, обычно, называется функцией Шеннона для класса \mathcal{U} относительно функционала сложности Ψ . В дальнейшем сложность системы ФАЛ F относительно функционала Ψ для любого из введенных классов вида $\mathcal{U}_{\mathrm{B}}^{\mathrm{A}}$ (вида \mathcal{U}^{A}) будем обозначать через $\Psi_{\mathrm{B}}^{\mathrm{A}}(F)$ (соответственно $\Psi^{\mathrm{A}}(F)$), а функцию Шеннона для этого класса относительно Ψ — через $\Psi_{\mathrm{B}}^{\mathrm{A}}(n)$ (соответственно $\Psi^{\mathrm{A}}(n)$). В обозначениях классов $\mathcal{U}_{\mathrm{B}}^{\mathrm{C}}$, $\mathcal{U}_{\mathrm{B}}^{\Phi}$, а также связанных с ними функционалов сложности и функций Шеннона, нижний индекс Б вида Б₀ будем, как обычно, опускать.

Отметим некоторые простейшие соотношения между введенными функциями. Очевидно, что для сложностей $\Psi'(F)$ и $\Psi''(F)$ системы ФАЛ F относительно функционала Ψ в классах схем \mathcal{U}' и \mathcal{U}'' соответственно выполняется неравенство

$$\Psi'(F) \leqslant \Psi''(F) \,,$$

если $\mathcal{U}' \supseteq \mathcal{U}''$. В частности,

$$\Psi_{\mathrm{B}}^{\mathrm{C}}\left(F\right) \leqslant \Psi_{\mathrm{B}}^{\Phi}\left(F\right), \qquad \Psi^{\mathrm{K}}\left(F\right) \leqslant \Psi^{\pi}\left(F\right)$$

§1. Задача синтеза

и т. д. Довольно часто выделение подклассов из основных классов схем происходит за счет наложения различных дополнительных свойств на рассматриваемые схемы. В частности, из класса КС выделяют π -схемы, КС, обладающие свойствами разделительности, и. т. п.

Заметим, что для сложности L(F) системы ФАЛ $F = (f_1, \ldots, f_m)$ в любом из рассматриваемых классов схем выполняются неравенства

$$\max_{1\leqslant i\leqslant m}L\left(f_{i}\right)\leqslant L\left(F\right)\leqslant \sum_{i=1}^{m}L\left(f\right)_{i}$$

Задача синтеза допускает тривиальное решение, связанное с использованием переборного алгоритма, который, однако, имеет большую трудоемкость и практически не применим, если число БП больше 5.

Для реализации произвольных ФАЛ и получения верхних оценок их сложности можно использовать другой простейший метод синтеза схем, основанный на моделировании совершенной ДНФ. На основе этого моделирования, в частности, доказывается следующее утверждение.

Лемма 1.1. Для любой функции алгебры логики $f(x_1, ..., x_n)$, $f \neq 0$, существуют формула \mathcal{F}_f , $\mathcal{F}_f \in \mathcal{U}^{\Phi}$, и π -схема Σ_f , которые реализуют f и для которых справедливы неравенства:

$$L(\mathfrak{F}_f) \leq 2n \cdot |N_f| - 1, \qquad L(\Sigma_f) \leq n |N_f|.$$
 (1.1)

Следствие 1. В силу (1.1), с учетом того, что $\Phi A \Pi$ 0 можно реализовать π -схемой сложности 2, а также формулой из U^{Φ} , имеющей сложность 2, выполняются неравенства

$$L^{\mathcal{C}}(n) \leq L^{\Phi}(n) \leq n \cdot 2^{n+1} - 1,$$

$$L^{\mathcal{K}}(n) \leq L^{\pi}(n) \leq n \cdot 2^{n}.$$

Следствие 2. В силу следствия 1 и с учётом следствия 2 из теоремы 2.1 главы 2 справедливо неравенство

$$D(n) \leq n + \lceil \log n \rceil + 2.$$

Следующее утверждение доказывается моделированием совершенной ДНФ с использованием контактного дерева.

Лемма 1.2. Для любой $\Phi A \Pi f$, $f \in P_2(n)$ $u f \neq 0$, существуют π -схема $\Sigma_f u$ формула \mathcal{F}_f , $\mathcal{F}_f \in \mathcal{U}^{\Phi}$, которые реализуют f u для которых, наряду c (1.1), справедливы также неравенства:

$$L(\Sigma_f) \leq 2^n + |N_f| - 2, \qquad L(\mathfrak{F}_f) \leq 2^{n+1} + |N_f| - 4.$$

Доказательство. В качестве Σ_f можно взять π -схему, которая получается из $(1, 2^n)$ -КД порядка n от БП x_1, \ldots, x_n (рис. 1.1) в результате снятия тех его выходов, где реализу-

Рис. 1.1: $(2^n, 1)$ -контактное дерево порядка n

§1. Задача синтеза

ются ЭК, не входящие в совершенную ДНФ ФАЛ f, отождествления остальных выходов КД и перехода к соответствующей приведенной КС. Так как при удалении вершины удаляются и все инцидентные ей контакты, то

$$L(\Sigma_f) \leq 2(2^n - 1) - (2^n - |N_f|) = 2^n + |N_f| - 2.$$

Формула \mathcal{F}_f получается в результате моделирования построенной π -схемы Σ_f в классе формул с поднятыми отрицаниями (см. §2 гл. 2), и поэтому

$$R(\mathfrak{F}_f) = L(\Sigma_f), \qquad L(\mathfrak{F}_f) = R(\mathfrak{F}_f) + L^{-}(\Sigma_f) - 1$$

где $L^{-}(\Sigma_{f})$ — число размыкающих контактов в схеме Σ . Следовательно,

$$L\left(\mathfrak{F}_{f}\right) \leqslant L\left(\Sigma_{f}\right) + 2^{n} - 2 \leqslant 2^{n+1} + |N_{f}| - 4,$$

так как число размыкающих контактов в КД порядка n равно $2^n - 1$.

Лемма доказана.

Замечание. Построенная
 π -схема Σ_f является ККС, сложность которой удовлетворя
ет 1.1.

Следствие.

$$L^{\pi}(n) \leqslant 2^{n+1} - 2, \tag{1.2}$$

$$L^{\Phi}(n) \leqslant 3 \cdot 2^n - 4. \tag{1.3}$$

К схемам, полученным на основе простейших методов синтеза, полезно применять с целью уменьшения их сложности эквивалентные преобразования и, в частности, следующие операции приведения.

Пусть вершина $w C\Phi \ni \Sigma$ не достижима из ее вершины v, а $C\Phi \ni \Sigma'$ получается из $C\Phi \ni \Sigma$ в результате удаления вершины v, объявления вершины w начальной вершиной всех

исходивших из v дуг и переноса в вершину w всех выходных БП, приписанных вершине v. Тогда СФЭ Σ' считается результатом применения к СФЭ Σ операции присоединения вершины v к вершине w. Заметим, что для любых двух вершин схемы одну из них всегда можно присоединить к другой. Две вершины СФЭ называются эквивалентными, если в них реализуются равные ФАЛ. Применяя к СФЭ Σ операцию присоединения одной из двух эквивалентных вершин к другой, мы получим СФЭ Σ' , которая, очевидно, эквивалентна Σ .

Приведенная схема называется *строго приведенной*, если в ней нет эквивалентных вершин. Из любой СФЭ можно получить эквивалентную ей строго приведенную СФЭ с помощью операции присоединения эквивалентных вершин и операции удаления висячих вершин.

Аналогичным образом определяется операция присоединения вершин в KC, с той лишь разницей, что на нее не накладываются какие-либо ограничения, связанные с достижимостью вершин.

Для множества ФАЛ $G, G \subseteq P_2(n)$, через \vec{G} будем обозначать систему, состоящую из всех различных ФАЛ множества G, упорядоченных в соответствии с номерами их столбцов значений. При этом систему ФАЛ $\vec{P}_2(n)$ будем называть универсальной системой порядка n.

Лемма 1.3. Для каждого натурального $n \in U_{\rm B}^{\rm C}$ существует СФЭ U_n , которая реализует систему ФАЛ $\overrightarrow{P}_2(n)$ и сложность которой равна $2^{2^n} - n$.

Доказательство. В силу полноты базиса, в $\mathcal{U}_{\mathrm{B}}^{\mathrm{C}}$ существует система формул Σ от БП x_1, \ldots, x_n , которая реализует систему ФАЛ $\overrightarrow{P}_2(n)$. Искомая СФЭ U_n является строго приведенной СФЭ, которая эквивалентна Σ и получается из нее в результате применения операций присоединения эквивалентных вершин, а также операций удаления висячих §2. Нижние оценки

вершин (см. §4 главы 2). Действительно, из построения следует, что число всех вершин СФЭ U_n , включая n ее входов, равно 2^{2^n} и поэтому

$$L\left(U_n\right) = 2^{2^n} - n.$$

Лемма доказана.

Следствие.

$$L_{\mathrm{B}}^{\mathrm{C}}\left(\overrightarrow{P}_{2}(n)\right) \leqslant 2^{2^{n}} - n.$$

§2 Нижние оценки сложности ФАЛ, реализация некоторых ФАЛ и минимальность некоторых схем.

Рассмотрим сначала простейшие нижние оценки сложности ФАЛ и связанные с ними примеры минимальных схем.

Лемма 2.1. Если $\Phi A \Pi f(x_1, ..., x_n)$ существенно зависит от всех своих БП, то

$$L^{\mathcal{C}}(f) \ge n-1, \qquad L^{\mathcal{K}}(f) \ge n.$$
 (2.1)

Если при этом $\Phi A \Pi f$ не является монотонной $\Phi A \Pi$ (каждая $B \Pi x_i, i \in [1, k]$, не является ни монотонной, ни инмонотонной $B \Pi \Phi A \Pi f$), то

$$L^{C}(f) \ge n$$
 (coombemcmberho $L^{K}(f) \ge n+k$). (2.2)

Доказательство. Пусть Σ_f — минимальная по сложности СФЭ из $\mathcal{U}^{\mathbb{C}}$, реализующая ФАЛ f. Из существенной зависимости ФАЛ f от БП x_1, \ldots, x_n следует, что $R(\Sigma_f) \ge n$, и поэтому, в силу соотношений (2.6) главы 2,

$$L^{\mathcal{C}}(f) \ge L_{\&, \lor}(\Sigma_f) \ge n-1.$$

13

Если же, кроме того, $\Phi A \Pi f$ не является монотонной $\Phi A \Pi$, то схема Σ_f должна содержать хотя бы один $\Phi \Im \neg$ и, следовательно, в указанном случае

$$L^{\mathcal{C}}(f) = L(\Sigma_f) \ge n.$$

Таким образом, первые из неравенств (2.1) и (2.2) доказаны.

Пусть теперь Σ_f — минимальная по сложности (1, 1)-КС, реализующая ФАЛ f. Из существенной зависимости ФАЛ fот БП $x_i, i \in [1, n]$, следует, что либо контакт вида x_i , либо контакт вида \overline{x}_i встречается в КС Σ_f , и поэтому

$$L^{\mathrm{K}}(f) = L(\Sigma_{f}) \ge n.$$

Если же, кроме того, БП $x_i, i \in [1, k]$, не является ни монотонной, ни инмонотонной БП ФАЛ f, то как контакт вида x_i , так и контакт вида \overline{x}_i входят в Σ_f , и, следовательно, в данном случае

$$L^{\mathrm{K}}(f) = L(\Sigma_{f}) \ge n + k.$$

Лемма доказана.

Следствие.

$$L^{\mathcal{C}}(\ell_n) \ge n, \qquad \qquad L^{\mathcal{K}}(\ell_n) \ge 2n,$$

$$L^{\mathcal{C}}(\mu_n) \ge 2^n + n, \qquad \qquad L^{\mathcal{K}}(\mu_n) \ge 2^n + 2n.$$

Замечание. Нижние оценки сложности ФАЛ $f = s^{[0,n-1]_n}$, вытекающие из леммы 2.1, доказывают минимальность π схемы, моделирующей ЭФ $\overline{x_1} \lor \cdots \lor \overline{x_n} = f$, в классе КС и миниальность формулы $\overline{(x_1 \dots x_n)} = \overline{f}$ в классе СФЭ, что устанавливает равенства $L^{\mathcal{K}}(f) = n$ и $L^{\mathcal{C}}(f) = n$. §2. Нижние оценки

Лемма 2.2. Для системы $F = (f_1, \ldots, f_m)$, состоящей из попарно различных $\Phi A \Pi$ отличных от констант (от переменных), справедливо неравенство

$$L^{\mathrm{K}}(F) \geqslant m \qquad (coomeencmeenho \ L^{\mathrm{C}}_{\mathrm{B}}(F) \geqslant m). \qquad (2.3)$$

Доказательство. Второе из неравенств (2.3) вытекает из того, что все ФАЛ f_i , i = 1, ..., m, реализуются на попарно различных выходах СФЭ, отличных от ее входов.

Пусть теперь Σ_F — приведенная (1, m)-КС, реализующая систему ФАЛ *F*. Из приведенности Σ_F и условий леммы вытекает, что Σ_F — связный граф с не менее чем (m+1)вершиной, и поэтому, в силу неравенства (1.2) главы 2,

$$L(\Sigma_F) \ge |V(\Sigma_F)| - 1 \ge m.$$

Лемма доказана.

Следствие.

$$L^{C}\left(\overrightarrow{Q}_{n}\right) \geq 2^{n}, \qquad \qquad L^{K}\left(\overrightarrow{Q}_{n}\right) \geq 2^{n},$$
$$L^{C}\left(\overrightarrow{J}_{n}\right) \geq 2^{n}, \qquad \qquad L^{K}\left(\overrightarrow{J}_{n}\right) \geq 2^{n},$$
$$L^{C}_{E}\left(\overrightarrow{P}_{2}\left(n\right)\right) \geq 2^{2^{n}} - n, \qquad \qquad L^{K}\left(\overrightarrow{P}_{2}\left(n\right)\right) \geq 2^{2^{n}} - 2.$$

Замечание. В силу следствия универсальная СФЭ U_n , построенная в лемме 1.3, является минимальной по сложности СФЭ в классе $\mathcal{U}_{\mathsf{F}}^{\mathsf{C}}$.

Довольно часто задачу синтеза приходится решать для следующих ФАЛ и систем ФАЛ:

- 1. линейной ФАЛ порядка n, то есть ФАЛ ℓ_n или ФАЛ $\overline{\ell}_n$;
- 2. мультиплексорной ФАЛ μ_n порядка n;
- 3. дешифратора \overrightarrow{Q}_n (дизъюнктивного дешифратора \overrightarrow{J}_n) порядка n;

15

4. универсальной системы $\overrightarrow{P}_{2}(n)$ порядка n.

Рассмотрим некоторые схемные реализации и соответствующие им верхние оценки сложности для указанных ФАЛ и систем ФАЛ. Будем, как обычно, называть (схемным) мультиплексором, дешифратором, дизъюнктивным дешифратором и универсальным многополюсником любую схему, которая реализует соответствующую систему ФАЛ.

Лемма 2.3. Для любого натурального п выполняются неравенства:

$$L^{\mathcal{C}}(\overrightarrow{Q}_n) \leq 2^n + O(n \cdot 2^{\frac{n}{2}}), \quad L^{\mathcal{K}}(\overrightarrow{Q}_n) \leq 2^{n+1} - 2;$$
 (2.4)

$$L^{\mathcal{C}}(\overline{J}_n) \leqslant 2^n + O(n \cdot 2^{\frac{n}{2}}), \quad L^{\mathcal{K}}(\overline{J}_n) \leqslant 2^{n+2} - 4; \tag{2.5}$$

$$L^{\pi}(\mu_n) \leqslant 3 \cdot 2^n - 2, \qquad L^{\Phi}(\mu_n) \leqslant 2^{n+2} - 3;$$
 (2.6)

$$L^{\mathcal{C}}(\ell_n) \leqslant 4n - 4, \qquad \qquad L^{\mathcal{C}}(\bar{\ell}_n) \leqslant 4n - 4 + \left\lfloor \frac{1}{n} \right\rfloor.$$
 (2.7)

Доказательство. В классе \mathcal{U}^{C} построим схемный дешифратор порядка n, удовлетворяющий первому неравенству (2.4), следующим образом:

- 1. разобьем набор БП X(n) на группы $x' = (x_1, \ldots, x_q), x'' = (x_{q+1}, \ldots, x_n),$ где $q = \lceil n/2 \rceil;$
- 2. возьмем дешифраторы Σ' и Σ'' от БП x' и x'' порядка q и (n-q) соответственно, реализующие каждую свою систему ЭК по лемме 1.1;
- 3. объединим СФЭ Σ' и Σ'' , после чего конъюнктируем каждый выход Σ' с каждым выходом Σ'' , а выходы всех использованных для этого $2^n \Phi$ Э & (и только их) объявим выходами искомого дешифратора.

Аналогично строится дизъюнктивный дешифратор порядка n в классе \mathcal{U}^{C} , удовлетворяющий (2.5).

Рис. 2.1: примеры π -схем

Искомым контактным (каскадным) дешифратором порядка n является $(1, 2^n)$ -контактное дерево, показанное на рис. 1.1, а инверсная к нему каскадная контактная схема (см. §10 гл. 2) представляет собой дизъюнктивный контактный дешифратор порядка n, удовлетворяющий (2.5).

Искомым контактным мультиплексором порядка n является π -схема, приведенная на рис. 2.1. Заметим, что сложность схем, показанных на рис. 1.1 и 2.1, равна $2^{n+1} - 2$ и $3 \cdot 2^n - 2$ соответственно, то есть удовлетворяет неравенствам (2.4) и (2.6), причем число размыкающих контактов в каждой из них равно $2^n - 1$.

В результате моделирования указанной *п*-схемы можно

Рис. 2.2: пример суперпозиции СФЭ

построить бесповторную по информационным БП формулу

$$\begin{aligned} \mathcal{F}_n\left(x_1,\ldots,x_n,y_0,\ldots,y_{2^n-1}\right) &= \\ &= \bigvee_{\sigma_1 \in B} x_1^{\sigma_1}\left(\bigvee_{\sigma_2 \in B} x_2^{\sigma_2}\left(\cdots\left(\bigvee_{\sigma_n \in B} x_n^{\sigma_n} y_{\nu(\sigma_1,\ldots,\sigma_n)}\right)\cdots\right)\right), \end{aligned}$$

которая удовлетворяет второму неравенству (2.6), так как реализует ФАЛ μ_n и имеет сложность $4 \cdot 2^n - 3$.

Неравенства (2.7) при n = 1, очевидно, выполняются. Искомой СФЭ, реализующей линейную ФАЛ ℓ_n , $n \ge 2$, со сложностью (2.7), является СФЭ Σ_n^{\oplus} , показанная на рис. 2.2a,b. Аналогичная СФЭ для ФАЛ $\overline{\ell}_n$ получается в результате замены ФЭ & на ФЭ \lor и ФЭ \lor на ФЭ & в первой подсхеме вида Σ_2^{\oplus} схемы Σ_n^{\oplus} (см. рис. 2.2a).

Лемма доказана.

§2. Нижние оценки

Следствие.

$$L^{C}(\overrightarrow{Q}_{n}) \sim L^{C}(\overrightarrow{J}_{n}) \sim 2^{n}.$$

Установим, в заключение, ряд более точных нижних оценок сложности ФАЛ и на их основе докажем минимальность некоторых схем.

Докажем сначала, что $(1, 2^n)$ -контактное дерево — минимальный контактный дешифратор порядка n в классе разделительных (по выходам) КС.

Лемма 2.4. Если разделительная по выходам (1,m)-КС Σ реализует т различных $\Phi A \Pi$, отличных от 0, то

$$L\left(\Sigma\right) \geqslant 2m - 2.$$

Доказательство. Пусть Σ — приведенная и, следовательно, связная КС от БП x_1, \ldots, x_n . Из разделительности Σ следует, что при любом $\alpha, \alpha \in B^n$, сеть $\Sigma|_{\alpha}$ состоит не менее чем из m связных компонент. Заметим, что удаление всякого ребра увеличивает число связных компонент графа не более чем на единицу, и поэтому число $|E(\Sigma|_{\overline{\alpha}})|$ — число контактов, не проводящих на наборе α , — удовлетворяет неравенству

$$|E\left(\Sigma|\overline{\alpha}\right)| \ge m - 1. \tag{2.8}$$

Суммируя (2.8) по всем $\alpha, \alpha \in B^n$, и учитывая, что каждый контакт КС Σ не проводит ровно на половине всех наборов куба B^n , получим

$$2^{n-1}L(\Sigma) \ge 2^n(m-1), \qquad L(\Sigma) \ge 2m-2.$$

Лемма доказана.

Следствие. Контактное дерево порядка п является минимальной разделительной $(1, 2^n)$ -КС, реализующей систему $\Phi A \Pi Q_n$.

Действительно, в соответствии с леммой 2.4, сложность разделительной $(1, 2^n)$ -КС не меньше чем $2^{n+1} - 2$, то есть не меньше сложности $(1, 2^n)$ -контактного дерева порядка n.

Лемма 2.5. Если система $\Phi A \Pi F = (f_1, \ldots, f_m)$ состоит из попарно различных $\Phi A \Pi$ от $B \Pi X(n)$, отличных от 0 и 1, то

$$L^{\mathrm{K}}(F) \ge 2^{1-n} \sum_{j=1}^{m} |N_{f_j}|.$$

Доказательство. Возьмем приведенную (1, m)-КС Σ , реализующую систему $\Phi A \Pi F$, и заметим, что при любом α , $\alpha \in B^n$, в сети $\Sigma|_{\alpha}$ имеется связная компонента, которая содержит вход Σ и те ее выходы, где реализуемые $\Phi A \Pi$ обращаются в 1 на наборе α . Из неравенства (1.2) главы 2 следует, что при этом

$$|E(\Sigma|_{\alpha})| \ge f_1(\alpha) + \dots + f_m(\alpha).$$

Суммируя полученное неравенство по всем наборам $\alpha, \alpha \in B^n$, придем (см. доказательство леммы 2.4) к неравенству

$$2^{n-1}L(\Sigma) \geqslant \sum_{j=1}^{m} \left| N_{f_j} \right|,$$

из которого вытекает неравенство леммы.

Лемма доказана.

Следствие.

$$L^{\mathrm{K}}(J_n) \geqslant 2^{n+1} - 2.$$

Замечание. В силу следствия (1,4) – с входом a, которая состоит из двух непересекающихся по внутренним вершинам (a - a)-цепей (циклов) с ЭК провеодимости $\overline{x}_1 x_2 x_1$ и $\overline{x}_1 \overline{x}_2 x_1$, является минимальным дизъюнктивным контактным дешифратором порядка 2.

§2. Нижние оценки

Лемма 2.6. Если для $\Phi A \Pi f$, $f \in P_2(n)$, u для любого σ , $\sigma \in B$, $\Phi A \Pi f_{\sigma}(x_1, \ldots, x_{n-1}, \sigma) \neq 0, 1$, то

$$L^{\rm C}_{\&,\lor}(f) \ge \min\{L^{\rm C}_{\&,\lor}(f_0), L^{\rm C}_{\&,\lor}(f_1)\} + 2.$$
 (2.9)

Доказательство. Пусть Σ — минимальная по числу $\Phi \Im$ & и \lor С $\Phi \Im$ из класса $\mathcal{U}^{\mathbb{C}}$, которая реализует $\Phi A \Pi f$ и которая не содержит цепочек из двух последовательно соединенных $\Phi \Im \neg$. Пусть константа $\sigma, \sigma \in B$, равна 0 тогда и только тогда, когда БП x_n подается в Σ либо на вход $\Phi \Im$ &, либо на вход $\Phi \Im \lor$.

Рассмотрим СФЭ $\hat{\Sigma}$, которая реализует ФАЛ $f_{\sigma}, f_{\sigma} \neq 0, 1,$ и получена из СФЭ Σ в результате подстановки $x_n = \sigma$, а также последующего ЭП на основе тождеств $\underline{\tau}^{\Pi K}$ (см. §5 гл. 2) вплоть до устранения всех вхождений констант. Убедимся в том, что при указанном ЭП будут удалены по крайней мере два ФЭ типа & или \vee .

Действительно, в случае $\sigma = 0$ из СФЭ Σ будет удален ФЭ \mathcal{E}' , являющийся либо ФЭ типа &, на вход которого подается БП x_n , либо ФЭ типа \lor , на вход которого подается выход ФЭ \neg , присоединенного к входу x_n . Заметим, что выход ФЭ \mathcal{E}' не может быть выходом схемы и не может быть входом ФЭ \neg , выход которого является выходом схемы, так как при этом ФАЛ f_{σ} была бы равна константе. Следовательно, в СФЭ Σ имеется ФЭ \mathcal{E}'' типа & или \lor , на вход которого поступает либо выход \mathcal{E}' , либо выход ФЭ \neg , присоединенного к выходу \mathcal{E}' . Легко видеть, что ФЭ \mathcal{E}'' тоже будет удален при переходе от Σ к $\hat{\Sigma}$ и, следовательно, справедливы неравенства

$$L_{\&,\vee}(f) = L_{\&,\vee}(\Sigma) \ge L_{\&,\vee}(\widehat{\Sigma}) + 2 \ge L_{\&,\vee}(f_{\sigma}) + 2,$$

из которых вытекает (2.9).

Лемма доказана.

Следствие 1.

$$L^{C}(\mu_{n}) \ge 2^{n+1} + n - 1.$$
 (2.10)

Действительно, (2.10) получается в результате применения леммы 2.6 последовательно ко всем информационным БП y_{2^n-1}, \ldots, y_1 и учитывая, что получившаяся в результате соответствующих подстановок констант ФАЛ существенно зависит от БП x_1, \ldots, x_n, y_0 .

Следствие 2. Из (2.10) в силу леммы 4.1 главы 2 вытекеает неравенство

$$D(\mu_n) \ge n+1.$$

Замечание. В силу следствия 1 формула $\overline{x}_1 y_0 \lor x_1 y_1$ является минимальной СФЭ, расализующей ФАЛ μ_1 и $L^{\mathbb{C}}(\mu_1) = 4$.

§3 Метод каскадов для контактных схем и схем из функциональных элементов. Метод Шеннона

Приведенные в §1 простейшие методы синтеза позволяют строить формулы и π -схемы, специфика которых не допускает многократного использования «промежуточных результатов». Метод каскадов [20] является достаточно простым и в то же время довольно эффективным методом синтеза как КС, так и СФЭ, который позволяет это делать. Он связан с последовательным разложением заданных ФАЛ по БП и рекурсивным построением схемы, реализующей эти ФАЛ.

Метод каскадов позволяет по произвольной заданной системе функций алгебры логики $F = (f_1, \ldots, f_m), F \in P_2^m(n)$, строить (1, m)-КС $\Sigma_F, \Sigma_F \in \mathcal{U}^K$, и СФЭ $U_F, U_F \in \mathcal{U}^C$, которые реализуют F. Будем считать, что все ФАЛ f_1, f_2, \ldots, f_m системы F различны, отличны от констант, и для каждой

§3. Метод каскадов для КС и СФЭ

БП x_i , $1 \leq i \leq n$, среди них есть ФАЛ, существенно зависящая от x_i .

Разложим ФАЛ f_1, f_2, \ldots, f_m сначала по БП x_1 , потом по БП x_2 и так далее. При этом построим последовательности множеств G_i и \hat{G}_i , состоящих из ФАЛ от БП $x_i, x_{i+1}, \ldots, x_n$, где $i = 1, 2, \ldots, n$, такие, что

1. G_i состоит из всех различных ФАЛ $g(x_i, \ldots, x_n)$ вида

$$g = f_j(\sigma_1, \ldots, \sigma_{i-1}, x_i, x_{i+1}, \ldots, x_n),$$

- где $1 \leq j \leq m, \ (\sigma_1, \dots, \sigma_{i-1}) \in B^{i-1};$
- 2. \hat{G}_i состоит из всех различных функций $g, g \in G_i$, которые существенно зависят от x_i .

Легко видеть, что

$$G_1 = \{f_1, \ldots, f_m\}, \qquad \widehat{G}_n \subseteq \{x_n, \overline{x}_n\},$$

а множества $\Phi A \Pi \ \widehat{G}_1, \ldots, \widehat{G}_n$ не пусты и попарно не пересекаются.

Заметим, что любую ФАЛ $g, g \in \widehat{G}_i$, где $1 \leq i \leq n$, можно представить (см. §10 главы 2) в виде

$$g = \mu \left(x_i, g_0, g_1 \right) = \overline{x}_i g_0 \lor x_i g_1, \tag{3.1}$$

где $g_{\sigma} = g(\sigma, x_{i+1}, \dots, x_n)$, и, следовательно, $g_{\sigma} \in \check{G}_{i+1} \cup \{0, 1\}$ для всех $\sigma, \sigma \in B$. Если при этом для некоторого $\sigma, \sigma \in B, \Phi A \Pi g_{\overline{\sigma}}$ равна 0, то вместо (3.1) будем использовать разложение

$$g = x_i^\sigma g_\sigma, \tag{3.2}$$

где $g_{\sigma} \in \check{G}_{i+1} \cup \{1\}.$

С помощью операций присоединения одного или двух противоположных контактов (см. §10 гл. 2) построим ККС $\check{\Sigma}_F$, которая реализует систему ФАЛ \vec{G}_F , где $G_F = \hat{G}_1 \cup \ldots \cup \hat{G}_n$. При этом для каждого $i, i = n, (n-1), \ldots, 1$, каждая ФАЛ

Рис. 3.1: присоединение одного или двух противоположных контактов

 $g, g \in \widehat{G}_i$, реализуется согласно (3.1) ((3.2)) на выходе v, который при $\alpha = 0, 1$ (соответственно $\alpha = \sigma$) соединен контактом вида x_i^{α} с тем выходом v_{α} , где реализуется ФАЛ $g_{\alpha} = g(\alpha, x_{i+1}, \ldots, x_n)$ так, как это показано на рис. 3.1a (соответственно рис. 3.1b).

Для получения искомой КС Σ_F достаточно «снять» пометки с тех выходных вершин КС $\check{\Sigma}_F$, в которых реализуются ФАЛ, отличные от f_1, \ldots, f_m .

Аналогичным образом по методу каскадов строится и СФЭ \check{U}_F , реализующая систему ФАЛ \overrightarrow{G}_F , с той лишь разницей, что:

- 1. сначала реализуются все $\Phi A \Pi$ вида \overline{x}_i , $1 \leq i \leq n$, которые встречаются в КС Σ_F ;
- 2. для всех $i, i = (n-1), \ldots, 1$, разложение (3.1), где $g \in \widehat{G}_i$ и $g_0, g_1 \in \check{G}_{i+1}$, реализуется так, как показано на рис. 10.2а главы 2, а разложение (3.2), применяемое в случае $g_{\overline{\sigma}} = 0$ (разложение

$$g = x_i^{\overline{\sigma}} \lor g_{\sigma} x_i^{\sigma} = x_i^{\overline{\sigma}} \lor g_{\sigma} \tag{3.3}$$

в случае $g_{\overline{\sigma}} = 1$), — так, как показано на рис. 10.2b (соответственно 10.2c главы 2);

§3. Метод каскадов для КС и СФЭ

3. каждая ФАЛ вида $g_{\sigma} x_i^{\sigma}$, используемая в предыдущем пункте при реализации разложений вида (3.1) или (3.2) для различных ФАЛ g, реализуется только один раз.

Как и в случае КС, СФЭ U_F , реализующая систему ФАЛ Fи построенная по методу каскадов, получается из СФЭ \check{U}_F в результате «снятия» тех выходов, в которых реализуются ФАЛ, отличные от ФАЛ из F.

Пусть, например, $F = (f_1, f_2)$, где

$$f_1 = \overline{x}_1 x_2 (x_3 \oplus x_4) \lor x_1 (x_2 \lor x_3 \overline{x}_4),$$

$$f_2 = x_1 (x_3 \oplus x_4) \lor \overline{x}_1 x_4.$$

Тогда:

$$\begin{split} &\hat{G}_1 = G_1 = \{f_1, f_2\}; \\ &\hat{G}_2 = \{x_2 \left(x_3 \oplus x_4 \right), x_2 \vee x_3 \overline{x}_4 \}, \quad G_2 = \hat{G}_2 \cup \{x_3 \oplus x_4, x_4 \}; \\ &\hat{G}_3 = \{x_3 \oplus x_4, x_3 \overline{x}_4 \}, \qquad \qquad G_3 = \hat{G}_3 \cup \{x_4\}; \\ &\hat{G}_4 = \{x_4, \overline{x}_4 \}. \end{split}$$

На рис. 3.2 показана построенная для данной системы $\Phi A \Pi$ КС $\check{\Sigma}_F$, вершины которой помечены сопоставленными им $\Phi A \Pi$, на рис. 3.3 — соответствующая ей КС Σ_F , а на рис. 3.4 — С $\Phi \ni U_F$.

Другим примером КС, построенной по методу каскадов для линейной ФАЛ ℓ_n , где $n \ge 2$, является известная схема Кардо [31], показанная на рис. 3.5. Заметим, что эта КС имеет сложность (4n - 4) и является минимальной. В то же время СФЭ, построенная для ℓ_n , $n \ge 2$, по методу каскадов имеет сложность (7n - 9) и не является минимальной, так как имеет бо́лышую сложность по сравнению со схемой Σ_n^{\oplus} сложности (4n - 4), показанной на рис. 2.2. Аналогичные оценки справедливы для ФАЛ $\bar{\ell}_n$ (см. лемму 2.3).

При построении по методу каскадов $(1, 2^n)$ -КС, реализу-ющей систему функций алгебры логики \overrightarrow{Q}_n , мы получим

Рис. 3.2: пример КС с помеченными вершинами, построенной методом каскадов

Рис. 3.3: пример КС, построенной методом каскадов

Рис. 3.4: СФЭ для системы ФАЛF, построенная методом каскадов

Рис. 3.5: схема Кардо для линейной функци
и ℓ_n

контактное дерево порядка n, показанное на рис. 1.1. Как будет показано в §6 это КД не является минимальным контактным дешифратором.

Аналогичным образом с помощью метода каскадов можно построить контактный универсальный многополюсник сложности не больше, чем $2 \cdot 2^{2^n}$, а также контактный мультиплексор порядка n и сложности $3 \cdot 2^n - 2$, показанный на рис. 2.1 (см. лемму 2.3). Заметим, что указанный мультиплексор получается при разложении ФАЛ μ_n сначала по адресным, а затем по информационным БП. В то же время, контактный мультиплексор порядка n, построенный по методу каскадов при разложении ФАЛ μ_n сначала по информационным, а затем по адресным БП, содержит КД порядка 2^n от информационных БП и поэтому имеет сложность не меньше, чем 2^{2^n+1} . Это показывает, что выбор «правильного» порядка переменных при разложении ФАЛ может существенно уменьшить сложность КС, построенной по методу каскадов.

Учитывая все сказанное выше, дополним леммы 1.3 и 2.3 следующим утверждением.

Лемма 3.1. Для любого натурального $n \ u \ \sigma \in B$ выполняются неравенства:

$$L^{\mathrm{K}}(\ell_{n}^{\sigma}) \leq 4n - 4 + \left\lfloor \frac{1}{n} \right\rfloor, \qquad L^{\mathrm{K}}(\overrightarrow{P}_{2}(n)) \leq 2 \cdot 2^{2^{n}}.$$

Рассмотрим, в заключение, метод Шеннона для синтеза КС и СФЭ (см. [32, 14]), который позволяет установить порядок роста функций Шеннона $L^{K}(n)$ и $L^{C}(n)$.

Метод Шеннона заключается в выборе некоторого параметра $q, 1 \leq q \leq n$, и построении схемы Σ_f , реализующей произвольную ФАЛ $f(x_1, \ldots, x_n)$ на основе ее разложения

§3. Метод каскадов для КС и СФЭ

по части переменных (см. равенство (2.5) из гл. 1):

$$f\left(x',x''\right) = \bigvee_{\sigma'' = (\sigma_{q+1},\dots,\sigma_n)} x_{q+1}^{\sigma_{q+1}} \cdots x_n^{\sigma_n} \cdot f_{\sigma''}\left(x'\right), \qquad (3.4)$$

где $x' = (x_1, \ldots, x_q), x'' = (x_{q+1}, \ldots, x_n)$ и $f_{\sigma''}(x') = f(x', \sigma'')$ при всех $\sigma'', \sigma'' \in B^{n-q}$. При этом схема Σ_f представляет собой корректную суперпозицию вида $\Sigma''(\Sigma')$, где Σ'' — мультиплексор порядка (n-q) от адресных БП x'', информационные входы которого при выполнении указанной суперпозиции присоединяются к выходам универсального многополюсника Σ' порядка q от БП x' в соответствии с (3.4).

Полагая

$$q = \left|\log\left(n - 2\log n\right)\right|,\,$$

построим для ФАЛ $f(x_1, \ldots, x_n)$ указанным выше способом КС (СФЭ в базисе Б₀) Σ_f , где $\Sigma'' - (2^{n-q}, 1)$ -КД порядка (n-q) (соответственно формула \mathcal{F}_{n-q} из леммы 2.3), а Σ' — универсальный многополюсник из леммы 3.1 (соответственно леммы 1.3). Корректность построенной суперпозиции в случае КС обеспечивается разделительностью КД. Для сложности полученной схемы Σ_f будут справедливы оценки

$$L\left(\Sigma_{f}\right) \leqslant 2 \cdot 2^{2^{q}} + 2 \cdot 2^{n-q} \leqslant \frac{2^{n+2}}{n-2\log n} + O\left(\frac{2^{n}}{n^{2}}\right),$$

если $\Sigma_f \in \mathcal{U}^{\mathrm{K}},$ и

$$L\left(\Sigma_{f}\right) \leqslant 2^{2^{q}} + 4 \cdot 2^{n-q} \leqslant \frac{8 \cdot 2^{n}}{n-2\log n} + O\left(\frac{2^{n}}{n^{2}}\right),$$

если $\Sigma_f \in \mathcal{U}^{\mathcal{C}}.$ Таким образом, доказано следующее утверждение.

Теорема 3.1. Для функций Шеннона $L^{K}(n)$ и $L^{C}(n)$ выполнены соотношения:

$$L^{\mathrm{K}}(n) \lesssim 4\frac{2^{n}}{n}, \qquad L^{\mathrm{C}}(n) \lesssim 8\frac{2^{n}}{n}.$$

§4 Нижние мощностные оценки функции Шеннона

Установим теперь ряд нижних оценок для введенных в §1 функций Шеннона. Все эти оценки получены с помощью мощностного метода, предложенного Шенноном [32, 14], который основан на том, что число ФАЛ от БП x_1, \ldots, x_n не может быть меньше числа тех попарно не эквивалентных схем, сложность которых не превосходит значения соответствующей функции Шеннона от аргумента n.

Пусть \mathcal{U} — один из рассмотренных в главе 2 классов схем, Ψ — введенный там функционал сложности, а $\Psi(n)$ — функция Шеннона для класса \mathcal{U} относительно Ψ . Обозначим через $\mathcal{U}(\Psi, n)$ множество тех схем $\Sigma, \Sigma \in \mathcal{U}$, которые реализуют одну ФАЛ из $P_2(n)$ и для которых $\Psi(\Sigma) \leq \Psi$. Следующее «мощностное» равенство вытекает непосредственно из определений:

$$\|\mathcal{U}(\Psi(n), n)\| = 2^{2^n}.$$
 (4.1)

Заметим также, что если для некоторого натурального n и действительных $\widehat{\Psi}$, δ , где $0 < \delta < 1$, выполняется неравенство

$$\left\| \mathcal{U}\left(\widehat{\Psi}, n\right) \right\| \leqslant \delta \cdot 2^{2^n}, \quad \text{to } \Psi(f) \geqslant \widehat{\Psi}$$
 (4.2)

для не менее чем $(1 - \delta) \cdot 2^{2^n} \Phi A \Pi f$ из $P_2(n)$.

Верхние оценки величины $\|\mathcal{U}(\Psi, n)\|$, установленные в главе 2 для различных классов схем и функционалов сложности, а также соотношения (4.1)–(4.2) служат основой для получения нижних мощностных оценок соответствующих функций Шеннона и сложности почти всех ФАЛ. Напомним, что

§4. Нижние мощностные оценки

(см. леммы 4.3, 4.4, 6.2, 6.3 из главы 2) для любых натуральных n и L справедливы неравенства:

$$\left\| \mathcal{U}^{C}(L,n) \right\| \leq (8(L+n))^{L+1}, \tag{4.3}$$

$$\left\|\mathcal{U}^{\Phi}\left(L,n\right)\right\| \leqslant (8n)^{L+1}, \qquad (4.4)$$

$$\|\mathcal{U}^{K}(L,n)\| \leq (00)^{L}, \qquad (4.5)$$

$$\|\mathcal{U}^{K}(L,n)\| \leq (12n)^{L}, \qquad (4.5)$$

$$\|\mathcal{U}^{n}(L,n)\| \leq (12n)^{L},$$
 (4.6)

$$\left\| \mathcal{U}^{\Phi}[L,n] \right\| \leqslant (8n)^{2^{D}} \,. \tag{4.7}$$

31

Лемма 4.1. Для положительных действительных чисел a, y, q из неравенств

$$a\log q > 1, \quad (ay)^y \ge q,$$

$$(4.9)$$

следует неравенство

$$y \ge \frac{\log q}{\log \left(a \log q\right)} \left(1 + \frac{\log \log \left(a \log q\right)}{\log \left(a e \log q\right)}\right),\tag{4.10}$$

где е-основание натуральных логарифмов, а из неравенств $a>1, \ a^y \geqslant q$ — неравенство

$$y \geqslant \frac{\log q}{\log a}.\tag{4.11}$$

Доказательство. Рассмотрим сначала случай, когда a = 1 и $\log q > 1$. В этом случае неравенство (4.10) следует из того, что левая часть (4.9) монотонно возрастает по y, и для

$$y' = (1+\varepsilon) \,\frac{\log q}{\log \log q},$$

где

$$\varepsilon = \frac{\log \log \log q}{\log (e \log q)},$$

справедливы соотношения

$$y' \log y' = \\ = (1+\varepsilon) \frac{\log q}{\log \log q} \left(\log \log q - \log \log \log q + \log e \ln (1+\varepsilon) \right) \leqslant \\ \leqslant \log q \left(1+\varepsilon \right) \left(1 - \frac{\log \log \log q}{\log \log q} + \frac{\varepsilon \log e}{\log \log q} \right) = \\ = \log q \left(1+\varepsilon \right) \left(1-\varepsilon \right) = \log q \left(1-\varepsilon^2 \right) \leqslant \log q.$$

Заметим, что в случае a > 0 неравенство (4.9) эквивалентно неравенству

$$(ay)^{ay} \geqslant q^a,$$

и поэтому неравенство (4.10) получается из неравенства $y \ge y'$ в результате замены y на ay и log q на $a \log q$, если выполнено условие $a \log q > 1$.

Неравенство (4.11) в случае a > 1 получается в результате логарифмирования неравенства $a^{y} \ge q$ и деления обеих частей полученного неравенства на $\log a$.

Лемма доказана.

Теорема 4.1. Для некоторых последовательностей $\varepsilon_i = \varepsilon_i(n)$, где i = 1, ..., 5 и n = 1, 2, ..., таких, что $\varepsilon_i(n) \ge 0$ при $n \ge n_0$ и $\varepsilon_i(n)$ стремится к 0 при n стремящемся к бесконечности, выполняются неравенства

$$L^{\mathcal{C}}(f) \ge (1 + \varepsilon_1(n)) \frac{2^n}{n}, \qquad (4.12)$$

$$L^{\Phi}(f) \ge (1 - \varepsilon_2(n)) \frac{2^n}{\log n}, \qquad (4.13)$$

$$L^{\mathrm{K}}(f) \ge (1 - \varepsilon_{3}(n)) \frac{2^{n}}{n}, \qquad (4.14)$$

$$L^{\pi}(f) \ge (1 - \varepsilon_4(n)) \frac{2^n}{\log n}, \qquad (4.15)$$

$$D(f) \ge n - \log \log n - \varepsilon_5(n).$$
 (4.16)

§4. Нижние мощностные оценки

Доказательство. Неравенства (4.12)-(4.15) выводятся из соответствующего рассматриваемому классу схем U с функционалом сложности L неравенства (4.3)–(4.6) на основе мощностного неравенства (4.2), где $\delta = 1/n$ с использованием леммы 4.1, где $q = 2^{2^n}/n$, и

1)	a = 8,	$y = L^{\mathcal{C}}(n) + n,$	если	$\mathcal{U} = \mathcal{U}^{\mathrm{C}};$
2)	a = 8n,	$y = L^{\Phi}(n) + 1,$	если	$\mathcal{U} = \mathcal{U}^{\Phi};$
3)	a = 8n,	$y = L^{\mathbf{K}}(n),$	если	$\mathcal{U} = \mathcal{U}^{\mathrm{K}};$
4)	a = 12n,	$y = L^{\pi}(n),$	если	$\mathcal{U} = \mathcal{U}^{\pi}.$

Действительно, подставляя указанные значения в (4.10) получим, что доля тех $\Phi A \Pi f, f \in P_2(n)$, для которых

1)
$$L^{C}(f) \ge \frac{2^{n}}{n+3} \left(1 + \frac{\log(n+3) - o(1)}{n+5} \right) - n \ge$$

 $\ge \frac{2^{n}}{n} \left(1 + \frac{\log n - 3 - o(1)}{n} \right);$

$$(4.17)$$

2)
$$L^{\Phi}(f) \ge \frac{2^n - \log n}{\log n + 3} - 1 \ge \frac{2^n}{\log n} \left(1 - \frac{3 + o(1)}{\log n}\right);$$
 (4.18)

3)
$$L^{K}(f) \ge \frac{2^{n}}{n+3+\log n} \left(1 + \frac{\log(n+3+\log n) - o(1)}{n+5+\log n}\right) \ge$$

 $\ge \frac{2^{n}}{n} \left(1 - \frac{3+o(1)}{n}\right),$ (4.19)

не меньше, чем (1-1/n). Следовательно, неравенство (4.12)((4.13), (4.14)) будет справедливо для достаточно больших n при $\varepsilon_1(n) = \frac{\log n - 4}{n}$ (соответственно $\varepsilon_2(n) = \frac{4}{\log n}, \varepsilon_3(n) =$ $\frac{4}{n}$).

Аналогичным образом устанавливается справедливость (4.15) и (4.16) при $\varepsilon_4(n) = \frac{6}{\log n} = \varepsilon_5(n).$

Теорема доказана.

Следствие 1.

$$\begin{split} L^{\mathcal{C}}\left(n\right) \gtrsim &\frac{2^{n}}{n}, \quad L^{\Phi}\left(n\right) \gtrsim \frac{2^{n}}{\log n}, \quad L^{\mathcal{K}}\left(n\right) \gtrsim \frac{2^{n}}{n}, \\ &L^{\pi}\left(n\right) \gtrsim \frac{2^{n}}{\log n}. \end{split}$$

Мощностные соображения можно использовать при получении нижних оценок для функций Шеннона, связанных с реализацией ФАЛ из класса Q, Q = Q(1), Q(2),, Q(n), ..., rge

$$\mathbb{Q} \subseteq P_2$$
 и $\mathbb{Q}(n) = \mathbb{Q} \cap P_2(n), \quad n = 1, 2, \dots$

Пусть \mathcal{U} — один из рассмотренных в главе 2 классов схем, Ψ — введенный там функционал сложности, а $\Psi(\mathfrak{Q}(n))$ функция Шеннона (для класса схем \mathcal{U} относительно функционала сложности Ψ), связанная с классом ФАЛ \mathcal{Q} , то есть

$$\Psi\left(\mathbb{Q}\left(n\right) \right) =\max_{f\in\mathbb{Q}\left(n\right) }\Psi\left(f\right) .$$

Следующее «мощностное» неравенство обобщает равенство (4.1) и вытекает непосредственно из определений:

$$\left\| \mathcal{U}\left(\Psi\left(\mathcal{Q}\left(n\right)\right),n\right) \right\| \geqslant \left|\mathcal{Q}\left(n\right)\right|.$$

$$(4.20)$$

Оно позволяет получить нижнюю оценку функции Шеннона $\Psi(\mathfrak{Q}(n))$ на основе известной верхней оценки величины $\|\mathfrak{U}(\Psi, n)\|.$

Рассмотрим, в частности, нижние мощностные оценки для функций $L^{C}(Q(n))$ и $L^{K}(Q(n))$, то есть функций Шеннона для сложности реализации ФАЛ из класса Q схемами из классов \mathcal{U}^{C} и \mathcal{U}^{K} соответственно. На основе мощностных соображений (см. (4.20)) аналогично тому, как это было сделано в теореме 4.1 для случая $Q = P_2$, доказывается следующее утверждение. §5. Метод Лупанова синтеза СФЭ

Лемма 4.2. Для класса $\Phi A \Pi \ Q$ такого, что $n = o\left(\frac{\log|Q(n)|}{\log\log|Q(n)|}\right) (\log n = o\left(\log\log|Q(n)|\right))$, выполняются следующие асимптотические неравенства

$$L^{\mathcal{C}}(\mathfrak{Q}(n)) \gtrsim \frac{\log |\mathfrak{Q}(n)|}{\log \log |\mathfrak{Q}(n)|}, \qquad (4.21)$$

(соответственно
$$L^{\mathrm{K}}(\mathfrak{Q}(n)) \gtrsim \frac{\log |\mathfrak{Q}(n)|}{\log \log |\mathfrak{Q}(n)|}$$
). (4.22)

Пусть, например, класс Q состоит из всех ФАЛ, симметричных по первым двум БП. Легко видеть, что при этом $|Q(n)| = 2^{\frac{3}{4}2^n}$, так как $f \in Q(n)$ тогда и только тогда, когда вторая и третья четверти столбца значений $\tilde{\alpha}_f$ совпадают. Следовательно, в силу леммы 4.2, отсюда вытекает, что

$$L^{\mathcal{C}}(\mathfrak{Q}(n)) \gtrsim \frac{3}{4} \cdot \frac{2^n}{n}, \qquad L^{\mathcal{K}}(\mathfrak{Q}(n)) \gtrsim \frac{3}{4} \cdot \frac{2^n}{n}.$$
 (4.23)

§5 Дизъюнктивно-универсальные множества функций. Асимптотически наилучший метод О. Б. Лупанова для синтеза схем из функциональных элементов в базисе {&, ∨, ¬}

Рассмотрим метод синтеза схем из класса $\mathcal{U}^{\mathbb{C}}$, который был предложен О.Б. Лупановым [14] и позволил впервые установить асимптотику функции Шеннона $L^{\mathbb{C}}(n)$. Этот метод, как и метод Шеннона (см. §3), основан на представлении реализуемой ФАЛ $f, f \in P_2(n)$, в виде (3.4) и построении искомой СФЭ Σ_f , реализующей ФАЛ f, как суперпозиции схем вида $\Sigma_f = \Sigma''(\Sigma')$. При этом схема Σ'' по-прежнему является мультиплексором порядка (n-q) от адресных БП $x'' = (x_{q+1}, \ldots, x_n)$, а схема Σ' реализует все ФАЛ вида $f_{\sigma''}(x')$, где $x' = (x_1, \ldots, x_q)$, $\sigma'' \in B^{n-q}$, и $f_{\sigma''}(x') = f(x', \sigma'')$.

Однако, в отличие от метода Шеннона, каждая ФАЛ $f_{\sigma''}(x')$ берется не с выхода универсального многополюсника от БП x', а реализуется на выходе Σ' как дизъюнкция некоторых ФАЛ, выбранных из специального множества $G, G \subseteq P_2(q)$, реализованного на выходах соответствующей подсхемы схемы Σ' .

Множество ФАЛ $G, G \subseteq P_2(m)$, называется дизтонктивно-универсальным множеством (ДУМ) порядка m и ранга p, если любая ФАЛ g, $g \in P_2(m)$, может быть представлена в виде

$$g = g_1 \vee \ldots \vee g_p,$$

где $g_i \in G$ при всех i, i = 1, ..., p. Стандартный способ построения таких множеств связан с разбиениями единичного куба.

Пусть П = (π_1, \ldots, π_p) — разбиение куба B^m , и пусть для всех $i, i = 1, \ldots, p, \Phi A \Pi \psi_i (x_1, \ldots, x_m)$ — характеристическая $\Phi A \Pi$ множества π_i , а $G^{(i)}$ — множество всех тех $\Phi A \Pi$ $g, g \in P_2(m)$, которые обращаются в 0 вне π_i . Заметим, что множество $\Phi A \Pi G$ вида

$$G = G^{(1)} \cup \ldots \cup G^{(p)}$$

является ДУМ порядка m и ранга p. Действительно, любая $\Phi A \Pi \ g, \ g \in P_2(m)$, может быть представлена в виде

$$g = g_1 \vee \ldots \vee g_p, \tag{5.1}$$

где $g_i = \psi_i g$ и, следовательно, $g_i \in G^{(i)}$ для всех $i, i = 1, \ldots, p$. Заметим также, что мощность множества $G^{(i)}, i = 1, \ldots, p$, равна 2^{s_i} , где $s_i = |\pi_i|$, и что множество $G^{(i)} \cap G^{(j)}$ состоит из ФАЛ, тождественно равной 0, если $1 \leq i < j \leq p$. Следовательно,

$$\lambda = |G| = \sum_{i=1}^{p} \left| G^{(i)} \right| - (p-1) \leqslant \sum_{i=1}^{p} 2^{s_i} \leqslant p 2^s,$$

	$x_1 \ x_2 \dots x_{m-1} x_m$	$g_1g_2\cdots g_2^s$	\mathfrak{g}_{2^s+1}	g ₂	s+1_1		$g_{(p-1)}$	$)(2^{s}-1)+2$	$\cdots g_{\lambda}$	
	0 0 0 0	$0 1 \cdots 1$	0		0		0		0	1
	0 0 ··· 0 1	$0 0 \cdots 1$	0		0		0		0	s
π_1			÷	÷	÷		:	÷	÷	
		$0 0 \cdots 1$	0		0		0		0	V
		0 0 · · · 0	1		1		0		0	
	{	0 0 · · · 0	0		1		0		0	
π_2			÷	÷	÷		:	÷	÷	5-52
		0 0 · · · 0	0		1		0		0	V
	····	0 0 · · · 0	0		0		0		0	
	{	$0 0 \cdots 0$	0		0		0		0	$s=s_{m-1}$
π_{p-1}			÷	÷	÷		÷	÷	÷	
		0 0 · · · 0	0		0		0		0	V
-	···	0 0 · · · 0	0		0		1		1	
	{	$0 0 \cdots 0$	0		0		0		1	8
π_p				÷	÷		:	÷	÷	
		0 0 · · · 0	0		0		0		0	\downarrow
	•		<	$-2^{s}-1$	>		<	$-2^{s_p}-1$	>	

Рис. 5.1: к определению дизъюнктивно-универсального множества

где

$$s = \max_{1 \leqslant i \leqslant p} s_i.$$

Указанное ДУМ G будем называть ДУМ, связанным с разбиением П. Компоненты разбиения П будем при этом называть полосами ДУМ G, а ФАЛ $\psi_1 = \chi_{\delta_1}, \ldots, \psi_p = \chi_{\delta_p}$ — его характеристическими ФАЛ. Заметим, что характеристические ФАЛ попарно ортогональны, то есть одновременно в 1 не обращаются, и принадлежат G. Заметим также,

что представление (5.1) в случае рассматриваемого ДУМ G равносильно представлению:

$$g = \psi_1 g_1 \lor \psi_2 g_2 \lor \dots \lor \psi_p g_p \tag{5.2}$$

Будем считать *стандартным* ДУМ порядка *т* и высоты *s*, где

$$s \leqslant 2^m, \tag{5.3}$$

ДУМ, связанное с разбиением $\Pi = (\pi_1, \ldots, \pi_p)$ куба B^m на последовательные отрезки, для которого номер любого набора из множества π_i меньше номера любого набора из множества π_j , если i < j, и выполнены соотношения

$$p = \left\lceil \frac{2^m}{s} \right\rceil, \quad s_1 = s_2 = \dots = s_{p-1} = s,$$

$$s_p = 2^m - (p-1) \, s \leqslant s.$$
(5.4)

Таблица значений ФАЛ ДУМ G приведена на рис. 5.1.

Из проведенных построений и отмеченных выше свойств стандартного ДУМ вытекает справедливость следующего утверждения.

Лемма 5.1. Для любых натуральных $p, m u s, rde p = \lfloor \frac{2^m}{s} \rfloor$, существует стандартное ДУМ G порядка m, которое является ДУМ ранга p и для которого:

1.
$$\lambda = |G| \leq p2^s;$$

2. система из р ортогональных характеристических $\Phi A \Pi$ $\psi_1, \ldots, \psi_p, \ \Pi YM \ G$ обладающих тем свойством, что для любой $\Phi A \Pi \ g, \ g \in P_2(m), \ u$ некоторых $\Phi A \Pi \ g_1, \ldots, g_p$ из G справедливо не только представление (5.1), но и представление (5.2). §5. Метод Лупанова синтеза СФЭ

Теорема 5.1. Для любой $\Phi A \Pi f$, $f \in P_2(n)$, существует реализующая ее $C \Phi \Im \Sigma_f$, $\Sigma_f \in \mathcal{U}^{\mathbb{C}}$, такая, что

$$L\left(\Sigma_f\right) \leqslant \frac{2^n}{n} \left(1 + \frac{5\log n + O\left(1\right)}{n}\right).$$
(5.5)

Доказательство. Пусть $x' = (x_1, \ldots, x_q), x'' = (x_{q+1}, \ldots, x_n)$ и $f_{\sigma''}(x') = f(x', \sigma'')$ для всех σ'' из B^{n-q} . Пусть, далее, Σ'' — мультиплексор порядка (n-q) от адресных БП x'' и информационных БП $y = (y_0, \ldots, y_{2^{n-q}-1})$, который построен в соответствии с леммой 2.3, представляет собой формулу \mathcal{F}_{n-q} и реализует мультиплексорную ФАЛ $\mu_{n-q}(x'', y)$.

Пусть *s* — некоторый параметр, удовлетворяющий (5.3), а *G* — стандартное ДУМ порядка m = q и высоты *s*, удовлетворяющее требованиям леммы 5.1. Обозначим через Σ_G СФЭ, которая реализует систему ФАЛ \vec{G} и представляет собой объединение схем, построенных для каждой из них в соответствии с леммой 1.2. Заметим, что, в силу леммы 2.3, (1.3) и леммы 5.1, выполнены неравенства

$$L\left(\Sigma''\right) \leqslant 4 \cdot 2^{n-q}, L\left(\Sigma_G\right) \leqslant 3p2^{s+q}.$$

$$(5.6)$$

Схема Σ' содержит СФЭ Σ_G в качестве подсхемы и реализует каждую ФАЛ $f_{\sigma''}(x')$, где $\sigma'' \in B^{n-q}$, на одном из своих выходов как ФАЛ g(x') вида (5.1) с помощью СФЭ из (p-1) ФЭ \lor , входы которой присоединены к соответствующим выходам Σ_G . Искомая СФЭ Σ_f имеет вид $\Sigma_f = \Sigma''(\Sigma')$ и реализует ФАЛ f в соответствии с разложением (3.4). Для нее, в силу (5.6), будут выполняться неравенства

$$L(\Sigma_f) \leq 2^{n-q} (p-1) + L(\Sigma'') + L(\Sigma_G) \leq$$

 $\leq 2^{n-q} (p-1) + 4 \cdot 2^{n-q} + 3p2^{s+q}$

из которых, выбрав значения параметров

$$s = \left\lceil n - 5 \log n \right\rceil,$$
$$m = q = \left\lceil 2 \log n \right\rceil,$$

удовлетворяющие (5.3), в соответствии с леммой 5.1 получим

$$L(\Sigma_f) \leqslant \frac{2^n}{n - 5\log n} + O\left(\frac{2^n}{n^2}\right) = \frac{2^n}{n} \left(1 + \frac{5\log n + O(1)}{n}\right).$$

Теорема доказана.

Следствие. Из (5.5) с учётом следствия из теоремы 4.1 вытекает, что

$$L^{\mathcal{C}}(n) \sim \frac{2^n}{n}.$$

Отметим, в заключение, что в соответствии с (5.5) и теоремой 4.1 сложность $L^{C}(f)$ для почти всех ФАЛ $f, f \in P_{2}(n)$, асимптотически равна функции Шеннона $L^{C}(n)$, то есть сложности самой сложной ФАЛ из $P_{2}(n)$. Тем самым, в отличие от класса ДНФ (см. §7 главы 1), в классе схем \mathcal{U}^{C} имеет место т. н. эффект Шеннона — асимптотическое равенство сложности почти всех ФАЛ и сложности самой сложной ФАЛ от заданного числа БП, стремящегося к бесконечности.

Описанный выше асимптотически наилучший метод синтеза схем ориентирован, вообще говоря, на произвольную или самую «сложную» ФАЛ. Тем не менее, во многих случаях он служит основой асимптотически наилучшего метода синтеза СФЭ для ФАЛ из заданного специального класса

§5. Метод Лупанова синтеза СФЭ

Q и позволяет установить для этого класса «стандартную» (см. (4.21)) асимптотику вида

$$L^{\mathcal{C}}(\mathfrak{Q}(n)) \sim \frac{\log \log |\mathfrak{Q}(n)|}{\log |\mathfrak{Q}(n)|}.$$
(5.7)

Заметим, что асимптотика (5.7) устанавливается, как правило, путем сведения задачи синтеза СФЭ для любой ФАЛ из $\Omega(n)$ к задаче синтеза СФЭ для системы из одной или нескольких произвольных ФАЛ от меньшего числа БП. При этом требуется, чтобы двоичный логарифм числа тех систем ФАЛ, к реализации которых сводится реализация ФАЛ из $\Omega(n)$, был асимптотически равен log $|\Omega(n)|$, а сложность вспомогательных ФАЛ, обеспечивающих данное сведение, была бы существенно меньше правой части (5.7). Аналогичным образом обстоит дело с классом КС.

Возьмем в качестве примера введенный в §4 класс ФАЛ Q, состоящий из всех ФАЛ, симметричных по первым двум БП, и докажем, что

$$L^{\mathcal{C}}\left(\mathbb{Q}\left(n
ight)
ight) \lesssim rac{3}{4}\cdot rac{2^{n}}{n},$$

то есть, с учетом (4.23), установим для него асимптотику (5.7) вида

$$L^{\mathcal{C}}(\mathfrak{Q}(n)) \sim \frac{3}{4} \cdot \frac{2^{n}}{n}$$

Действительно, разлагая ФАЛ $f(x_1, \ldots, x_n)$ из Q(n) по БП x_1, x_2 , получим

$$f(x_1, x_2, x') = \bigvee_{(\sigma_1, \sigma_2) \in B^2} x_1^{\sigma_1} x_2^{\sigma_2} f_{\sigma_1, \sigma_2}(x'), \qquad (5.8)$$

где $x' = (x_3, \ldots, x_n)$ и $f_{\sigma_1, \sigma_2}(x') = f_{\sigma_1, \sigma_2}(\sigma_1, \sigma_2, x')$, причем $f_{01} = f_{10}$ в силу симметричности ФАЛ f по БП x_1, x_2 . Искомая СФЭ Σ_f реализует ФАЛ f в соответствии с (5.8) и имеет

вид $\Sigma_f = \Sigma''(\Sigma')$, где Σ'' — мультиплексорная СФЭ порядка 2 от адресных БП x_1 , x_2 , а СФЭ Σ' от БП x' реализует асимптотически наилучшим способом ФАЛ f_{00} , $f_{01} = f_{10}$ и f_{11} от БП x'. Легко видеть, что сложность построенной схемы Σ_f асимптотически не больше, чем $\frac{3}{4} \frac{2^n}{n}$.

§6 Регулярные разбиения единичного куба и моделирование функций переменными. Синтез схем для некоторых дешифраторов и мультиплексоров.

Множество $\delta, \ \delta \subseteq B^q$, называется *m-регулярным* множеством наборов куба B^q , если $m < q, \ |\delta| = 2^m$ и все префиксы¹ длины *m* наборов из δ различны. Заметим, что *m*регулярному множеству $\delta, \ \delta \subseteq B^q$, можно взаимнооднозначно сопоставить систему $\Phi A \Pi \ \psi = (\psi_1, \dots, \psi_{q-m})$ из $P_2^{q-m}(m)$ так, что набор $\alpha = (\beta, \gamma)$, где $\beta \in B^m$ и $\gamma \in B^{q-m}$, принадлежит δ тогда и только тогда, когда $\psi(\beta) = \gamma$. Заметим также, что любая $\Phi A \Pi \ g, \ g \in P_2(q)$, совпадает на *m*-регулярном множестве наборов $\delta, \ \delta \subseteq B^q$, с некоторой $\Phi A \Pi$ из $P_2(m)$, если рассматривать $P_2(m)$ как множество всех $\Phi A \Pi$ из $P_2(q)$ с несущественными $\Box m_{m+1}, \dots, x_q$. При этом любая $\Phi A \Pi$ из связанной с δ системы функций совпадает на δ с соответствующей $\Box \Pi$ куба B^q .

Для наборов $\beta = (\beta_1, \ldots, \beta_q)$ и $\alpha = (\alpha_1, \ldots, \alpha_q)$ через $\beta \oplus \alpha$ будем обозначать набор вида $(\beta_1 \oplus \alpha_1, \ldots, \beta_q \oplus \alpha_q)$. Для множества $\delta, \delta \subseteq B^q$, и набора $\alpha, \alpha \in B^q$, определим множество $\delta \oplus \alpha$ как множество различных наборов вида $\beta \oplus \alpha$, где $\beta \in \delta$, то есть множество, получающееся из множества δ сдвигом (параллельным переносом) на набор α . Заметим, что для *m*-регулярного множества $\delta, \delta \subseteq B^q$, и любого набора $\alpha, \alpha \in B^q$, множество $\delta \oplus \alpha$ также является

¹Для слова (набора) α вида $\alpha = \beta \gamma$ слово β (γ) считается его *префиксом* (соответственно *суффиксом*).

§6. Регулярные разбиения единичного куба

m-регулярным. Если при этом $\nu(\alpha) < 2^{q-m}$, то есть

$$\alpha = (\underbrace{0, \dots, 0}_{m}, \gamma),$$

где $\gamma = (\gamma_1, \ldots, \gamma_{q-m})$ и $\nu(\gamma) = \nu(\alpha)$, а множество наборов δ соответствует системе ФАЛ $g = (g_1, \ldots, g_{q-m})$, то множество наборов $\delta \oplus \alpha$ будет соответствовать системе ФАЛ $(g_1 \oplus \gamma_1, \ldots, g_{q-m} \oplus \gamma_{q-m})$, получающейся из системы g инвертированием некоторых ФАЛ.

Лемма 6.1. Для любых натуральных m, λ $u q = m + \lambda u$ для любой системы $\Phi A \Pi g = (g_1, \ldots, g_{\lambda})$ из $P_2^{\lambda}(m)$ существует m-регулярное разбиение $\Delta = (\delta_1, \ldots, \delta_{2q-m})$ куба B^q такое, что любая $\Phi A \Pi g_i$ на любой компоненте δ_j совпадает либо с одной из $B \Pi x_{m+1}, \ldots, x_q$, либо с её отрицанием.

Доказательство. Пусть $\delta = \delta_1 - m$ -регулярное множество, соответствующее системе ФАЛ $g = (g_1, \ldots, g_{\lambda})$, и пусть $\delta_i = \delta_1 \oplus \alpha$, где $\nu(\alpha) = i - 1$, для всех $i, i = 1, \ldots, 2^{q-m}$. Из построения системы множеств $\Delta = (\delta_1, \ldots, \delta_{2^{q-m}})$ следует, что каждое из них обладает требуемым свойствами, связанными с можелированием ФАЛ из g с помощью БП.

Покажем теперь, что Δ — покрытие куба B^q . Для этого возьмем произвольный набор из B^q вида (β, γ), где $\beta \in B^m$ и $\gamma \in B^{q-m}$, а по нему найдем в множестве δ набор вида ($\beta, \hat{\gamma}$), который имеется в δ в силу *m*-регулярности этого множества. Следовательно,

$$(\beta,\gamma) = (\beta,\widehat{\gamma}) \oplus (\underbrace{0,\ldots,0}_{m},\widehat{\gamma} \oplus \gamma) = (\beta,\widehat{\gamma}) \oplus \alpha,$$

где $\nu\left(\alpha\right)<2^{q-m}.$ Таким образом, система Δ образует покрытие куба $B^m.$

С другой стороны, из *m*-регулярности δ следует *m*-регулярность любого из множеств δ_i , $i = 1, \ldots, 2^{q-m}$, и поэто-

му

$$\sum_{i=1}^{2^{q-m}} |\delta_i| = 2^m 2^{q-m} = 2^q$$

Следовательно, система Δ образует разбиение куба B^q . Лемма доказана.

Применим технику моделирования ФАЛ переменными для синтеза некоторых дешифраторов и мультиплексоров.

Лемма 6.2 (ср. [14]). Для n = 1, 2, 3, ... выполняются неравенства

$$L^{\mathrm{K}}\left(\overrightarrow{Q}_{n}\right) \leqslant 2^{n} + O\left(\frac{2^{n}}{n}\right),$$
 (6.1)

$$L^{\mathrm{K}}\left(\overrightarrow{J}_{n}\right) \leqslant 2^{n+1} + O\left(\frac{2^{n}}{n}\right).$$
 (6.2)

Доказательство. Выберем параметры т, q и λ так, что

 $\lambda=2^m,\quad q=m+\lambda\quad {\rm if}\quad q\leqslant n,$

а затем рассмотрим *m*-регулярное множество наборов δ_1 куба B^q от БП $x' = (x_1, \ldots, x_q)$, связанное с системой ФАЛ $\overrightarrow{Q}_m(x_1, \ldots, x_m)$, которая состоит из всех ЭК вида $x_1^{\sigma_1} \cdots x_m^{\sigma_m}$, где $\nu(\sigma_1, \ldots, \sigma_m) = j - 1, \ j \in [1, \lambda].$

Построим для этой системы по лемме 6.1 разбиение $\Delta = (\delta_1, \ldots, \delta_{2^{q-m}})$ куба B^q и заметим, что любая ЭК $K(x') = x_1^{\sigma_1} \cdots x_q^{\sigma_q}$, где $\sigma' = (\sigma_1, \ldots, \sigma_q) \in \delta_i$, совпадает на множестве δ_i с одной из ЭК системы \overrightarrow{Q}_m , то есть совпадет на нем с буквой $x_{j_{\sigma'}}^{\alpha_{\sigma'}}$, где $m + 1 \leq j_{\sigma'} \leq q$, $\alpha_{\sigma'} \in B$. Заметим, что в силу указанных выше свойств разбиения Δ любая ЭК $K = x_1^{\sigma_1} \cdots x_n^{\sigma_n}$, где $\sigma' = (\sigma_1, \ldots, \sigma_q) \in \delta_i$, $1 \leq i \leq 2^{\lambda}$, может быть представлена в виде

$$K = \chi_i(x') \cdot x_{j_{\sigma'}}^{\alpha_{\sigma'}} \cdot K_{\sigma''}(x''), \qquad (6.3)$$

§6. Регулярные разбиения единичного куба

где $x'' = (x_q + 1, \dots, x_n), \ \sigma'' = (\sigma_{q+1}, \dots, \sigma_n).$

Пусть, далее, $(1, 2^{\lambda})$ -КС $\Sigma' = \Sigma'(a; b_1, \ldots, b_{2^{\lambda}})$ реализует строку из ФАЛ $\chi = (\chi_1, \ldots, \chi_{2^{\lambda}})$, где $\chi_i(x')$ — характеристическая ФАЛ множества δ_i , $i \in [1, 2^{\lambda}]$, и получается в результате отождествления входов у схем $\Sigma_1, \ldots, \Sigma_{2^{\lambda}}$, где π -схема $\Sigma_i, i \in [1, 2^{\lambda}]$, построена по лемме 1.2 для ФАЛ χ_i , и в силу замечания к этой лемме является ККС сложности не больше, чем $q \cdot 2^m$, с входом $a_i = a$ и выходом b_i — корнем соответствующего КД (см. рис. 6.1).

Искомая $(1, 2^n)$ -КС $\Sigma_n^{(\&)}$ реализует каждую ЭК из \overrightarrow{Q}_m в соответствии с (6.3), имеет вид, показанный на рис. 6.1, и является ККС.

Полагая

$$m = \lceil \log n \rceil - 2,$$

получим, что

$$\lambda = 2^m \leqslant \frac{n}{2}, \quad q = m + \lambda \leqslant n.$$

При этом сложность построенной $(1, 2^n)$ -КС $\Sigma_n^{(\&)}$, являющейся контактным дешифратором порядка n, удовлетворяет неравенствам:

$$L\left(\Sigma_n^{(\&)}\right) \leqslant \lambda 2^{n-m} + 2^{n-m+1} + q2^q \leqslant 2^n + O\left(\frac{2^n}{n}\right),$$

из которых вытекает неравенство (6.1).

Искомая $(1, 2^n)$ -КС $\Sigma_n^{(\vee)}$, являющаяся дизъюнктивным контактным дешифратором порядка n, сложность которого удовлетворяет оценке (6.2), получается в результате перехода от ККС $\Sigma_n^{(\&)}$ к инверсной ККС в соответствии с леммой 10.1 главы 2.

Лемма доказана.

Рис. 6.1: к доказательству леммы 6.2

Следствие. Оценки леммы 6.2, следствия из леммы 2.2 и следствия из леммы 2.5 дают асимптотические равенства

$$L^{\mathrm{K}}\left(\overrightarrow{Q}_{n}\right) \sim 2^{n}, \qquad L^{\mathrm{K}}\left(\overrightarrow{J}_{n}\right) \sim 2^{n+1}.$$

Лемма 6.3. Для $n = 1, 2, \ldots$ выполняются неравенства

$$L^{\pi}(\mu_n) \leq 2 \cdot 2^n + O\left(\frac{2^n}{n}\right), L^{\mathcal{C}}(\mu_n) \leq 2 \cdot 2^n + O\left(\frac{2^n}{n}\right),$$
$$D(\mu_n) \leq n + 6,$$

причем существует такая реализующая $\Phi A \Pi \mu_n$ и бесповторная по информационным $B \Pi$ формула $\widehat{\mathfrak{F}}_n$ с поднятыми

§6. Регулярные разбиения единичного куба

отрицаниями, глубина которой удовлетворяет последнему из них, алтернирование не больше 3, а сложность не превосходит $7 \cdot 2^n$.

47

Доказательство. Искомая π -схема Σ_n получается в результате присоединения к каждому из выходов $(1, 2^n)$ -КС $\Sigma_n^{(\&)}$, построенной при доказательстве леммы 6.2, контакта соответствующей ему информационной БП и отождествления концевых вершин всех таких контактов в выходную вершину Σ_n . Искомая СФЭ S_n получается из формулы с поднятыми отрицаниями \mathcal{F}_n , которая моделирует π -схему Σ_n (см. §6 гл. 2), в результате применения операций приведения (см. §1) для вершин, соответствующих ФЭ \neg .

Для завершения доказательства леммы на основе разбиения Δ , введенного в лемме 6.2, и представления (6.3) построим для ФАЛ μ_n формулу $\tilde{\mathcal{F}}_n$ следующим образом

$$\mathcal{F}_{n}(x_{1},\ldots,x_{n}, y_{0},\ldots,y_{2^{n}-1}) = \\ = \bigvee_{i=1}^{\lambda} \mathfrak{A}_{i}(x') \& \underset{\sigma'' \in B^{n-q}}{\&} \left(J_{\overline{\sigma}''}(x'') \lor \bigvee_{\sigma' \in \delta_{i}} x_{j_{\sigma'}}^{\alpha_{\sigma'}} y_{\nu(\sigma',\sigma'')} \right)$$
(6.4)

где \mathfrak{A}_i — совершенная ДНФ ФАЛ $\chi_i, i = 1, \ldots, \lambda$, и $J_{\overline{\sigma}''}(x'') = \overline{K}_{\sigma''}(x'')$. Легко видеть, что $\tilde{\mathcal{F}}_n$ реализует мультиплексорную ФАЛ μ_n , бесповторна по БП y_0, \ldots, y_{2^n-1} и что Alt $(\tilde{\mathcal{F}}_n) \leq 3$.

Пусть, далее, формула \mathcal{F}_n получается в результате оптимизации формулы $\tilde{\mathcal{F}}_n$ по глубине. Тогда при

$$n \ge 3$$
 и $m = \left\lceil \log\left(\frac{n}{3}\right) \right\rceil$

сложность и глубина \mathcal{F}_n будут удовлетворять условиям леммы. Действительно, если $n \ge 6$, то $q \le n - m$ и, следова-

¹Случай $n \leq 5$ рассматриваются отдельно.

тельно,

$$R\left(\widetilde{\mathcal{F}}_{n}\right) = 2^{q-m} \left(q \cdot 2^{m} + 2^{n-q} \left((n-q) + 2^{m+1}\right)\right) \leqslant \\ \leqslant 2^{n+1} + n \cdot 2^{n-m} \leqslant 2^{n+1} + 3 \cdot 2^{n} = 5 \cdot 2^{n}.$$

При этом, очевидно,

$$L_{\neg}(\tilde{\mathfrak{F}}_n) \leqslant \frac{1}{2} \left(R(\tilde{\mathfrak{F}}_n) - 2^n \right) \leqslant 2^{n+1}$$

и, таким образом,

$$L(\tilde{\mathfrak{F}}_n) \leqslant R(\tilde{\mathfrak{F}}_n) + L_{\neg}(\mathfrak{F}_n) - 1 \leqslant 7 \cdot 2^n - 1,$$

откуда в силу теоремы 2.1 главы 2 следует, что $D(\mathcal{F}_n) \leq n+6.$

Лемма доказана.

§7 Методы синтеза формул в базисе {&, ∨, ¬}, поведение функции Шеннона для глубины ФАЛ.

Применим технику моделирования ФАЛ переменными для синтеза формул в стандартном базисе.

Теорема 7.1 (ср. [14]). Для любой $\Phi A \Pi f, f \in P_2(n)$, в \mathbb{U}^{Φ} существует реализующие ее π -схема Σ_f и формула \mathcal{F}_f , для которых

$$L(\Sigma_f) \lesssim \frac{6 \cdot 2^n}{\log n}, L(\mathfrak{F}_f) \lesssim \frac{10 \cdot 2^n}{.}$$
 (7.1)

Доказательство. Пусть натуральные параметры $m,\,\lambda$ и qудовлетворяют соотношениям

$$\lambda = 2^{2^{m-1}} - m - 1$$
 и $q = m + \lambda < n$,

§7. Методы синтеза формул

а множество G, $|G| = \lambda$, — множество всех тех отличных от 0 и БП ФАЛ g, $g \in P_2(m)$, для которых $g(0, \ldots, 0) = 0$. Пусть, далее, $\Delta = (\delta_1, \ldots, \delta_{2^{\lambda}})$ — разбиение куба B^q , полученное по лемме 6.1 для системы ФАЛ \vec{G} . Для ФАЛ f(x) из $P_2(n)$, где $x = (x_1, \ldots, x_n)$, $x'' = (x_{q+1}, \ldots, x_n)$ рассмотрим ее представление в виде

$$f(x) = \bigvee_{\substack{\sigma'' = (\sigma_{q+1}, \dots, \sigma_n) \\ i = 1}} x_{q+1}^{\sigma_{q+1}} \cdots x_n^{\sigma_n} \left(\bigvee_{i=1}^{2^{q-m}} \mathbf{x}_i(x') f_{\sigma'',i}(x') \right) = \sum_{i=1}^{2^{q-m}} \mathbf{x}_i(x') \left(\bigvee_{\substack{\sigma'' = (\sigma_{q+1}, \dots, \sigma_n) \\ \sigma'' = (\sigma_{q+1}, \dots, \sigma_n)}} x_{q+1}^{\sigma_{q+1}} \cdots x_n^{\sigma_n} f_{\sigma'',i}(x') \right), \quad (7.2)$$

где $\chi_i(x')$ — характеристическая ФАЛ множества δ_i , $i = 1, \ldots, 2^{q-m}$, и $f_{\sigma'',i}(x')$ — произвольная ФАЛ, совпадающая на δ_i с ФАЛ $f_{\sigma''}(x') = f(x', \sigma'')$.

Из определения множества $\Phi A \Pi G$ и разбиения Δ вытекает, что в качествое любой из указанных выше $\Phi A \Pi f_{\sigma'',i}(x')$ всегда можно выбрать $\Phi A \Pi g_{\sigma'',i}(x')$, которая представляет собой либо константу, либо букву вида $x_{j_{\sigma'',i}}^{\alpha_{\sigma'',i}}$. Используя этот факт, построим для $\Phi A \Pi f$ на основе (7.2) формулу $\widetilde{\mathcal{F}}_{f}$ с поднятыми отрицаниями, которая имеет вид

$$\widetilde{\mathcal{F}}_{f} = \bigvee_{i=1}^{2^{\lambda}} \mathfrak{A}_{i}(x') \mathcal{F}_{n-q}\left(x'', g_{\widetilde{0},i}, \dots, g_{\widetilde{1},i}\right),$$

где $\mathcal{F}_{n-q}(x'', y_0, \dots, y_{2^{n-q}-1})$ — бесповторная по информационным БП формула из леммы 6.3, реализующая ФАЛ μ_{n-q} , а $\mathfrak{A}_i, i \in [1, 2^{\lambda}]$, — совершенная ДНФ ФАЛ $\boldsymbol{\chi}$.

Покажем, что при некотором выборе параметра m искомая формула \mathcal{F}_f получается из формулы $\widetilde{\mathcal{F}}_f$ эквивалентны-

ми преобразованиями, устраняющими вхождение в неё константных ФАЛ $g_{\sigma'',i}$, а моделирующая формулу \mathcal{F}_f π -схема является искомой π -схемой Σ_f .

Заметим, что число $\Phi \ni \neg$ во всех формулах $\mathfrak{A}_i, i \in [1, 2^{\lambda}]$, равно половине их суммарного ранга и напомним (см. лемму 6.3), что $R(\mathfrak{F}_{n-q}) \leq 3 \cdot 2^{n-q}, L_{\neg}(\mathfrak{F}_{n-q}) \leq 2 \cdot 2^{n-q}$. Следовательно, в силу леммы 2.1 главы 2,

$$L_{\&,\vee}(\mathcal{F}_f) \leqslant L(\Sigma_f) \leqslant 2^{q-m} \left(q \cdot 2^m + 3 \cdot 2^{n-q} \right), \qquad (7.3)$$

$$L_{\neg}(\mathcal{F}_f) \leqslant q \cdot 2^{q-1} + 2 \cdot 2^{n-m}.$$
(7.4)

Выбирая значение параметра *т* так, что

$$m = \lfloor \log \log n
floor$$
, и, следовательно, $q \leqslant \frac{n}{2},$

а затем подставляя эти значения в (7.3) и (7.4), получим неравенства

$$L_{\&,\vee}\left(\mathfrak{F}_{f}\right) \leqslant L\left(\Sigma_{f}\right) \leqslant q \cdot 2^{q} + 3 \cdot 2^{n-m} \leqslant 6 \cdot \frac{2^{n}}{\log n} + O\left(n \cdot 2^{n/2}\right),$$
$$L_{\neg}\left(\mathfrak{F}_{f}\right) \leqslant q \cdot 2^{q-1} + 2^{n-m+1} \leqslant \frac{2^{n+2}}{\log n} + O\left(n \cdot 2^{n/2}\right),$$

из которых для сложности π -схемы Σ_f и формулы \mathcal{F}_f следуют оценки (??), (7.1).

Теорема доказана.

Теорема 7.2. Для n = 1, 2, ... выполняется неравенство

$$D(n) \leqslant n - \log \log n + 9 + o(1).$$

Доказательство. Для получения требуемой верхней оценки глубины произвольной ФАЛ $f, f \in P_2(n)$, достаточно при построении формулы $\widetilde{\mathcal{F}}_f$ из теоремы 7.1 вместо формулы \mathcal{F}_{n-q} , реализующей ФАЛ μ_{n-q} , использовать формулу $\widehat{\mathcal{F}}_{n-q}$ из леммы 6.3. Для построенной таким образом при

§8. Асимптотически наилучший метод синтеза КС 51

 $m = \lfloor \log \log n \rfloor$ формулы $\widehat{\mathcal{F}}_{f}$, которая реализует ФАЛ f, в силу (7.3), (7.4) и леммы 6.3 будут выполняться соотношения

$$\operatorname{Alt}\left(\widehat{\mathcal{F}_{f}}\right) \leqslant 5, \quad L(\widehat{\mathcal{F}_{f}}) \leqslant 3q \cdot 2^{q-1} + 7 \cdot 2^{n-m} \leqslant 14 \cdot \frac{2^{n}}{\log n} + O\left(n \cdot 2^{n/2}\right)$$

Следовательно формула $\check{\mathcal{F}}_f$, которая получается из $\widehat{\mathcal{F}}_f$ оптимизацией по глубине, является искомой, так как

$$D(\hat{\mathcal{F}}_f) \leq n - \log \log n + 9 + o(1).$$

Теорема доказана.

Следствие. Для n = 1, 2, ...

$$D(n) = n - \log \log n \pm O(1).$$

§8 Асимптотически наилучший метод синтеза контактных схем

Заметим сначала, что асимптотически наилучший метод синтеза СФЭ из §5 без существенных изменений переносится на класс контактно-вентильных схем (КВС), в которых наряду с контактами можно использовать «вентили», то есть ориентированные ребра, проводящие только в направлении своей ориентации. Действительно, для любой ФАЛ $f, f \in P_2(n)$, реализующая ее (1, 1)-КВС $\widetilde{\Sigma}_f$ может быть получена на основе разложения (3.4) так же, как и СФЭ Σ_f из теоремы 5.1. Она является результатом корректной суперпозиции (см. §9 главы 2) вида $\widetilde{\Sigma}_f = \Sigma''(\Sigma')$, где $\Sigma'' - (2^{n-q}, 1)$ -КД от БП x'', а $(1, 2^{n-q})$ -КВС Σ' реализует систему всех ФАЛ вида $f_{\sigma''}(x'), \sigma'' \in B^{n-q}$. При этом схема Σ' по-прежнему содержит в качестве подсхемы $(1, \lambda)$ -КС Σ_G , реализующую систему ФАЛ \overrightarrow{G} на основе леммы 1.2, и реализует каждую ФАЛ

Рис. 8.1: Корректная реализация дизъюнкции ФАЛ g_1, \ldots, g_p в классах КВС и ИКС

g(x') типа $f_{\sigma''}(x')$ на основе ее представления (5.1) в виде дизъюнкции $g = g_1 \lor \cdots \lor g_p$ с помощью присоединения входов вентильной звезды порядка p к соответствующим выходам КС Σ_G (см. рис. 8.1а), которое является корректной суперпозицией. Сложность построенной КВС $\widetilde{\Sigma}_f$ при тех же значениях параметров, что и в теореме 5.1, будет удовлетворять неравенству (5.5).

Напомним (см. §5), что в силу специфики стандартного ДУМ G вместо представления (5.1) для ФАЛ g можно использовать эквивалентное (5.1) представление (5.2) вида

$$g = \psi_1 \cdot g_1 \vee \dots \vee \psi_p \cdot g_p \tag{8.1}$$

и на его основе реализовать ФАЛ g с помощью коррект-

§8. Асимптотически наилучший метод синтеза КС 53

ной суперпозиции т.н. итеративно-контактных схем, показанной на рис. 8.1b, где $\Phi A \Pi \psi_1, \ldots, \psi_p$ управляют проводимостью соответствующих контактов. Асимптотически наилучший метод синтеза КС связан с «моделированием» этой суперпозиции и представления (8.1) на компонентах подходящего *m*-регулярного разбиения куба B^{m+p} .

Пусть $\check{\delta} - m$ -регулярное множество наборов куба B^{m+p} , соответствующее системе ФАЛ $\vec{\psi} = (\psi_1, \ldots, \psi_p)$ (см. рис. 8.2а), а $\Delta = (\delta_1, \ldots, \delta_{2^p})$ — построенное для нее по лемме 6.1 разбиение куба B^{m+p} . Заметим, что любая ФАЛ $g, g \in P_2(m+p)$, на любой компоненте этого разбиения вида $\check{\delta} \oplus \alpha$, где

$$\alpha = (\underbrace{0, \dots, 0}_{m}, \alpha_{m+1}, \dots, \alpha_{m+p}),$$

совпадает с ФАЛ

$$\check{g} = x_{m+1}^{\overline{\alpha}_{m+1}} \cdot g_1 \vee \ldots \vee x_{m+p}^{\overline{\alpha}_{m+p}} \cdot g_p, \tag{8.2}$$

где $g_i = g\psi_i \in G^{(i)}, i = 1, ..., p$. При этом ФАЛ ў может быть реализована в результате операции присоединения звезды из контактов вида $x_{m+1}^{\overline{\alpha}_{m+1}}, ..., x_{m+p}^{\overline{\alpha}_{m+p}}$ к выходам $(1, \lambda)$ -КС Σ_G , реализующей систему ФАЛ \vec{G} , так, как это показано на рис. 8.2b. Заметим также, что указанная операция суперпозиции является корректной на множестве наборов $\delta \oplus \alpha$ в силу разделительности присоединяемой (p, 1)-КС на этом множестве.

Теорема 8.1 (ср. [14]). Для любой $\Phi A \Pi f$, $f \in P_2(n)$, существует реализующая ее $KC \Sigma_f$ такая, что

$$L(\Sigma_f) \leqslant \frac{2^n}{n} \left(1 + O\left(\frac{1}{\sqrt{n}}\right) \right)$$
 (8.3)

Доказательство. Пусть q = m + p, а $\Delta = (\delta_1, \ldots, \delta_{2^p})$ – описанное выше разбиение куба B^q , с помощью которого

a)

Рис. 8.2: m-регулярное множество $\check{\delta}$ и связанная с ним суперпозиция КС

§8. Асимптотически наилучший метод синтеза КС 55

 $\Phi A \Pi f$ можно представить в виде

$$f(x',x'') = \bigvee_{i=1}^{2^{p}} \boldsymbol{\mathcal{X}}_{i}(x') \bigvee_{\sigma'' = (\sigma_{q+1},\dots,\sigma_{n})} x_{q+1}^{\sigma_{q+1}} \cdots x_{n}^{\sigma_{n}} \check{g}_{\sigma'',i}(x'),$$
(8.4)

где χ_i — характеристическая ФАЛ δ_i , а в качестве ФАЛ $f_{\sigma'',i}$ при всех $\sigma'', \sigma'' \in B^{n-q}$, и $i, i \in [1, 2^p]$, берется ФАЛ $\check{g}_{\sigma'',i}$ вида (8.2), совпадающая с ФАЛ $f_{\sigma''}(x')$ на компоненте $\delta_i = \check{\delta} \oplus \alpha$.

Пусть $\Sigma_G - (1, \lambda)$ -КС, которая реализует систему ФАЛ \overrightarrow{G} по их совершенным ДНФ на основе контактного дерева (см. лемму 1.2 и оценку (1.2)). Для каждого $i, i = 1, ..., 2^p$, построим $(1, 2^{n-q})$ -КС Σ'_i (см. рис. 8.3а), которая содержит КС Σ_G в качестве подсхемы и реализует каждую ФАЛ $\check{g}_{\sigma'',i}$ вида (8.2) с помощью корректной на множестве наборов δ_i суперпозиции, показанной на рисунке 8.2b. Пусть, далее, $(1, 2^{n-m})$ -КС Σ' получается в результате отождествления входов у построенных выше КС $\Sigma'_i, i \in [1, 2^p]$, и реализует систему из всех ФАЛ вида $\check{g}_{\sigma'',i}$, где $\sigma'' \in B^{n-q}, i \in [1, 2^p]$. Заметим, что при этом выполняются неравенства

$$L(\Sigma_G) \leq \lambda 2^{m+1},$$

$$L(\Sigma'_i) \leq L(\Sigma_G) + p 2^{n-q},$$

$$L(\Sigma') \leq p 2^{n-m} + \lambda 2^{q+1}.$$
(8.5)

Построим, наконец, разделительную по входам $(2^{n-m}, 1)$ -КС Σ'' , которая реализует столбец из всех ФАЛ вида $\chi_i(x')$ · $x_{q+1}^{\sigma_{q+1}} \cdots x_n^{\sigma_n}$, где $i \in [1, 2^p]$ и $\sigma'' = (\sigma_{q+1}, \ldots, \sigma_n) \in B^{n-q}$. Эта КС получается в результате объединения 2^p схем тина $(2^{n-q}, 1)$ -КД от БП x'', к выходам которых присоединены входы $(2^p, 1)$ -КС, реализующей столбец из ФАЛ χ_i , $i \in [1, 2^p]$, и получающейся из $(2^q, 1)$ -КД от БП x' в результате соответствующего отождествления входов (см. рис. 8.3b).

Рис. 8.3: к доказательству теоремы 8.1

Легко видеть, что при этом

$$L(\Sigma'') \leq 2^{q+1} + 2^{n-m+1}.$$
 (8.6)

Искомая КС Σ_f является результатом корректной стыковки вида $\Sigma_f = \Sigma''(\Sigma')$, полученной в результате присоединения входов КС Σ'' к выходам КС Σ' в соответствии с представлением (8.4), сложность которой, в силу (8.5)–(8.6), удовлетворяет неравенству

$$L(\Sigma_f) \leq (p+2)2^{n-m} + (\lambda+1)2^{q+1}.$$

Из этого неравенства при

$$m = \left\lfloor \frac{3}{2} \log n \right\rfloor$$
 $\mathbf{M} \quad s = \left\lceil n - 2\sqrt{n} \right\rceil,$

при которых выполнены условия

$$s \leqslant 2^m, \ p = \left\lceil \frac{2^m}{s} \right\rceil$$
 if $q = m + p \leqslant n$,

§8. Асимптотически наилучший метод синтеза КС 57

вытекает неравенство (8.3) для сложности Σ_f , так как

$$\begin{split} (p+2)2^{n-m} &\leqslant \frac{2^n}{s} + 3 \cdot 2^{n-m} = \frac{2^n}{n} \left(1 + O\left(\frac{1}{\sqrt{n}}\right) \right), \\ (\lambda+1)2^{q+1} &\leqslant p2^s \cdot 2^{m+p+2} \leqslant \frac{2^{2m+s+p+3}}{s} \leqslant \\ &\leqslant \frac{32}{s} 2^{n-\sqrt{n}+3\log n} = o\left(\frac{2^n}{n\sqrt{n}}\right). \end{split}$$

Теорема доказана.

Следствие. Из (8.3) с учетом нижней оценки (4.14) вытекает, что

$$L^{\mathrm{K}}(n) \sim \frac{2^{n}}{n}.$$

Замечание. Построенную КС Σ_f можно разбить на не более, чем

$$\lambda p \cdot 2^p + 2^{n-m+1} + (\lambda+1)2^{q+1} = O\left(\frac{2^n}{n\sqrt{n}}\right)$$

«звезд», каждая из которых состоит из контактов одного и того же типа. Для этого достаточно контакты всех звезд, показанных на рис. 8.2b, перераспределить в звезды из однотипных контактов, «центрами» которых являются выходы подсхем Σ_G схем Σ'_i , $i = 1, \ldots, 2^{q-m}$, а любой из остальных контактов КС Σ_f считать отдельной звездой.

Литература

- [1] Алексеев В. Б. Введение в теорию сложности алгоритмов. М.: Издательский отдел ф-та ВМиК МГУ, 2002.
- [2] Алексеев В. Б., Вороненко А. А., Ложкин С. А., Романов Д. С., Сапоженко А. А., Селезнева С. Н. Задачи по курсу «Основы кибернетики». Издательский отдел ф-та ВМиК МГУ, 2002.
- [3] Алексеев В. Б., Лоэскин С. А. Элементы теории графов, схем и автоматов. М.: Издательский отдел ф-та ВМиК МГУ, 2000.
- [4] Боровков А. А. Курс теории вероятностей. М.: Наука, 1976.
- [5] Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. З-е изд., перераб. М.: ФИЗМАТЛИТ, 2004.
- [6] Дискретная математика и математические вопросы кибернетики, под редакцией С. В. Яблонского и О. Б. Лупанова. Т. 1. М.: Наука, 1974.
- [7] Евдокимов А. А. О максимальной длине цепи в единичном *n*-мерном кубе // Матем. заметки. 1969. 6. №3. С. 309–319.
- [8] Емеличев В. А., Мельников О. И., Сарванов В. И., Тышкевич Р. И. Лекции по теории графов. М.: Наука, 1977.

J	Тите	ратура

- [9] Журавлев Ю. И. Локальные алгоритмы вычисления информации // Кибернетика. №1. 1965. С. 12–19.
- [10] Журавлев Ю. И. Теоретико-множественные методы в алгебре логики // Проблемы кибернетики. Вып. 8. М.: Физматгиз, 1962. С. 5-44.
- [11] Кузъмин В. А. Оценки сложности реализации функций алгебры логики простейшими видами бинарных программ // Сб. «Методы дискретного анализа в теории кодов и схем». Новосибирск, 1976. Вып. 29. С. 11–39
- [12] Ложкин С. А. Оценки высокой степени точности для сложности управляющих систем из некоторых классов // Математические вопросы кибернетики. Вып. 6. М.: Наука, 1996. С. 189–214.
- [13] Ложкин С. А. Структурное моделирование и декомпозиция для некоторых классов схем. М.: Издательский отдел ф-та ВМиК МГУ, 2001.
- [14] *Лупанов О. Б.* Асимптотические оценки сложности управляющих систем. М.: Изд-во МГУ, 1984.
- [15] Лупанов О. Б. О сложности реализации функций алгебры логики релейно-контактными схемами // Проблемы кибернетики. Вып. 11. М.: Наука, 1964. С. 25–48.
- [16] Лупанов О. Б. О сложности реализации функций алгебры логики формулами // Проблемы кибернетики. Вып. 3. М.: Физматгиз, 1960. С. 61–80.
- [17] Мурога С. Системы проектирования сверхбольших интегральных схем. М.: Мир, 1985.

J	Іитерату	ра
---	----------	----

- [18] Нечипорук Э. И. О топологических принципах самокорректирования // Проблемы кибернетики. Вып. 21. М.: Наука, 1969. С. 5–102.
- [19] *Нигматуллин Р. Г.* Сложность булевых функций. М.: Наука, 1991.
- [20] Поваров Г. Н. Метод синтеза вычислительных и управляющих контактных схем // Автоматика и телемеханика. 1957. Т. 18. №2. С. 145–162.
- [21] Сапоженко А. А. Дизъюнктивные нормальные формы. М.: Изд-во МГУ, 1975.
- [22] Сапоженко А. А. Некоторые вопросы сложности алгоритмов. Издательский отдел ф-та ВМиК МГУ, 2001.
- [23] Сапоженко А. А., Ложкин С. А. Методы логического проектирования и оценки сложности схем на дополняющих МОП-транзисторах // Микроэлектроника. 1983. Т. 12. №1. С. 42–47.
- [24] Фихтенгольц Г. М. Основы математического анализа, том 1. М.: Наука, 1968.
- [25] Фихтенгольц Г. М. Основы математического анализа, том 2. М.: Наука, 1964.
- [26] Чегис И. А., Яблонский С. В. Логические способы контроля работы электрических схем // Труды МИ АН СССР. Т. 51. М.: Изд-во АН СССР, 1958. С. 270– 360.
- [27] *Яблонский С. В.* Введение в дискретную математику. 2-е изд., перераб. и доп. М.: Наука, 1986.
- [28] Яблонский С. В. Надежность управляющих систем. М.: Изд-во МГУ, 1991.

литература	эа
------------	----

[29]	Яблонский	C. B.	Некото	рые і	вопросы	надеж	HOC	ГИ	И
	контроля у	правля	ющих си	астем	// Mater	матиче	ески	ев)-
	просы кибе	рнетик	и. Вып.	1. M	.: Наука,	1988.	C. 5	-25	5.

- [30] *Яблонский С. В.* Эквивалентные преобразования управляющих систем. М.: Изд-во МГУ, 1986.
- [31] Cardot C. Quelques resultats sur l'application de l'algèbre de Boole à la synthèse des circuits a relais // Ann. Telecommunications. 1952. V.7. №2. P. 75–84.
- [32] Shannon C. E. The syntesis of two-terminal switching circuits // Bell Syst. Techn. J. 1949. V. 28. №1. Р. 59–98 (Русский перевод: Шеннон К. Работы по теории информации и кибернетике. М.: ИЛ, 1963. С. 59–101).
- [33] Wegener I. Branching programs and binary decision diagrams. SIAM Publishers, 2000.