
Modern trends
in discrete mathematics
and computer science

Formal correcntess proofs
for sequential programs

lecturer:
Vladislav Podymov

e-mail:
valdus@yandex.ru

February 2018

Introduction
Consider the following fragment of a program in C syntax:

int * a;
int n;
...
int s = 0;
for(int i = 0; i < n; ++i) s = s + a[i];

What does this fragment do?

The obvious answer is: “it computes the sum of the elements of a
and stores it to s”

The less obvious answer is: “ if the data is okay at the beginning
of the execution, then it computes sum ...”

Is it really so?

Actually, we implicitly assumed that the meaning of the program
complies with the C standard

Introduction
Consider the following fragment of a program in C syntax:

int * a;
int n;
...
int s = 0;
for(int i = 0; i < n; ++i) s = s + a[i];

How to prove that a program (in general, maybe even
non-standard, or non-C-like) behaves as it should?

To do it, we need a lot of mathematics:
I What is a program? (syntax)
I What is a behavior of a program? (semantics)
I How to define a desired behavior?

(borderline between semantics and proof systems)
I What is a legitimate proof? (proof systems)
I Can we even prove anything? (properties of proof systems)

Introduction
Consider the following fragment of a program in C syntax:

int * a;
int n;
...
int s = 0;
for(int i = 0; i < n; ++i) s = s + a[i];

The main focus is on while programs: a simplistic mathematical
model which describes the core of all sequential programs

Though “while programs” seems to be a certain specific model, note
that it is actually a general mathematical machinery which allows
to (at least) describe and (at most) analyze all kinds of programs

General and specific pieces of this machinery are mixed together in
the talk, and separated and pointed out whenever possible

Syntax: types

Program data are usually typed (whatever it means)

A type is a name for the set of legitimate data values

While programs use two sorts of types:
I a basic type is a type of a primitive chunk of data

I whatever “primitive” means: bounded or unbounded numbers,
structures, ...

I Boolean is a always assumed to be a basic type of Boolean
values

I integer, when mentioned, is assumed to be a basic type of all
integer numbers

I a higher type is used to denote arrays and functions:
I T1 × · · · × Tn → T , where

T1, . . . ,Tn,T are basic types, and n ≥ 1
I the number n above is the arity of the type

Syntax: variables, constants

A variable is a chunk of data which has a name and a type, and
can be accessed to and modified by a program

A simple variable is a variable of a basic type

An array variable is a variable of a higher type

Var is the set of all variables

A constant is a symbol (name, notation) of a certain type

A simple constant is a constant of a basic type

A functional symbol is a constant of a higher type

A relational symbol is a functional constant of a type
T1 × · · · × Tn → Boolean

Const is the set of all constants

Syntax: typical constants

true, false are simple constants of the Boolean type

0, 1,−1, 2,−2, . . . are simple constants of the integer type

<,≤, >,≥,=, 6=, . . . are relational symbols of the type
integer × integer → Boolean

+,−, ∗, /, . . . are functional symbols of the type
integer × integer → integer

&,∨,¬,→, . . . are relational symbols of the type
Boolean × Boolean→ Boolean

Syntax: expressions
Example: x + 1 < y

An expression of a type T :
I is a string constructed from variables and constants with

respect to their types and arities
I intuitively, for certain current data values provides a value of

the type T
I not a definition: what do “a value” and “provides” mean?

Backus-Naur form (BNF) for an expression (ε):
ε ::= c | x | a[ε1, . . . , εn] | f (ε1, . . . , εn)

I c is a simple constant
I x is a simple variable
I a is an array variable of a type T1 × · · · × Tn → T
I f is a functional symbol of a type T1 × · · · × Tn → T
I εi is an expression of the type Ti

I a[ε1, . . . , εn] and f (ε1, . . . , εn) are expressions of the type T

Infix notation for binary functional symbols:
⊕(ε1, ε2) equals to (ε1 ⊕ ε2)

Syntax: subscripted variables, programs
An expression of the form a[ε1, . . . , εn] is a subscripted variable:

I it is not a variable “in the full sense”
I it refers to a primitive chunk of data (as well as a

nonsubscripted variable)

BNF for a program (π):
π ::= skip | x := εx | π1; π2

if εb then π1 else π2 fi | while εb do π1 od

I x is a subscripted variable
I εx is an expression of the same type as x
I π1, π2 are programs
I εb is a Boolean expression

A statement is a synonim of a program used to emphasize that the
program may be a part of another program

Π is the set of all programs

Syntax: programs

π1: abcd

π1 is not a program

π2: skip

π2 is a program

π3: if b ∨ c[3] then x [y [z], 1] := z ; z := 2 else skip fi

π3 is a program iff
1. b is a simple Boolean variable
2. c is a variable of the type integer → Boolean

3. z is a simple integer variable
4. y is a variable of a type integer → T

5. x is a variable of the type T × integer → integer

Semantics
if b ∨ c[3] then x [y [z], 1] := z ; z := 2 else skip fi

At this point we are able to distinguish programs from
non-programs, but know nothing about their meaning (semantics)

Formal (mathematical) semantics of while programs is defined
step-by-step:

I What “values” a program works with, and how these values are
related to types

I What value is “provided” by an expression
I What does each statement of a program mean
I How the meanings of statements are combined into the

meaning of the whole program

Semantics: values, domains

A domain DT of a type T is a set of values of this type

To specify a certain domain, we should at least
I pick a certain programming language
I determine a goal of a program analysis

I for instance, if we do not care about extreme overflow cases
usual for “real” modular arithmetic, we may use a “simplified”
unbounded arithmetic instead

For while programs, the following domains are fixed:
I DBoolean = {true, false}
I Dinteger = {0, 1,−1, 2,−2, . . . }
I DT1×···×Tn→T is the set of all functions from the Cartesian

product DT1 × · · · × DTn into the set DT

A semantic domain D is a disjoint union of domains of all types

Semantics: interpretations

Given a set of constants, a set of types, and type domains, an
interpretation I is a mapping of every constant of every type T to
an element of DT

An interpretation is a natural mathematical way to define a “static”
semantical part of a programming language: the meaning of
constants, operations, predefined functions, ...

For instance, a typical (but not the only) interpretation I for
Boolean-related and integer-related constants is defined as follows:

I each simple constant, Boolean or integer, is mapped into itself:
I I(true) = true, I(2) = 2, . . .

I each typical functional symbol is mapped into a function in a
natural way:

I I(∨)(true, false) = true
I I(+)(2, 3) = 5
I I(<)(5, 2) = false
I . . .

Semantics: data states

A data state is
I (informally) a collection of values stored at any time in all

data chunks managed by a program (and accessed via variable
names)

I (formally) a mapping σ : Var → D, such that for each variable
of a type T , σ(x) is a value of the domain DT

A data state is a “dynamic” part of a programming language: an
execution of a sequential program is a stepwise modification of a
current data state

Σ is the set of all data states

{x1/val1, . . . , xn/valn} is a state σ such that Var = {x1, . . . , xn},
and σ(xi) = vali for each i , 1 ≤ i ≤ n

Semantics: expressions
x + 3

Now, having a huge spectre of definitions, we finally can answer the
(apparently, not so simple) question
“What does an expression mean?”
First of all, we pick a certain programming language, and fix its
“static” part

I mathematically, we assume an interpretation I to be given

A value provided by an expression is fully defined by a data state
obtained at a given execution time

I mathematically, a semantics of an expression ε of a type T is
the following mapping I JεK : Σ→ DT :

I for each simple constant c , I JcK (σ) = I(c)
I for each simple variable x , I JxK (σ) = σ(x)
I for each expression ε of the form a[ε1, . . . , εn],
I JεK (σ) = σ(a)(I Jε1K (σ), . . . , I JεnK (σ))

I for each expression ε of the form f (ε1, . . . , εn),
I JεK (σ) = I(f)(I Jε1K (σ), . . . , I JεnK (σ))

Semantics: variety of definition approaches
π: if b then x := x + 1 else skip fi

What does a program mean?

First of all, the main purpose of a (sequential) program is to
I take some initial data values (input data state)
I process these values
I provide some final data values depending on the initial ones

(output data state)

“To define the meaning of a program” basically means
“to define a relation between input and output data states”

I mathematically, a semantics of a program π is a relation
I JπK ⊆ Σ× Σ

I for some programming languages this relation is a total
function, for some — a partial function, for some – a
multivalued function (i.e. relation in a full sense)

Semantics: variety of definition approaches
π: if b then x := x + 1 else skip fi

Even when a programming language is picked, a lot of approaches
exist on how to define a semantics of a program

The most popular ones are:
I operational approach

I a data state is modified during a statement execution in the
following way: ...

I the next statement to be executed after the current statement
is: ...

I if a stepwise statement execution is finished, then the output
data is: ...

Semantics: variety of definition approaches
π: if b then x := x + 1 else skip fi

Even when a programming language is picked, a lot of approaches
exist on how to define a semantics of a program

The most popular ones are:
I denotational approach

I a semantics of a primitive statement is the following binary
relation over data states: ...

I the relation is represented as a formula of a language designed
specifically for declarative description of computable relations

I a semantics of a complex statement is the following
composition of relations: ...

I the composition is a simple syntactic modification of given
formulae which declaratively describes some nontrivial
transformations over relations

I for instance, a minimization operator for µ-recursive functions
is syntactically simple, but semantically rather nontrivial

Semantics: variety of definition approaches
π: if b then x := x + 1 else skip fi

Even when a programming language is picked, a lot of approaches
exist on how to define a semantics of a program

The most popular ones are:
I axiomatic approach:

I an assertion is a formula (of a special purely-logical language)
which represents a set of data states

I a rule for a primitive statement is a set of pairs of assertions
I a rule for a complex statement says how pairs of assertions

obtained for substatements are transformed into ones for the
statement

I just like in Hoare logic, if we speak about while programs

Operational semantics: big-step and small-step
π: if b then x := x + 1 else skip fi

The most popular and well-known variations of an operational
approach to define program semantics are:

I natural (big-step) semantics
I each statement defines an input-output relation which says

how the data is modified when the statement is fully executed
I for instance, if the input for the statement π is {b/true, x/2},

then the output is {b/true, x/3}
I structural (small-step) semantics

I each complex statement defines how the data is modified by
the next most primitive execution step, and explicitly — what
statement describes the rest of the execution

I for instance, if the input for π is {b/true, x/2}, and “to pick a
branch” is a primitive execution step, then then next data state
is still {b/true, x/2}, and the “rest” statement is x := x + 1

Small-step semantics: state update

For a data state σ, a subscripted variable x of a type T , and a
value val of the same type T , σ[x ← val] is a data state which
differs from σ as follows:

I if x is a simple variable, then σ[x ← val](x) = val , and all
other variables are mapped to the same values as by σ

I if x is a subscripted varuable (equals to a[ε1, . . . , εn] for
clarity), then

I σ[x ← val](a)(σ(ε1), . . . , σ(εn)) = val ,
I images of all other arguments of the function σ[x ← val](a)

equal to the corresponding images of σ(a) (i.e. the rest of the
array remains unchanged)

I all variables, except a, are mapped to the same values as by σ

Small-step semantics of while programs
→I is a binary relation over Π× Σ which defines a small-step
semantics of while programs operating in context of an
interpretation I: 〈π, σ〉 →I 〈π′, σ′〉 means that a primitive
execution step of the statement π on the input data σ leads to the
output data σ′, and the “rest” statement is π′

I 〈x := ε, σ〉 →I 〈skip, σ[x ← I JεK (σ)]〉
I if 〈π1, σ〉 →I 〈π′1, σ′〉, then 〈π1; π2, σ〉 →I 〈π′1; π2, σ

′〉
I 〈skip; π, σ〉 →I 〈π, σ〉
I if I JεK (σ) = true,

then 〈if ε then π1 else π2 fi, σ〉 →I 〈π1, σ〉,
otherwise 〈if ε then π1 else π2 fi〉 →I 〈π2, σ〉

I if I JεK (σ) = false,
then 〈while ε do π od, σ〉 →I 〈skip, σ〉,
otherwise 〈while ε do π od〉 →I 〈π; while ε do π od, σ〉

(σi , σo) ∈ I(π) iff there exists a sequence
〈π, σi 〉 →I · · · →I 〈skip, σo〉

Small-step semantics: example

Let I be a typical interpretation, and
π: while x < 3 do if x > 1 then x := x + 2 else x := x + 1 fi od

Then
〈π, {x/2}〉 →I
〈if x > 1 then x := x + 2 else x := x + 1 fi; π, {x/2}〉 →I
〈x := x + 2; π, {x/2}〉 →I
〈skip; π, {x/4}〉 →I
〈π, {x/4}〉 →I
〈skip, {x/4}〉

Thus, ({x/2} , {x/4}) ∈ I(π)

Other sequential programs

Now (at last!) we have mathematical means to describe any
sequential program and its behavior:

I pick any programming language
I formalize a type system and type domains of the language
I write down syntactic rules of the language (all modern

languages have those)
I carefully define semanitcs of all “static” components of the

language, and then — its “dynamic” part: a small-step
semantics

But why do we need it?

(here go standard phrases about the critical importance of
error-free programs, and about the rigorousness of mathematics)

Now the big question is:
How can we prove anything about the absence of program errors?

Proof systems
How can we prove anything about the absence of program errors?

The question is much bigger than it seems:
Suppose someone gave you a random sequence of words similar to
what is usually written in “Proof” sections of mathematical papers,
and said “done, this proves that the program is error-free” —
how can you be sure that this sequence of words is mathematically
consistent and error-free?

Exercise: take any (old enough) scientific paper on correctness of
distributed algorithms, and find an implicit assumption or an
inconsistency which makes the main result “not as complete and
valid as it seemed to be” ,

Proof systems
How can we prove anything about the absence of program errors?

One of the ways to lower the necessity of proof-checking is to
formalize a proof as another mathematical object

Still, you need to prove that the mathematical definition of a proof
is consistent (and introduce and solve several other problems), but
once it is done, all well-formed formalized proofs become inherently
proof-checked

The most famous collection of mathematical notions of a proof is
known by many names, including: proof systems, formal systems,
deductive systems, and logical calculi

Proof systems

A proof (recall: a random collection of words in a “Proof” section)
contains a sequence of propositions, such as:

I (... thus,) the sequence s is convergent. (...)
I (... by definition of a field and Lemma 5,)

the ring R is a field. (Q.E.D.)
I (... assuming that P 6= NP ,)

the considered problem is hard(, which implies ...)

The first step to formalize a proof is to introduce a formal language
of considered propositions

Proof systems: formulae
A proof system starts with the notion of a formula:

I an alphabet is a set of symbols, and each formula is a finite
sequence of these symbols

I syntactic rules define which sequences of symbols are
formulae, and which are not

I typically, syntactic rules are a grammar (a BNF)

I intuitively, each formula corresponds to a certain proposition
of a proof

I but the only strict meaning of a formula is the formula itself, if
no additional definitions are provided

Several well-known examples of formulae:
I Boolean formulae: x & y → z

I first-order formulae: ∀x(∃y (x > y) ∨ Q(x))→ ∃x R(x)

I temporal formulae: G(request → Fresponse)

I Hoare triples: {x > y} x := x + y {x < y}

Proof systems: axioms

Some of the formulae correspond to propositions which require no
proof (or proved a priori), for instance:

I addition is commutative: ∀x∀y(x + y = y + x)

I a sequence is convergent iff <here goes the definition>:
∀s(convergent(s)↔ ∀ε(real(ε) & ε > 0→ ∃N(. . .)))

I every cow is an animal: ∀c(cow(c)→ animal(c))

I a program π computes (x + y) and stores it to z :
{x = x0 & y = y0}π {z = x0 + y0}

(if it is for any reasons okay to leave
such a proposition unproved)

Such formulae are called axioms

Proof systems: inference rules
A proof is usually not just “some random sequence” of propositions:
the truth of each proposition “rationally” follows from the truth of
previous propositions

An inference rule is a finite description of a relation between
formulae: a tuple (f1, . . . , fn, f) is an element of the relation iff f
follows from f1, . . . , fn, i.e. if propositions f1, . . . , fn are proved, then
f is also proved

Inference rules are often (but not always) presented in the following
form:

ϕ1, . . . , ϕn

ϕ

I ϕi and ϕ are formula schemata: formulae, some parts of which
are replaced by parameter names

I all tuples (f1, . . . , fn, f) of the corresponding relation are
obtained from the schemata (ϕ1, . . . , ϕn, ϕ) by replacement of
parameter names with certain strings

Proof systems: inference rules

Several examples of inference rules:
I modus ponens: to prove B , it is sufficient to prove a) A, and

b) that A implies B
A,A→ B

B

I One of the small-step inference rules for while programs:
〈π1, σ〉 →I 〈π′1, σ′〉

〈π1; π2, σ〉 →I 〈π′1; π2, σ
′〉

I Hoare inference rules: ...

Proof system: derivation
Now we can tell how to formally prove anything

First of all,
I define the notion of a formula: say what propositions can be

used in a proof
I define a set of axioms: say what propositions are absolutely

true
I define a set of inference rules: say what proof methods are

rational

A derivation is a sequence f1, f2, . . . , fk of formulae such that for
each i , 1 ≤ i ≤ k ,

I either fi is an axiom
I or (fj1 , . . . , fjn , fi) is an element of a relation corresponding to

any inference rule, and j1, . . . , jn < i

A formula f is provable iff there exists a derivation f1, . . . , fk such
that fk = f

Hoare proof system
How can we prove anything about the absence of program errors?

A formula of a Hoare proof system (a Hoare triple) has the
following form: {ϕ}π {ψ}, where ϕ and ψ are first-order formulae
(which have a signature compliant with the signature of π), and π
is a program

Intuitively, the triple corresponds to the following proposition:
I partial correctness: for any input data state satisfying ϕ, if π

has an output data σ, then σ satisfies ψ
I total correctness: for any input data state satisfying ϕ, π has

an output data σ, and σ satisfies ψ

Hoare proof system

Hoare axioms and inference rules for partial correctness of while
programs in an interpretation I (recall all the courses in which
Hoare logic was mentioned):

axioms: all first-order formulae valid in I

axioms: {ϕ} skip {ϕ} axioms: {ϕ {x/ε}} x := ε {ϕ}
(the expression [term] ε
should be “good enough”)

rule:
ϕ→ ϕ′, {ϕ′}π {ψ′} , ψ′ → ψ

{ϕ}π {ψ} rule:
{ϕ}π1 {χ} , {χ}π2 {ψ}
{ϕ}π1; π2 {ψ}

rule:
{ϕ&C}π1 {ψ} , {ϕ&¬C}π2 {ψ}
{ϕ} if C then π1 else π2 fi {ψ}

rule:
{ϕ&C}π {ϕ}

{ϕ}while C do π od {ϕ&¬C}

Hoare proof system

Hoare axioms and inference rules for total correctness of while
programs in an interpretation I (that is something new):

axioms: all first-order formulae valid in I

axioms: {ϕ} skip {ϕ} axioms: {ϕ {x/ε}} x := ε {ϕ}
(the expression [term] ε
should be “good enough”)

rule:
ϕ→ ϕ′, {ϕ′}π {ψ′} , ψ′ → ψ

{ϕ}π {ψ} rule:
{ϕ}π1 {χ} , {χ}π2 {ψ}
{ϕ}π1; π2 {ψ}

rule:
{ϕ&C}π1 {ψ} , {ϕ&¬C}π2 {ψ}
{ϕ} if C then π1 else π2 fi {ψ}

rule:
{ϕ&C}π {ϕ} , {ϕ&C & ε = z}π {ε < z} , ϕ→ ε ≥ 0

{ϕ}while C do π od {ϕ&¬C}

(z is an integer variable not present in π)

Hoare proof system

Another big question is: do such proof systems actually work?

For instance,
I the following axiom schema breaks everything: {ϕ}π {ψ}
I the following inference rule breaks everything:

{ϕ}π {ψ}
{ϕ′}π {ψ′}

I the absence of any axiom or any inference rule breaks a lot

Provable formulae are defined syntactically, but we need semantics
to check that what we formally prove is exactly what we intuitively
want

Proof systems: soundness and completeness

To measure the quality of a proof system (in general), all formulae
are divided into valid and invalid: intuitively, a valid formula is a
formula which corresponds to a true proposition

You probably know what is a validiy:
I “a first-order formula is valid in an interpretation I”: true for

the meaning of constants defined by I, and for all valuations
of free variables

I “a Hoare triple is valid in an interpretation I”: this validity
slightly differs in case of partial and total correctness proofs,
and complies with the corresponding intuitive meaning

Proof systems: soundness and completeness

A proof system (in general) is sound iff all provable formulae are
valid

A proof system is complete iff all valid formulae are provable

Magically (by the results of a long research and a couple of heavy
theorems), Hoare proof systems for partial and total correctness are
both sound, and moreover,

I the system for partial correctness is complete
I if integer expressions are expressive enough (for instance, to

represent all computable functions), then the system for total
correctness is alse complete

Too good to be true: the problem is hidden in the axioms, and in
the (un)decidability

Essay topics
Does anybody even need these proof systems?

What are the most popular software tools for a deductive program
verification, what are their application areas, and how useful are
these tools in practice?

Essay topics
But while programs are unrealistically simple!

The model of while programs and Hoare proof system are designed
to be expandable: to capture more features of sequential programs,
it is sufficient to add more syntactical and semantical rules for
programs and suitable axioms and inference rules

What does the model of while programs extended with real
program primitives look like? (such as pointers, procedure calls,
concurrent threads, objects, etc. — pick one by your choice)

What may be a proof system for the extended model which allows
to prove at least anything useful?

Essay topics
I do not like Hoare logic for sequential programs:

is there anything different in this area?

Hoare proof system is one of the many: special proof systems are
being developed for

I other programming paradigms
I functional
I event-driven
I ...
I even for quantum programming!

I smart approaches for software design
I design by contract
I modular design
I anything else?

Find a proof system which captures non-sequential programming
language features, or a certain program design specifics, and
explain its similarities and differences to a “classical” Hoare logic

That’s all. Questions?

