
Курс «Основы кибернетики»
для бакалавров (интегрированных магистров)

направления 01400 «Прикладная математика и
информатика» профиля «Математические методы

обработки информации и принятия решений»

1. Общая информация (учебная нагрузка, формы контроля и др.)

Курс является обязательным для всех бакалавров (интегрированных магистров) направления
01400— «Прикладная математика и информатика». При этом объём и, в некоторой степени,
программа курса варьируются в зависимости от профиля.

Для бакалавров 3 курса профиля «Математические методы обработки информации и приня-
тия решений» (311–319 группы) курс «Основы кибернетики» читается в 5 семестре в объёме 3
часов лекций и 2 часов семинарских занятий в неделю. Курс завершается экзаменом, на который
выносятся как теоретические вопросы, изложенные на лекциях, так и задачи, рассмотренные на
семинарских занятиях.

В разделах 2–6, 9 данного описания приводится подробная информация о содержании
курса, программе и планах его изучения в 2019–2020 уч. году, методических материалах, а в
разделах 7 и 8— об особенностях организации учебного процесса, формах и сроках проведения
контрольных мероприятий.

В соответствии с этими планами в течение семестра проводятся 3 основные (по 2 часа)
контрольные работы и, возможно, несколько промежуточных (до 1 часа) тестов. По результатам
контрольных и тестов с учётом посещаемости студентов, их работы на лекциях и семинарах, а
также самостоятельной работы (см. раздел 7) выставляется предварительная оценка, которая
играет существенную роль при формировании окончательной оценки на экзамене (см. раздел 8).

Чтение курса обеспечивается кафедрой математической кибернетики, лектор 2019–2020 уч.
года— профессор Ложкин С.А. (lozhkin@cs.msu.ru).

2. Аннотация

Курс «Основы кибернетики» (ранее «Элементы кибернетики»), создателем и основным
лектором которого был чл.-корр. РАН С.В. Яблонский, читается на факультете ВМК с первых
лет его существования. Он является продолжением курса «Дискретная математика» и посвящён
изложению основных моделей, методов и результатов математической кибернетики, связанных с
теорией дискретных управляющих систем (УС), с задачей схемной или структурной реализации
дискретных функций и алгоритмов.

В нём рассматриваются различные классы УС (классы схем), представляющие собой дискрет-
ные математические модели различных типов электронных схем, систем обработки информации
и управления, алгоритмов и программ. Для базовых классов УС (схем из функциональных
элементов, формул, контактных схем, автоматных схем), а также некоторых других типов
УС, ставятся и изучаются основные задачи теории УС: задача минимизации дизъюнктивных
нормальных форм (ДНФ), задача эквивалентных преобразований и структурного моделирования
УС, задача синтеза УС, задача повышения надёжности и контроля УС из ненадёжных элемен-
тов и др. В программу курса входят классические результаты К. Шеннона, С. В. Яблонского,
Ю.И. Журавлева и О. Б. Лупанова, а также некоторые результаты последних лет. Показывается
возможность практического применения этих результатов на примере задачи проектирования
СБИС, которые составляют основу программно-аппаратной реализации алгоритмов.

Продолжением курсов «Дискретная математика» и «Основы кибернетики» является читае-
мый для бакалавров данного профиля в 7 семестре курс «Дополнительные главы дискретной
математики и кибернетики».
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3. Программа

I. Минимизация дизъюнктивных нормальных форм и связанные с ней задачи

Единичный куб и функции алгебры логики (ФАЛ), представление ФАЛ с помощью ДНФ.
Сокращённая ДНФ и тупиковые ДНФ, их «геометрический» смысл. Способы построения
однозначно получаемых ДНФ (сокращённой, пересечения тупиковых, Квайна, суммы тупиковых).
Особенности ДНФ для ФАЛ из некоторых классов. Функция покрытия и алгоритм построения
всех тупиковых ДНФ, оценка длины градиентного покрытия. Алгоритмические трудности
минимизации ДНФ, оценки максимальных и типичных значений некоторых параметров ДНФ.

II. Основные классы дискретных управляющих систем, структурные представления схем
и оценка их числа. Эквивалентные преобразования управляющих систем

Различные классы УС (классы схем) как структурные математические модели различных
типов электронных схем, систем обработки информации и управления, алгоритмов и программ.
Основные классы УС—формулы и схемы из функциональных элементов (СФЭ), контактные
схемы (КС), — их структура, меры сложности, функционирование, эквивалентность, полнота.
Оценка числа схем различных типов.

Понятие подсхемы и принцип эквивалентной замены. Тождества и связанные с ними экви-
валентные преобразования УС. Построение полных систем тождеств для формул, СФЭ и КС.
Отсутствие конечной полной системы тождеств для КС.

III. Синтез и сложность управляющих систем

Задача синтеза УС, сложность ФАЛ и функция Шеннона. Простейшие методы синтеза
схем, реализация некоторых ФАЛ и оценка их сложности. Операция суперпозиции схем и её
корректность, лемма Шеннона. Метод каскадов для КС и СФЭ, метод Шеннона. Мощностные
методы получения нижних оценок для функций Шеннона. Асимптотически наилучшие методы
синтеза формул, СФЭ и КС.

IV. Надёжность и контроль управляющих систем

Самокорректирующиеся КС и простейшие методы их синтеза. Асимптотически наилучшие
методы синтеза КС, корректирующих один обрыв или одно замыкание.

Задача контроля УС, тесты для таблиц. Алгоритм построения всех тупиковых тестов, оценки
максимального и типичного значений длины диагностического теста.

V. Некоторые классы схем, связанные с программно-аппаратной реализацией алгорит-
мов, и задача их синтеза

Некоторые модификации основных классов схем, связанные с программной реализацией
ФАЛ. Автоматные функции, их реализация схемами из функциональных элементов и элементов
задержки, схемы с «мгновенными» обратными связями. Схемы на КМОП-транзисторах, задача
логического и «физического» синтеза СБИС, основные этапы её решения. Некоторые вопросы
«аппаратной» информационной безопасности.
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4. Предварительный список вопросов к экзамену по курсу «Основы кибер-
нетики» (осенний семестр 2019–2020 уч. года; 311–319 группы), ориен-
тировочный график их рассмотрения на лекциях

I. Минимизация дизъюнктивных нормальных форм и связанные с ней задачи (2.IX–23.IX)

1. Представление функций алгебры логики (ФАЛ) дизъюнктивными нормальными формами
(ДНФ) и его «геометрическая» интерпретация. Совершенная ДНФ и критерий единственности
ДНФ. См. [1: гл. 1, §§2, 5]. (2.IX)

2. Сокращённая ДНФ и способы её построения [1: гл. 1, §3]. (4.IX)

3. Тупиковая ДНФ, ядро и ДНФ пересечение тупиковых. ДНФ Квайна, критерий вхождения
простых импликант в тупиковые ДНФ и его локальность. См. [1: гл. 1, §4]. (9.IX)

4. Особенности ДНФ линейных и монотонных ФАЛ. Функция покрытия, таблица Квайна и
построение всех тупиковых ДНФ. См. [1: гл. 1, §§5, 6]. (11.IX)

5. Градиентный алгоритм и оценка длины градиентного покрытия, лемма о «протыкающих»
наборах. Использование градиентного алгоритма для построения ДНФ. См. [1: гл. 1, §6].
(16.IX)

6. Задача минимизации ДНФ. Поведение функции Шеннона и оценки типичных значений для
ранга и длины ДНФ [1: гл. 1, §7]. (18.IX)

7. Алгоритмические трудности минимизации ДНФ и оценки максимальных значений некоторых
связанных с ней параметров [1: гл. 1, §§1, 3, 7]. Теорема Ю.И. Журавлёва о ДНФ сумма
минимальных [1: гл. 1, §5]. (23.IX)

II. Основные классы дискретных управляющих систем, структурные представления схем
и оценка их числа. Эквивалентные преобразования управляющих систем (25.IX–23.X)

8. Формулы алгебры логики, их эквивалентные преобразования с помощью тождеств. Полнота
системы основных тождеств для эквивалентных преобразований формул базиса Б0 = {&,∨,¬}.
См. [1: гл. 3, §2]. (25.IX)

9. Задание формул с помощью деревьев, функционалы их сложности и соотношения между
ними. Оптимизация подобных формул по глубине. См. [1: гл. 2, §2]. (2.X)

10. Схемы из функциональных элементов (СФЭ). Изоморфизм и эквивалентность схем, функцио-
налы их сложности, операции приведения. Верхние оценки числа формул и СФЭ в базисе Б0.
См. [1: гл. 2, §3]. (7.X)

11. Контактные схемы (КС) и π-схемы, их изоморфизм, эквивалентность, сложность, операции
приведения. Структурное моделирование некоторых формул и π-схем. Оценки числа КС и
числа π-схем. Особенности функционирования многополюсных КС. См. [1: гл. 2, §§5, 6]. (9.X)

12. Эквивалентные преобразования СФЭ и моделирование с их помощью формульных преобразо-
ваний. Моделирование эквивалентных преобразований формул и схем в различных базисах,
теорема перехода. См. [1: гл. 3, §§1, 3]. (23.X)

13. Эквивалентные преобразования КС. Основные тождества, вывод вспомогательных и обоб-
щённых тождеств. См. [1: гл. 3, §4]. (14.X, 16.X)

14. Полнота системы основных тождеств. Отсутствие конечной полной системы тождеств в
классе всех КС. См. [1: гл. 3, §5]. (16.X, 21.X)

III. Синтез и сложность управляющих систем (28.X–27.XI)

15. Задача синтеза. Методы синтеза схем на основе ДНФ и связанные с ними верхние оценки
сложности функций. См. [1: гл. 4, §1]. (28.X)

16. Нижние оценки сложности ФАЛ, реализация некоторых ФАЛ и минимальность некоторых
схем. См. [1: гл. 4, §2], [6: §7]. (30.X)

3



17. Разложение ФАЛ и операция суперпозиции схем. Корректность суперпозиции для некоторых
типов схем, разделительные КС и лемма Шеннона. См. [1: гл. 2, §§6, 7]. (13.XI)

18. Каскадные КС и СФЭ. Метод каскадов и примеры его применения, метод Шеннона.
См. [1: гл. 4, §3]. (11.XI)

19. Нижние мощностные оценки функций Шеннона [1: гл. 4, §4]. (18.XI)

20. Дизъюнктивно-универсальные множества ФАЛ. Асимптотически наилучший метод О.Б. Лу-
панова для синтеза СФЭ в базисе Б0. См. [1: гл. 4, §5]. (18.XI)

21. Регулярные разбиения единичного куба и моделирование ФАЛ переменными. Асимптотически
наилучший метод синтеза формул в базисе Б0. См. [1: гл. 4, §6]. (20, 25.XI)

22. Асимптотически наилучший метод синтеза КС [1: гл. 4, §7]. (25.XI)

23. Синтез схем для дешифраторов, мультиплексоров и некоторых других ФАЛ, встречающихся
в приложениях, оценки их сложности [1: гл. 4, §6]. (27.XI)

IV. Надёжность и контроль управляющих систем (2.XII–4.XII)

24. Самокорректирующиеся КС и методы их построения. Асимптотически наилучший метод
синтеза КС, корректирующих 1 обрыв (1 замыкание). См. [4: §7], [2: ч. III, р. 2, 1]. (2.XII)

25. Задача контроля схем и тесты для таблиц. Построение всех тупиковых тестов, оценки длины
диагностического теста. См. [1: гл. 1, §8]. (4.XII)

V. Некоторые классы схем, связанные с программно-аппаратной реализацией алгоритмов,
и задача их синтеза (11.XII–18.XII)

26. Некоторые модификации основных классов схем (BDD, вычисляющие программы, схемы
на КМОП-транзисторах и др.), связанные с программно-аппаратной реализацией ФАЛ.
См. [1: гл. 2, §§4, 6, 7]. (11.XII)

27. Реализация автоматных функций схемами из функциональных элементов и элементов за-
держки, схемы с «мгновенными» обратными связями. См. [6: §8], [2: ч. I, р. I, гл. 3, §§2–3].
(16.XII)

28. Задачи логического и топологического синтеза СБИС, основные этапы и методы их решения.
См. [1: гл.2, §7], [8]. (16.XII, 18.XII)
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5. Типовые задачи к экзамену

I. Задачи на ДНФ

1. По заданной ФАЛ построить её сокращённую ДНФ, ДНФ Квайна, ДНФ сумма тупиковых,
все тупиковые ДНФ.

II. Задачи на структурное моделирование и эквивалентные преобразования

2. По заданной формуле построить подобную ей формулу минимальной глубины.

3. По заданной формуле с поднятыми отрицаниями построить моделирующую её π-схему и
обратно.

4. По заданным эквивалентным формулам или КС построить эквивалентное преобразование,
переводящее их друг в друга с помощью основных тождеств.

III. Задачи на синтез схем

5. По данной каскадной КС построить инверсную каскадную КС.

6. По заданной ФАЛ с помощью простейших методов, метода каскадов или метода Шеннона
построить реализующую её СФЭ или КС.

7. Оценить сверху и снизу сложность конкретной ФАЛ или системы ФАЛ в заданном классе
схем.

IV. Задачи на самокоррекцию и тесты

8. По заданной КС построить эквивалентную ей самокорректирующуюся КС.

9. По заданной таблице или КС и списку её неисправностей построить все тупиковые проверяю-
щие (диагностические) тесты.

6. Литература

Основная:

1. Ложкин С.А. Лекции по основам кибернетики. — М.: МГУ, 2004. (Электронные версии
лекций последних лет можно найти по адресу http://mk.cs.msu.ru/index.php/
Основы_кибернетики_(2-й_поток,_3_курс), http://mk.cs.msu.ru)

2. Яблонский С.В. Элементы математической кибернетики. — М.: Высшая школа, 2007.

3. Яблонский С.В. Введение в дискретную математику. — М.: Наука, 1986.

4. Алексеев В. Б., Вороненко А.А., Ложкин С.А., Романов Д.С., Сапоженко А.А., Селезнё-
ва С.Н. Задачи по курсу «Основы кибернетики». — М.: МГУ, 2011.

5. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. — М.:
ФИЗМАТЛИТ, 2004.

Дополнительная:

6. Алексеев В. Б., Ложкин С.А. Элементы теории графов, схем и автоматов. — М.: МГУ, 2000.

7. Дискретная математика и математические вопросы кибернетики. — М.: Наука, 1974.

8. Ложкин С.А., Марченко А.М. Математические модели и методы синтеза СБИС. (http:
//mk.cs.msu.ru/images/8/87/Lozhkin-Marchenko-VSLI-models.pdf)

9. Лупанов О.Б. Асимптотические оценки сложности управляющих систем. — М.: МГУ, 1984.

10. Нигматулин Р. Г. Сложность булевых функций. — М.: Наука, 1991.
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7. Особенности организации и контроля аудиторной и самостоятельной ра-
боты студентов

Данный вариант курса «Основы кибернетики» является достаточно сложным и объёмным
математическим курсом, усвоение которого требует от студентов полноценной и регулярной как
аудиторной, так и самостоятельной работы, что невозможно без чёткой организации занятий,
строгой дисциплины и систематического контроля. При этом необходимо, чтобы в рамках
самостоятельной работы1 студенты прорабатывали материал, пройденный на предшествующей
лекции (семинаре), и желательно, чтобы они знакомились с материалом предстоящей лекции
(семинара).

Для контроля за освоением программы курса в течение семестра проводятся 3 основные (по 2
часа) контрольные работы и, возможно, несколько промежуточных (до 1 часа) тестов на знание
и понимание определений, формулировок утверждений и т. п., а также на умение решать задачи.
Планируется осуществлять систематический (выборочный) контроль за работой студентов как
на семинарах, так и на лекциях. Все основные контрольные проводятся в рамках лекционного
расписания по следующему предварительному графику. Раздел I, контрольная №1— 7 октября;
раздел II, контрольная №2— 11 ноября; раздел III, контрольная №3— 9 декабря. Кроме того,
по вопросам раздела IV 18 декабря планируется проведение промежуточного теста. Перед
указанным тестом, а также перед каждой контрольной предполагается проведение консультации.

Одной из форм самостоятельной работы является решение предлагаемых на лекциях «труд-
ных» задач2, связанных в ряде случаев с написанием программ, которое позволяет студентам
глубже усвоить материал курса и набрать дополнительные к результатам контрольных баллы,
повысив, тем самым, свою предварительную оценку (см. раздел 8).

Информационные объявления, данные о посещаемости и текущей успеваемости студентов вы-
вешиваются на сайте по адресу: http://mk.cs.msu.ru/index.php/Основы_кибернетик
и_(2-й_поток,_3_курс)

8. О проведении экзамена по курсу «Основы кибернетики»

Как уже говорилось, по результатам контрольных работ с учётом посещаемости студентов, их
работы на лекциях и семинарах, а также самостоятельной работы каждому из них выставляется
предварительная оценка. Для студентов, имеющих предварительную оценку «5», экзамен
проводится в форме общего собеседования по программе курса на определения, формулировки
утверждений и идеи их доказательства, методы решения задач. Для студентов, имеющих
предварительную оценку «2», экзамен представляет собой письменный тест-контрольную.

Все остальные студенты (с предварительной оценкой «3-», «3» и «4») получают билет с
двумя вопросами и одной задачей и после 15–20 минутной подготовки отвечают на него сначала
на уровне определений, формулировок утверждений и идей их доказательства, а также методов
решения задач. Затем студент, по усмотрению экзаменатора, должен раскрыть те или иные
детали доказательства утверждений из вопросов билета по конспектам или иным источникам,
а также полностью или частично решить задачу билета в течение выделенного специально
для этого времени. Студенты, набравшие не менее 80% от суммы баллов по задачам тестов и
контрольных соответствующего раздела, то есть получившие по ним оценку «5», от решения
билетной задачи данного типа освобождаются. Последний этап экзамена представляет собой
описанное выше общее собеседование по другим вопросам или задачам программы.

В соответствии с установленными нормами итоговая экзаменационная оценка, как правило,
не может отличаться от предварительной оценки больше, чем на один балл. Студенту, который
имеет предварительную оценку «3» или «4» и не претендует на более высокую итоговую оценку,
предоставляется возможность сдавать экзамен по упрощённой процедуре (в форме собеседования
по программе без предварительной подготовки) с целью подтверждения этой оценки.

11 час самостоятельной работы на 1 час аудиторных занятий.
2После объявления на лекции формулировки этих задач вывешиваются в интернете, а их решение, оформленное

в виде pdf файла, необходимо прислать по адресу lozhkin@cs.msu.ru (принимается первое, полное и правильное
решение).
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9. Планы семинарских занятий на осенний семестр 2019-2020 уч. года и
ориентировочный график их проведения

Семинар 1 (2.IX–4.IX; гр. 312 4.IX 1пара)

Комбинаторика граней единичного булева куба. Представление ФАЛ с помощью ДНФ и его «гео-
метрическая» интерпретация, совершенная ДНФ. Сокращённая ДНФ и «геометрические» методы
её построения, карта Карно. Теоретический материал [1: с. 19–32], [5: с. 290–292, 296–298].
В классе. Из [5]: гл. IX — 1.2 (1-6); гл. I — 2.3 (3). Найти число тех ФАЛ от n, n > 2, БП,
совершенная ДНФ которых является их единственной ДНФ и имеет длину 2 (К1); доказать,
что длина совершенной ДНФ от БП x1, . . . , xn, являющейся единственной ДНФ реализуемой
ею ФАЛ, не больше, чем 2n−1 (К2). Из [5]: гл. IX — 2.1 (1,2), 2.5 (1,5), 2.6 (1,5).
На дом. Из [5]: гл. IX — 1.2 (7,9); гл. I — 2.3 (4). Найти число тех ФАЛ от БП x1, . . . , xn, n > 2,
совершенная ДНФ которых является их единственной ДНФ длины 2n−1 (Д1) и длины 3 (Д2).
Из [5]: гл. IX — 2.1 (3), 2.5 (2,6), 2.6 (2,6).

Семинар 2 (9.IX–11.IX)

Алгебраические методы построения сокращённой ДНФ. Тупиковые ДНФ, ядро и ДНФ пересе-
чение тупиковых. Теоретический материал [1: с. 32–36, 38–41], [5: с. 296–298, 301–303].
В классе. Из [5]: гл. IX — 2.3 (1,2), 2.2 (1,2), 2.9 (3), 2.14 (1,2), 3.3 (1,2) — построить ядро и
ДНФ

⋂
T , 2.12 (3).

На дом. Из [5]: гл. IX — 2.3 (3,4), 2.2 (3,4), 2.9 (5), 3.3 (3,4) — построить ядро и ДНФ
⋂
T ,

2.12 (6), 2.13.

Семинар 3 (16.IX–18.IX)

ДНФ Квайна и ДНФ сумма тупиковых. Таблица Квайна, методы построения всех тупиковых
(минимальных, кратчайших) ДНФ. Теоретический материал [1: с. 41–44, 51–55], [5: с. 301–303].
В классе. Из [5]: гл. IX — 3.1 (1,5), 3.3 (1,2) — построить ДНФ Квайна и ДНФ

∑
T , 3.4 (3),

3.6 (1,4,7).
На дом. Из [5]: гл. IX — 3.1 (4,6), 3.3 (3,4) — построить ДНФ Квайна и ДНФ

∑
T , 3.4 (4),

3.6 (3,6,8).

Семинар 4 (23.IX–25.IX)

Особенности ДНФ для некоторых типов ФАЛ, оценки числа тупиковых (минимальных) ДНФ.
Разбор задач к контрольной №1. Теоретический материал [1: с. 44–50, 59–65], [5: с. 301–303].
В классе. Построить совершенную и сокращённую ДНФ ФАЛ f(x1, x2, x3), если известно, что
она линейно зависит от БП x1 и Nf ⊇ {(000), (101)}, N f ⊇ {(110), (011)} (К1). Из [5]: гл. IX —
2.9 (2). Построить сокращённую ДНФ монотонной ФАЛ из P2(4), нижними единицами которой
являются наборы (0101), (1011), (1100), (0110) (К2). Из [5]: гл. IX — 2.12 (2), 3.7 (2).
На дом. Построить совершенную и сокращённую ДНФ ФАЛ f(x1, x2, x3, x4), если известно,
что она линейно зависит от БП x1, x2 и Nf ⊇ {(0100), (1001)}, N f ⊇ {(1010), (1111)} (Д1). По-
строить сокращённую ДНФ монотонной ФАЛ из P2(4), нижними единицами которой являются
наборы (1010), (0100), (0011), (1001) (Д2). Из [5]: гл. IX — 2.9 (8), 2.12 (8), 3.7 (4).

Семинар 5 (30.IX–2.X)

Эквивалентные преобразования формул. Теоретический материал [1: с. 86–90, 146–161], [4: с. 19].
В классе. Из [4]: 3.1 (1), 3.3 (1,4), 3.8 (1–3).
На дом. Из [4]: 3.1(̇2), 3.3 (3,6), 3.8 (5–9).

Семинар 6 (7.X–9.X; гр. 312 9.X 1пара)

Задание формул деревьями и СФЭ, оптимизация подобных формул по глубине. Контактные
схемы и π-схемы, моделирование формул и π-схем. Теоретический материал [1: гл. 2, §§2, 5].
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В классе.

1. Для формулы F построить соответствующее ей дерево и квазидерево, а затем перейти от
него к более «компактной» СФЭ, применяя операцию «отождествления» максимальных по
включению изоморфных квазиподдеревьев до тех пор, пока это возможно:

F =
(
(x1x2) ∨ x3

)(
x2x3 ∨ x1x4

)
∨
(
x1x2 ∨ (x1x4

)
.

2. Построить в Б0 формулу минимальной глубины, подобную формуле F , F = x1x2x3 ∨ x1x3 ∨
∨ x2x4x5 ∨ x4x5x6, (минимальность обосновать).

3. С помощью различных приёмов (просмотр всех наборов, нахождение всех простых проводя-
щих цепей, а также всех тупиковых неединичных сечений) построить таблицу истинности
ФАЛ, реализуемых КС, показанными на рис. 10 и 12 из [4].

4. Построить π-схемы, моделирующие: а) конкретные ДНФ и КНФ; б) «естественную» ДНФ
мультиплексорной ФАЛ µn, полученную разложением Шеннона этой ФАЛ по её адресным
переменным (на базе КД); в) совершенную ДНФ ФАЛ f(x1, x2, x3), столбец значений которой
имеет вид α̃f = (0110 1100) (на базе КД).

На дом. В соответствии с приведёнными выше пунктами 1–4:

1. F = (x1(x2x3))(x4 ∨ x1 ∨ x3) ∨ x2x3(x4 ∨ x1);
2. F = x1 ∨ x2x3x4x5 ∨ x2x3x4 ∨ x4x5 ∨ x5x6.
3. Рис. 13, 14, 17 из [4].

4. в) α̃f = (1101 1001 0111 1001).

Семинар 7 (14.X–16.X)

Эквивалентные преобразования КС. Теоретический материал [1: с. 169–185].
В классе. Из [4]: 4.1 (2,4,6–8).
На дом. Из [4]: 4.1 (9–12).

Семинар 8 (21.X–23.X)

Эквивалентные преобразования КС (окончание). Теоретический материал [1: с. 169–185].
В классе. Из [4]: 4.3(1).

1. Для заданных эквивалентных КС Σ′, Σ′′ от БП X(n) и m 6 n построить ЭП Σ′
τm

⇒| Σ′′, а

затем доказать, что Σ′
τk

6⇒| Σ′′ при k < m:

а) m = n = 3, а Σ′ и Σ′′ — КС из задачи 4.1 (9) домашнего задания семианара 7;
б) m = n = 3, а Σ′ и Σ′′ — π-схемы, моделирующие левую и правую части тождества tД∨,&;
в) m = 2, n = 3, Σ′ — первая (левая) КС из задачи 4.1 (10) домашнего задания семинара 7,

а КС Σ′′ получается из второй (правой) КС этой задачи перестановкой контактов x, z и
проведением цепи из контактов y, z, соединяющей неполюсные вершины;

г) m = n = 2, а Σ′ — первая (левая) КС из задачи 4.1 (11) домашнего задания семинара 7, а
КС Σ′′ получается из второй (правой) КС этой задачи проведением цепи из контактов x,
y, соединяющей полюса 1 и 2.
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Рис. 1. Каскадные контактные схемы к семинарам 11 и 12.

На дом. Из [4]: 4.3(3). В соответствии с приведённым выше пунктом 1:

1. а) m = n = 3, а Σ′ и Σ′′ — π-схемы, моделирующие две части формульного тождества

(x1 ∨ x1x2)(x2 ∨ x3) = x2 ∨ x1x3 ;

б) m = n = 3, а Σ′ и Σ′′ — КС от БП X(3) с полюсами 1, 2, 3 такие, что в КС Σ′ полюс с
номером i, i = 1, 2, 3, соединён с её единственной внутренней вершиной контактом xi,
а в КС Σ′′, не имеющей внутренних вершин, он соединён с полюсом j, 1 6 i < j 6 3,
цепочкой контактов xixj.

Семинар 9 (28.X–30.X)

Теорема перехода. Эквивалентные преобразования (ЭП) СФЭ с помощью основных тождеств
путём моделирования ЭП соответствующих формул. Подготовка к контрольной по второму
разделу (контрольная работа №2).
В классе. Из [4]: 3.9 (1)

1. Вывести формульное тождество t из системы тождеств τ , а затем промоделировать этот
вывод в классе СФЭ:

t = tП, τ = {tПК1& , t
Д
&∨, t

ОП
∨ , τА, τК}.

На дом. Из [4]: 3.9 (2). В соответствии с приведённым выше пунктом 1:

1. t — тождество обобщённого склеивания, τ = τ̃осн — расширенная система основных тождеств.

Семинар 10 (5.XI–11.XI)

Сложность ФАЛ и методы синтеза схем на основе ДНФ. Теоретический материал [1: с. 186–210].
В классе. Из [5]: гл.X — 1.1 (2–4, а также ФАЛ (x1 ∨ x2)x3 ∨ (x1 ∨ x2)x4 в классе КС (К1)),
2.4 (1); доказать минимальность некоторых из построенных в предыдущих задачах схем.
На дом. Из [5]: гл. X — 1.1 (5–7), 2.4 (2); доказать минимальность некоторых из построенных в
предыдущих задачах схем.

Семинар 11 (12.XI–18.XI)

Каскадные КС и инверсные КС, метод каскадов для КС. Метод Шеннона. Теоретический
материал [1: с. 186–210].
В классе. Для заданной на рис. 1а каскадной КС построить инверсную к ней КС (К1). Из [5]:
гл. X — 2.13 (1, 4, 7), 2.14 (1), 2.14 (2 — с оптимизацией сложности за счёт выбора порядка БП
разложения), 2.14 (5). Разлагая ФАЛ от 3 или 4 БП по всем БП, кроме последней, построить
для неё КС (К2) и СФЭ (К3) по методу Шеннона.
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На дом. Для заданной на рис. 1б каскадной КС построить инверсную к ней КС (Д1). Из [5]:
гл.X — 2.13 (2, 5, 6), 2.14 (3 — с оптимизацией сложности за счёт выбора порядка БП
разложения), 2.14 (6). Разлагая ФАЛ от 3 или 4 БП по всем БП, кроме последней, построить
для неё КС (Д2) и СФЭ (Д3) по методу Шеннона.

Семинар 12 (19.XI–25.XI)

Моделирование каскадных КС в классе СФЭ. Метод каскадов и метод Шеннона для СФЭ.
Теоретический материал [1: с. 186–210].
В классе. Показанную на рис. 1а каскадную КС промоделировать в классе СФЭ (К1). С по-
мощью метода каскадов построить СФЭ для ФАЛ и систем ФАЛ из [5]: гл.X — 2.13 (1, 4, 7),
2.14 (1), 2.14 (2), 2.14 (5). Используя метод Шеннона доказать, что LC(4) 6 18 (К2).
На дом. Показанную на рис. 1б каскадную КС промоделировать в классе СФЭ (Д1). С помощью
метода каскадов построить СФЭ для ФАЛ и систем ФАЛ из [5]: гл. X — 2.13 (2, 5, 6), 2.14 (3),
2.14 (6). Используя метод Шеннона доказать, что LC(5) 6 34 (Д2).

Семинар 13 (26.XI–2.XII)

Асимптотически наилучшие методы синтеза и связанные с ними конструкции. Синтез схем для
некоторых ФАЛ. Подготовка к контрольной по третьему разделу курса. Теоретический материал
[1, с. 215–240].
В классе.

1. Выписать таблицу значений ФАЛ стандартного ДУМ порядка 3 и высоты 3 (К1). Построить
2-регулярное разбиение куба B4, на каждой компоненте которого каждая из ФАЛ x1 → x2,
x1 ⊕ x2 моделируется либо БП, либо её отрицанием (К2).

2. Построить минимальные реализации для ФАЛ µ1(x1, x2 ∨ x3, x4 · x5) = x1(x2 ∨ x3)∨ x1(x4 · x5)
как в классе СФЭ (К3), так и в классе КС (К4).

3. Повторение материала семинарских занятий:

а) семинар 10 — построить минимальную (1, 1)-КС для ФАЛ f , заданной равенством

f(x1, x2, x3, x4, x5) = (x1 ∨ x2 ∨ x3)x4 ∨ (x1 ∨ x2 ∨ x3)x5 ;

б) семинары 12 и 11 (метод каскадов для КС и СФЭ) — с помощью метода каскадов,
последовательно разлагая реализуемые ФАЛ по x1, x2, x3, x4, построить (1, 2)-КС Σ
для системы ФАЛ F = (f1, f2) и СФЭ S для ФАЛ f1, где f1 = (0110 1000 1000 0101),
f2 = x1x2(x3 ⊕ x4) ∨ x1x2x4;

На дом.

1. Выписать таблицу значений ФАЛ ДУМ порядка 3, связанного с разбиением куба B3 на 3
подмножества: B3

1 , B
3
2 , B

3
0 ∪B3

3 (Д1). Построить 2-регулярное разбиение куба B7, на каждой
компоненте которого любая отличная от константы ФАЛ от БП x1, x2 моделируется либо
БП, либо её отрицанием (Д2).

2. Построить минимальные реализации для ФАЛ (x1 ∨ x2)(x3 ∨ x4) ∨ x1x2(x5 ∨ x6) как в классе
СФЭ (Д3), так и в классе КС (Д4), а также системы ФАЛ (x1 ∨ x2 ∨ x3, x1 ∨ x2 ∨ x3) в
классе КС (Д5).

3. Повторение материала предыдущих семинарских занятий:

а) построить минимальную (1, 1)-КС для ФАЛ f , заданной равенством

f(x1, x2, x3, x4) = x1x2x3x4x5 ∨ x1x2x3x4x5 ∨ x1x2x4x5 ;
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б) с помощью метода каскадов, последовательно разлагая реализуемые ФАЛ по x1, x2, x3,
x4, построить (1, 2)-КС Σ для системы ФАЛ F = (f1, f2) и СФЭ S для ФАЛ f1, где
f1 = (1001 0110 1001 0111), f2 = x1(x3 ∨ x4) ∨ x1(x2 ⊕ x3 ⊕ x4);

в) установить асимптотику сложности реализации схемами из функциональных элементов
ФАЛ µn(x′1 ∨ x′′1, . . . , x′n ∨ x′′n; y′0 ∨ y′′0 , . . . , y′2n−1 ∨ y′′2n−1).

Семинар 14 (3.XII–9.XII)

Тесты для таблиц, тесты для контактных схем. Теоретический материал: [1: с. 65–72, 51–55],
[4: с. 32–34, 37–38].
В классе. Из [4]: 5.1 (1, 2 — все тупиковые диагностические тесты), 5.1 (3 — все тупиковые
проверяющие тесты), 6.2, 6.4, 6.11 (если хватит времени).
На дом. Из [4]: 5.1 (5 — все тупиковые диагностические тесты, 6 — все тупиковые проверяющие
тесты), 6.3, 6.5, 6.14.

Семинар 15 (10.XII–16.XII)

Синтез самокорректирующихся КС. Теоретический материал [4: с. 49–50].
В классе. Из [4]: 7.9 (б), 7.10 (1), 7.13 (по книге [4] 2002 года: 7.7 (б), 7.8 (1), 7.11 (1)).
На дом. Из [4]: 7.9 (в), 7.10 (2), 7.11 (а) (по книге [4] 2002 года: 7.7 (в), 7.8 (2), 7.9 (а)).
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