
Modern trends
in discrete mathematics
and computer science

Formal correctness proofs for sequential programs

Lecturer:
Vladislav Podymov

E-mail:
valdus@yandex.ru

CMC MSU, 2019, spring semester
1 / 39

Introduction
Consider the following fragment of a program in C syntax:

int * a;
int n;
...
int s = 0;
for(int i = 0; i < n; ++i) s = s + a[i];

What does this fragment do?

The most obvious answer is:
it computes the sum of the elements of a and stores it to s

A less obvious better answer is:
if the data is okay at the beginning of the loop,

then it computes the sum ...

Is it the most correct answer?

Not so simple: it implicitly assumes that the meaning of the program
complies with the C standard

2 / 39

Introduction
Consider the following fragment of a program in C syntax:

int * a;
int n;
...
int s = 0;
for(int i = 0; i < n; ++i) s = s + a[i];

How to prove that a program behaves the way it should?
(in general, maybe even non-standard, or non-C-like)

To do it, we need a lot of mathematics:
I What is a program? (syntax)
I What is a behavior of a program? (semantics)
I How to define a desired behavior?

(borderline between semantics and proof systems)
I What is a legitimate proof? (proof systems)
I Can we even prove anything useful? (properties of proof systems)

3 / 39

Introduction
Consider the following fragment of a program in C syntax:

int * a;
int n;
...
int s = 0;
for(int i = 0; i < n; ++i) s = s + a[i];

The main focus is on while programs: a simplistic mathematical model
intended to capture core features of all sequential programs

Though “while programs” is a certain specific model,
note that it provides a general mathematical machinery which allows
to (at least) describe and (at most) analyze all kinds of programs

General and specific pieces of this machinery are mixed together in the talk,
and separated and pointed out whenever possible

4 / 39

Syntax: types

Program data are usually typed (whatever it means)

A type is a name of a set of legitimate data values

While programs use two sorts of types:
I a basic type is a type of a primitive chunk of data

I whatever “primitive” means:
bounded or unbounded numbers, plain pointers, structures, ...

I Boolean is a always assumed to be a basic type of Boolean values
I integer, when mentioned, is assumed to be

a basic type of all integer numbers
I a higher type is used to denote arrays and functions:

I T1 × · · · × Tn → T , where T1, . . . ,Tn,T are basic types, and n ≥ 1
I n is the arity of the type

5 / 39

Syntax: variables, constants

A variable is a name (symbol) which denotes a chunk of data of a certain
type: the data can be accessed to and modified by a program via its name

A simple variable is a variable of a basic type

An array variable is a variable of a higher type

Var is the set of all variables

A constant is a name which denotes a certain value of a certain type

A simple constant is a constant of a basic type

A functional symbol is a constant of a higher type

A relational symbol is a functional constant of a type
T1 × · · · × Tn → Boolean

Const is the set of all constants
6 / 39

Syntax: typical constants

true, false are simple constants of the Boolean type

0, 1,−1, 2,−2, . . . are simple constants of the integer type

<,≤, >,≥,=, 6=, . . . are relational symbols of the type
integer × integer → Boolean

+,−, ∗, /, . . . are functional symbols of the type
integer × integer → integer

&,∨,¬,→, . . . are relational symbols of the type
Boolean × Boolean→ Boolean

7 / 39

Syntax: expressions
Example: x + 1 < y

An expression of a type T :
I is a string constructed from variables and constants

with respect to their types and arities
I intuitively, for certain current data values provides a value of the type T

I not a definition: what do “a value” and “provides” mean?
Backus-Naur form (BNF) for an expression (ε):

ε ::= c | x | a[ε1, . . . , εn] | f (ε1, . . . , εn)

I c is a simple constant
I x is a simple variable
I a is an array variable of a type T1 × · · · × Tn → T
I f is a functional symbol of a type T1 × · · · × Tn → T
I εi is an expression of the type Ti

I a[ε1, . . . , εn] and f (ε1, . . . , εn) are expressions of the type T

Infix notation for binary functional symbols:
⊕(ε1, ε2) equals to (ε1 ⊕ ε2)

8 / 39

Syntax: subscripted variables, programs
An expression of the form a[ε1, . . . , εn] is a subscripted variable:

I it is not a variable “in the full sense”
I it refers to a primitive chunk of data

(just like a nonsubscripted variable)

BNF for a program (π):
π ::= stmt | stmt π
stmt ::= skip; | x := εx ; |

if εb then π else π fi; | while εb do π od;

I stmt is a statement
I a program is a nonempty sequence of statements
I any statement is a program

I x is a subscripted variable
I εx is an expression of the same type as x
I εb is a Boolean expression

Π is the set of all programs
9 / 39

Syntax: programs

π1: abcd
π2: skip;
π3: if b ∨ c[3] then x [y [z], 1] := z ; z := 2; else skip; fi;

π1 is not a program

π2 is a program

π3 is a program iff
1. b is a simple Boolean variable
2. c is a variable of the type integer → Boolean

3. z is a simple integer variable
4. y is a variable of a type integer → T

5. x is a variable of the type T × integer → integer

10 / 39

Semantics
if b ∨ c[3] then x [y [z], 1] := z ; z := 2; else skip; fi;

At this point we are able to distinguish programs from non-programs, but
know nothing about their meaning (semantics):

I What “values” a program works with, and how these values are related to
types

I What value is “provided” by an expression
I What does each statement of a program mean
I How the meanings of statements are combined into the meaning of the

whole program

11 / 39

Semantics: values, domains

A domain DT of a type T is a set of values of this type

To specify a certain domain, we should at least
I pick a certain programming language
I determine a goal of a program analysis

I for instance, if we do not care about extreme overflow cases
usual for “real” modular arithmetic,
then we may use a “simplified” unbounded arithmetic instead

For while programs, the following domains are fixed:
I DBoolean = {true, false}
I Dinteger = {0, 1,−1, 2,−2, . . . }
I DT1×···×Tn→T is the set of all functions

from the Cartesian product DT1 × · · · × DTn into the set DT

A semantic domain D is a disjoint union of domains of all types

12 / 39

Semantics: interpretations

Given a set of constants, a set of types, and type domains, an interpretation
I is a mapping of every constant of every type T to an element of DT

An interpretation is a natural mathematical way
to define a “static” semantical part of a programming language:
the meaning of constants, operations, predefined functions, ...

For instance, a typical (but not the only) interpretation I of Boolean-related
and integer-related constants is defined as follows:

I each simple constant, Boolean or integer, is mapped into itself:
I I(true) = true, I(2) = 2, . . .

I each typical functional symbol is mapped into a function in a natural
way:

I I(∨)(true, false) = true
I I(+)(2, 3) = 5
I I(<)(5, 2) = false
I . . .

13 / 39

Semantics: data states

A data state is
I (informally) a collection of values stored at any given time in all data

chunks managed by a program (and accessed via variable names)
I (formally) a mapping σ : Var → D,

such that for each variable of a type T , σ(x) is a value of the domain DT

A data state is a “dynamic” part of a programming language: an execution of
a sequential program is a stepwise modification of a current data state

Σ is the set of all data states

{x1/val1, . . . , xn/valn} is a state σ such that Var = {x1, . . . , xn}, and
σ(xi) = vali for each i , 1 ≤ i ≤ n

14 / 39

Semantics: expressions
x + 3

Now, having a huge spectre of definitions, we finally can answer the
(apparently, not so simple) question

“What does an expression mean?”

First of all, we pick a certain programming language, and fix its “static” part
I mathematically, we assume an interpretation I to be given

A value provided by an expression is fully defined by a data state obtained at
a given execution time

I mathematically, the semantics of an expression ε of a type T is the
following mapping I JεK : Σ→ DT :

I for each simple constant c , I JcK(σ) = I(c)
I for each simple variable x , I JxK(σ) = σ(x)
I for each expression ε of the form a[ε1, . . . , εn],

I JεK(σ) = σ(a)(I Jε1K (σ), . . . , I JεnK (σ))
I for each expression ε of the form f (ε1, . . . , εn),

I JεK(σ) = I(f)(I Jε1K (σ), . . . , I JεnK (σ))

15 / 39

Semantics: variety of definition approaches
π: if b then x := x + 1; else skip; fi;

The next question is:
“What does a program mean?”

First of all, the main purpose of a (sequential) program is to
I take some initial data values (input data state)
I process these values
I provide some final data values

depending on the initial ones (output data state)

“To define the meaning of a program” basically means
“to define a relation between input and output data states”

I mathematically, the semantics of a program π is a relation
I JπK ⊆ Σ× Σ between input and output data states

I for some programming languages this relation is a total function,
for some — a partial function,
for some — a multivalued function (i.e. relation in a full sense)

16 / 39

Semantics: variety of definition approaches
π: if b then x := x + 1; else skip; fi;

Even when a programming language is picked, a lot of approaches exist on
how to define a semantics of a program

The most popular ones are:
I operational approach

I a data state is modified step by step
during a statement execution in the following way: ...

I the next statement to be executed after the current statement is: ...
I if a stepwise statement execution is finished, then the output state is: ...

17 / 39

Semantics: variety of definition approaches
π: if b then x := x + 1; else skip; fi;

Even when a programming language is picked, a lot of approaches exist on
how to define a semantics of a program

The most popular ones are:
I denotational approach

I semantics of a primitive statement
is the following binary relation over data states: ...

I the relation is represented as a formula of a language designed specifically
for declarative description of computable relations

I semantics of a complex statement
is the following composition of relations: ...

I the composition is a simple syntactic modification of given formulae which
declaratively describes some nontrivial transformations over relations

I for instance, a minimization operator for µ-recursive functions is
syntactically simple, but semantically rather nontrivial

18 / 39

Semantics: variety of definition approaches
π: if b then x := x + 1; else skip; fi;

Even when a programming language is picked, a lot of approaches exist on
how to define a semantics of a program

The most popular ones are:
I axiomatic approach:

I an assertion is a formula (of a special purely-logical language)
which represents a set of data states

I a rule for a primitive statement is a set of pairs of assertions
I a rule for a complex statement says how pairs of assertions obtained for

substatements are transformed into ones for the statement
I just like in Hoare logic, if we speak about while programs

19 / 39

Operational semantics: big-step and small-step
π: if b then x := x + 1; else skip; fi;

The most popular and well-known variations of an operational approach to
define program semantics are:

I natural (big-step) semantics
I each statement defines an input-output relation which says how the data

is modified when the statement is fully executed
I for instance, “if the input for the statement π is {b/true, x/2}, then the

output is {b/true, x/3}”
I structural (small-step) semantics

I each complex statement defines how the data is modified by the next
most primitive execution step, and explicitly — what statement describes
the rest of the execution

I for instance, “if the input for π is {b/true, x/2}, and “to pick a branch” is
a primitive execution step, then then next data state is still
{b/true, x/2}, and the rest statement is x := x + 1;”

20 / 39

Small-step semantics: state update

For a data state σ, a subscripted variable x of a type T , and a value val of
the same type T , σ[x ← val] is a data state which differs from σ as follows:

I if x is a simple variable, then σ[x ← val](x) = val , and all other
variables are mapped to the same values as by σ

I if x is a subscripted variable (equals to a[ε1, . . . , εn] for clarity), then
I σ[x ← val](a)(σ(ε1), . . . , σ(εn)) = val ,
I images of all other arguments of the function σ[x ← val](a) equal to the

corresponding images of σ(a) (i.e. the rest of the array remains
unchanged)

I all variables, except a, are mapped to the same values as by σ

21 / 39

Small-step semantics of while programs
→I is a binary relation over Π× Σ which defines a small-step semantics of
while programs operating in context of an interpretation I: 〈π, σ〉 →I 〈π′, σ′〉
means that a primitive execution step of the statement π on the input data σ
leads to the output data σ′, and the “rest” statement is π′

I 〈x := ε; , σ〉→I 〈skip; , σ[x ← I JεK (σ)]〉
I if 〈π1, σ〉 →I 〈π′1, σ′〉, then 〈π1π2, σ〉→I 〈π′1π2, σ′〉
I 〈skip;π, σ〉→I 〈π, σ〉
I if I JεK (σ) = true,

then 〈if ε then π1 else π2 fi; , σ〉→I 〈π1, σ〉,
otherwise 〈if ε then π1 else π2 fi; 〉→I 〈π2, σ〉

I if I JεK (σ) = false,
then 〈while ε do π od; , σ〉→I 〈skip; , σ〉,
otherwise 〈while ε do π od; 〉→I 〈π while ε do π od; , σ〉

(σi , σo) ∈ I(π) iff there exists a sequence of states
〈π, σi 〉 →I · · · →I 〈skip; , σo〉

22 / 39

Small-step semantics: example

Let I be a typical interpretation, and
π: while x < 3 do if x > 1 then x := x + 2; else x := x + 1; fi; od;

Then
〈π, {x/2}〉 →I
〈if x > 1 then x := x + 2; else x := x + 1; fi;π, {x/2}〉 →I
〈x := x + 2;π, {x/2}〉 →I
〈skip;π, {x/4}〉 →I
〈π, {x/4}〉 →I
〈skip; , {x/4}〉

Thus, ({x/2} , {x/4}) ∈ I(π)

23 / 39

Other sequential programs

Now (at last!) we have mathematical means to describe any sequential
program and its behavior:

I pick any programming language
I formalize a type system and type domains of the language
I write down syntactic rules of the language

(all modern languages have those)
I carefully define semanitcs of all “static” components of the language,

and then — its “dynamic” part: a small-step semantics

But why do we need it?

(here go standard phrases about the critical importance of error-free
programs, and about the rigorousness of mathematics)

Now the big question is:
How can we prove anything about the absence of program errors?

24 / 39

Proof systems
How can we prove anything about the absence of program errors?

The question is much bigger than it seems:

Suppose someone gave you a random sequence of words similar to what is
usually written in “Proof” sections of mathematical papers, and said

“done, this proves that the program is error-free” —
what means should you use to check mathematical consistency of a proof?

Exercise: take any (old enough) scientific paper on correctness of distributed
algorithms, and find an implicit assumption or an inconsistency which makes
the main result “not as complete and valid as it seemed to be” ,

25 / 39

Proof systems
How can we prove anything about the absence of program errors?

One of the ways to lower the necessity of proof-checking is to formalize a
proof as another mathematical object

Still, you need to prove that the mathematical definition of a proof is
consistent (and introduce and solve several other problems), but once it is
done, all well-formed formalized proofs become inherently proof-checked

The most famous collection of mathematical notions of a proof
is known by many names, including:

proof systems, formal systems, deductive systems, and logical calculi

26 / 39

Proof systems

A proof (recall: a random collection of words in a “Proof” section) contains a
sequence of propositions, such as:

I (... thus,) the sequence s is convergent. (...)
I (... by definition of a field and Lemma 5,)

the ring R is a field. (Q.E.D.)
I (... assuming that P 6= NP ,)

the considered problem is hard(, which implies ...)

The first step to formalize a proof is to introduce a formal language of
considered propositions

27 / 39

Proof systems: formulae
A proof system starts with the notion of a formula:

I an alphabet is a set of symbols,
and each formula is a finite sequence of these symbols

I syntactic rules define which sequences of symbols are formulae,
and which are not

I typically, a collection of syntactic rules is a BNF

I intuitively, each formula corresponds to a certain proposition of a proof
I but the only strict meaning of a formula is the formula itself,

if no additional definitions are provided

Several well-known examples of formulae:
I Boolean formulae: x & y → z

I first-order formulae: ∀x(∃y (x > y) ∨ Q(x))→ ∃x R(x)

I temporal formulae: G(request → Fresponse)

I Hoare triples: {x > y} x := x + y ; {x < y}

28 / 39

Proof systems: axioms

Some of the formulae correspond to propositions which require no proof
(or proved a priori), for instance:

I addition is commutative: ∀x∀y(x + y = y + x)

I a sequence is convergent iff <here goes the definition>:
∀s(convergent(s)↔ ∀ε(real(ε) & ε > 0→ ∃N(. . .)))

I every cow is an animal: ∀c(cow(c)→ animal(c))

I a program π computes (x + y) and stores it to z :
{x = x0 & y = y0}π {z = x0 + y0}

(if it is agreed to be okay to leave such a proposition unproved)

Such formulae are called axioms

29 / 39

Proof systems: inference rules

A proof is usually not just “some random sequence” of propositions: the truth
of each proposition “rationally” follows from the truth of previous propositions

An inference rule is a finite description of a relation between formulae:
a tuple (f1, . . . , fn, f) is an element of the relation iff f follows from f1, . . . , fn

(“if propositions f1, . . . , fn are proved, then f is also proved”)

Inference rules are often (but not always) presented in the following form:
ϕ1, . . . , ϕn

ϕ

I ϕi and ϕ are formula schemata:
formulae, some parts of which are replaced by parameter names

I all tuples (f1, . . . , fn, f) of the corresponding relation
are obtained from the schemata (ϕ1, . . . , ϕn, ϕ)
by replacement of parameter names with certain strings

30 / 39

Proof systems: inference rules

Several examples of inference rules:
I modus ponens:

to prove B , it is sufficient to prove a) A, and b) that A implies B
A,A→ B

B

I Small-step inference rules for while programs:
〈π1, σ〉 →I 〈π′1, σ′〉

〈π1π2, σ〉 →I 〈π′1π2, σ′〉
I Hoare inference rules: ...
I Any reliable rules you want to use:

cow(x)

animal(x)

31 / 39

Proof system: derivation

Now we can tell how to formally prove anything

First of all,
I define the notion of a formula:

say what propositions can be used in a proof
I define a set of axioms: say what propositions are absolutely true
I define a set of inference rules: say what proof methods are rational

A derivation is a sequence f1, f2, . . . , fk of formulae
such that for each i , 1 ≤ i ≤ k ,

I either fi is an axiom
I or (fj1 , . . . , fjn , fi) is an element of a relation corresponding to any

inference rule, and j1, . . . , jn < i

A formula f is provable iff there exists a derivation f1, . . . , fk such that fk = f

32 / 39

Hoare proof system
How can we prove anything about the absence of program errors?

A formula of a Hoare proof system (a Hoare triple) has the following form:
{ϕ}π {ψ}, where ϕ and ψ are first-order formulae (which have a signature
compliant with the signature of π), and π is a program

Intuitively, the triple corresponds to the following proposition:
I partial correctness: for any input data state satisfying ϕ, if π has an

output data σ, then σ satisfies ψ
I total correctness: for any input data state satisfying ϕ, π has an output

data σ, and σ satisfies ψ

33 / 39

Hoare proof system

Hoare axioms and inference rules
for partial correctness of while programs in an interpretation I
(recall all the courses in which Hoare logic was mentioned):

axioms: all first-order formulae valid in I

axioms: {ϕ} skip; {ϕ} axioms: {ϕ {x/ε}} x := ε; {ϕ}
(the expression [term] ε
should be “good enough”)

rule:
ϕ→ ϕ′, {ϕ′}π {ψ′} , ψ′ → ψ

{ϕ}π {ψ} rule:
{ϕ}π1 {χ} , {χ}π2 {ψ}

{ϕ}π1π2 {ψ}

rule:
{ϕ&C}π1 {ψ} , {ϕ&¬C}π2 {ψ}
{ϕ} if C then π1 else π2 fi; {ψ}

rule:
{ϕ&C}π {ϕ}

{ϕ}while C do π od; {ϕ&¬C}

34 / 39

Hoare proof system
Hoare axioms and inference rules
for total correctness of while programs in an interpretation I
(that is something new):

axioms: all first-order formulae valid in I

axioms: {ϕ} skip; {ϕ} axioms: {ϕ {x/ε}} x := ε; {ϕ}
(the expression [term] ε
should be “good enough”)

rule:
ϕ→ ϕ′, {ϕ′}π {ψ′} , ψ′ → ψ

{ϕ}π {ψ} rule:
{ϕ}π1 {χ} , {χ}π2 {ψ}

{ϕ}π1π2 {ψ}

rule:
{ϕ&C}π1 {ψ} , {ϕ&¬C}π2 {ψ}
{ϕ} if C then π1 else π2 fi; {ψ}

rule:
{ϕ&C}π {ϕ} , {ϕ&C & ε = z}π {ε < z} , ϕ→ ε ≥ 0

{ϕ}while C do π od; {ϕ&¬C}

(z is an integer variable not present in π)

35 / 39

Hoare proof system

Another big question is: do such proof systems actually work?

For instance,
I the following axiom schema breaks everything: {ϕ}π {ψ}
I the following inference rule breaks everything:

{ϕ}π {ψ}
{ϕ′}π {ψ′}

I the absence of any axiom or any inference rule breaks a lot

Provable formulae are defined syntactically, but we need semantics to check
that what we formally prove is exactly what we intuitively want

36 / 39

Proof systems: soundness and completeness

To measure the quality of a proof system (in general), all formulae are
divided into valid and invalid: intuitively, a valid formula is a formula which
corresponds to a true proposition

You probably know what is a validiy:
I “a first-order formula is valid in an interpretation I”: true for the meaning

of constants defined by I, and for all valuations of free variables
I “a Hoare triple is valid in an interpretation I”: this validity slightly differs

in case of partial and total correctness proofs, and complies with the
corresponding intuitive meaning

37 / 39

Proof systems: soundness and completeness

A proof system (in general) is sound iff all provable formulae are valid

A proof system is complete iff all valid formulae are provable

Magically (by the results of a long research and a couple of heavy theorems),
Hoare proof systems for partial and total correctness are both sound,
and moreover,

I the system for partial correctness is complete
I if integer expressions are expressive enough

(for instance, to represent all computable functions),
then the system for total correctness is alse complete

Too good to be effectively true:
the problem is hidden in the axioms, and in the (un)decidability

38 / 39

That’s all. Questions?

39 / 39

