Математическая логика и логическое программирование

Лектор:

Подымов Владислав Васильевич

e-mail:

valdus@yandex.ru

2015, весенний семестр

Общая схема метода резолюций Равносильные формулы Теорема о равносильной замене Предварённая нормальная форма Сколемовская стандартная форма Системы дизъюнктов

Какая задача решается:

проверка общезначимости формул

$$\models \varphi$$
?

Как её можно решать?

Например, табличный вывод

Но табличный вывод оказывается неэффективным: слишком много перебора

Хотелось бы иметь способ лучше:

метод резолюций

проверка общезначимости формул

$$\models \varphi$$
?

Этап 1.
$$\varphi \leadsto \psi = \neg \varphi$$

$$\varphi \text{ общезначима} \Leftrightarrow \psi \text{ противоречива}$$

Этап 2.
$$\psi \leadsto \psi_{pnf} = \frac{\exists}{\forall} x_1 \ldots \frac{\exists}{\forall} x_n (D_1 \& \ldots \& D_k)$$
 ψ_{pnf} — формула в предварённой нормальной форме ψ противоречива $\Leftrightarrow \psi_{pnf}$ противоречива

Этап 3.
$$\psi_{pnf} \leadsto \psi_{ssf} = \forall x_1 \ldots \forall x_n (D_1' \& \ldots \& D_{k'}')$$
 ψ_{ssf} — формула в сколемовской стандартной форме ψ_{pnf} противоречива $\Leftrightarrow \psi_{ssf}$ противоречива

проверка общезначимости формул

$$otag\ arphi_{ssf}=orall x_1\,\ldotsorall x_n(D_1\&\ldots\&D_k)$$
Этап 4. $\psi_{ssf}\leadsto S_{arphi}=\{D_1,\ldots,D_k\}$
 S_{arphi} — система дизъюнктов $D_i=L_1^i\vee\cdots\vee L_{m_i}^i$ $arphi_{ssf}$ противоречива $\Leftrightarrow S_{arphi}$ противоречива

Этап 5. Резолютивный вывод тождественно ложного (противоречивого) дизъюнкта \square из системы S_{φ}

По каким правилам строится вывод? Например:

$$\dfrac{D_1 \lor L,\ D_2 \lor \lnot L}{D_1 \lor D_2}$$
 — резольвента дизъюнктов $D_1 \lor L,\ D_2 \lor \lnot L$

проверка общезначимости формул

$$otag\ arphi_{ssf}=orall x_1\,\ldotsorall x_n(D_1\&\ldots\&D_k)$$
 Этап 4. $\psi_{ssf}\leadsto S_{arphi}=\{D_1,\ldots,D_k\}$ S_{arphi} — система дизъюнктов $D_i=L_1^i\vee\cdots\vee L_{m_i}^i$ $arphi_{ssf}$ противоречива $\Leftrightarrow S_{arphi}$ противоречива

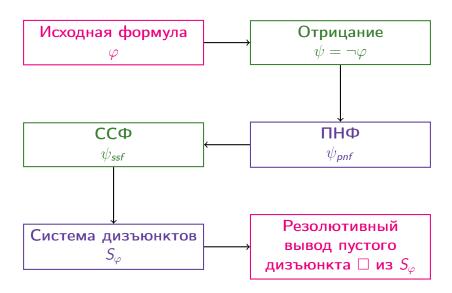
Этап 5. Резолютивный вывод тождественно ложного (противоречивого) дизъюнкта \square из системы S_{ω}

Тогда дизъюнкт \square можно получить так:

$$\frac{L, \neg L}{\Box}$$
 — пустой дизъюнкт

Итого:

 $\models arphi \Leftrightarrow$ из системы $\mathcal{S}_{\!arphi}$ резолютивно выводим пустой дизъюнкт



Равносильные формулы

Как можно удобно и при этом обоснованно преобразовать формулу к ПНФ?

Для начала введём связку равносильности:

$$arphi \equiv \psi$$
 — это сокращение для записи $(arphi
ightarrow \psi)\&(\psi
ightarrow arphi)$

Затем введём отношение равносильности на парах формул:

Определение. Формулы φ , ψ равносильны ($\varphi \approx \psi$), если формула $\varphi \equiv \psi$ общезначима

Утверждение. pprox — отношение эквивалентности

Утверждение. Если формула φ общезначима (выполнима) и $\varphi \approx \psi$, то формула ψ также общезначима (выполнима)

Равносильные формулы

Примеры равносильных формул

1. Законы булевой алгебры

オロトオ御トオミトオミト ミーク900

Равносильные формулы

Примеры равносильных формул

2. Правила работы с кванторами

$$_{\forall}^{\exists}x\ \varphi(x) \approx _{\forall}^{\exists}y\ \varphi(y)$$
 (переименование переменных) здесь формула $\varphi(x)$ не содержит свободных вхождений переменной y , а формула $\varphi(y)$ не содержит свободных вхождений переменной x

$$\neg_{\forall}^{\exists} x \ \varphi \approx {}_{\exists}^{\forall} x \ \neg \varphi$$
 (продвижение отрицания)

$$_{\forall}^{\exists}x \ \varphi \& \psi \approx _{\forall}^{\exists}x \ (\varphi \& \psi)$$
 (вынесение кванторов) $_{\forall}^{\exists}x \ \varphi \lor \psi \approx _{\forall}^{\exists}x \ (\varphi \lor \psi)$

здесь формула ψ не содержит свободных вхождений переменной x

Теорема о равносильной замене

Обозначения:

- > $\varphi[\psi]$ сокращение для "формула φ содержит подформулу ψ "
- $\varphi[\psi/\chi]$ формула, получающаяся заменой некоторых вхождений подформулы ψ на χ

Теорема

$$\psi \approx \chi \quad \Rightarrow \quad \varphi[\psi] \approx \varphi[\psi/\chi]$$

Доказательство.

Индукция по числу логических операций в φ

База индукции: $\varphi[\psi] = \psi$ — очевидно

Теорема о равносильной замене

Доказательство.

Индуктивный переход: пусть $\varphi[\psi] = \forall x \ \varphi'[\psi](x)$

По условию: $\psi \approx \chi$

Индуктивное предположение: $\varphi'[\psi] \approx \varphi'[\psi/\chi]$

Это означает, что для любой интерпретации / и любого

предмета d верно:

$$I \models \varphi'[\psi] \{x/d\} \to \varphi'[\psi/\chi] \{x/d\}$$
$$I \models \varphi'[\psi/\chi] \{x/d\} \to \varphi'[\psi] \{x/d\}$$

Тогда: $I \models \forall x \; (\varphi'[\psi](x) \to \varphi'[\psi/\chi](x))$

$$I \models \forall x \ (\varphi'[\psi/\chi](x) \to \varphi'[\psi](x))$$

Лекция 3: $\models \forall x (A \rightarrow B) \rightarrow (\forall x A \rightarrow \forall x B)$, а значит:

$$I \models \forall x \ \varphi'[\psi](x) \to \forall x \ \varphi'[\psi/\chi](x)$$
$$I \models \forall x \ \varphi'[\psi/\chi](x) \to \forall x \ \varphi'[\psi](x)$$

Ho это и есть $\varphi[\psi] \approx \varphi[\psi/\chi]$

Остальные случаи аналогичны: доказать самостоятельно

Теорема о равносильной замене

Зачем нужна равносильная замена?

Она позволяет изменить (упростить) формулу, полностью сохраняя её значение

Например:

$$\forall x \ P(x) \to \exists x \ P(x)$$

$$\approx \qquad (\exists x \ \varphi(x) \approx \exists y \ \varphi(y))$$

$$\forall x \ P(x) \to \exists y \ P(y)$$

$$\approx \qquad (\varphi \to \psi \approx \neg \varphi \lor \psi)$$

$$\neg \forall x \ P(x) \lor \exists x \ P(x)$$

$$\approx \qquad (\neg \forall x \ \varphi \approx \exists x \ \neg \varphi)$$

$$\exists x \ \neg P(x) \lor \exists y \ P(y)$$

$$\approx \qquad (\exists x \ \varphi(x) \lor \psi \approx \exists x \ (\varphi(x) \lor \psi),$$

$$\exists x \ \exists y \ (\neg P(x) \lor P(y))$$

$$\approx \qquad (\neg \varphi \lor \psi \approx \varphi \to \psi))$$

$$\exists x \ \exists y \ (P(x) \to P(y))$$

Определение. Замкнутая формула φ находится в предварённой нормальной форме (ПНФ), если она имеет вид

$$Q_1x_1 \ldots Q_nx_n (D_1\&\ldots\&D_k),$$

где

- ▶ $Q_1x_1 \ldots Q_nx_n$ кванторная приставка: $Q_1, \ldots, Q_n \in \{\exists, \forall\}$
- ▶ $D_1 \& \dots \& D_k$ матрица: бескванторная формула в конъюнктивной нормальной форме (КНФ):
 - ▶ $D_i = L_i^1 \lor \cdots \lor L_{m_i}^i$ дизъюнкт
 - ▶ L_j^i литера: имеет вид A или $\neg A$, где A атомарная формула

Например,

$$\forall x \; \exists y \; \exists z \; \forall u \; (P(x)\& \neg R(x,u)\& (\neg P(y) \lor R(x,z)))$$

Здесь

- ▶ кванторная приставка: $\forall x \; \exists y \; \exists z \; \forall u$
- ▶ матрица: $P(x) \& \neg R(x, u) \& (\neg P(y) \lor R(x, z))$
- дизъюнкты: P(x)

$$\neg R(x, u)$$

 $\neg P(y) \lor R(x, z)$

ightharpoonup литеры: P(x)

$$\neg R(x, u)$$
$$\neg P(y)$$
$$R(x, z)$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

Это можно сделать применением к φ равносильных преобразований

Обозначим схему применения преобразований и проиллюстрируем её на таком примере:

$$\varphi = \neg \exists x \ (P(x) \& (\forall x \ P(x) \rightarrow \exists y \ R(x,y)) \rightarrow \exists y \ R(x,y))$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

1. Переименование переменных
$$(\begin{array}{c} \exists x \ \varphi(x) pprox \exists y \ \varphi(y)) \ \\ \neg \exists x \ (P(x) \& (\forall x \ P(x) \to \exists y \ R(x,y)) \to \exists y \ R(x,y)) \ \end{array}$$

$$\Rightarrow \exists x_1 \ (P(x_1)\&(\forall x_2 \ P(x_2) \rightarrow \exists y \ R(x_1,y)) \rightarrow \exists y \ R(x_1,y))$$

$$\approx \exists x_1 \ (P(x_1)\&(\forall x_2 \ P(x_2) \rightarrow \exists y_1 \ R(x_1,y_1)) \rightarrow \exists y_2 \ R(x_1,y_2))$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

2. Удаление импликаций

$$(\varphi \to \psi \approx \neg \varphi \lor \psi)$$

$$\neg \exists x_1 \ (P(x_1) \& (\forall x_2 \ P(x_2) \rightarrow \exists y_1 \ R(x_1, y_1)) \rightarrow \exists y_2 \ R(x_1, y_2))$$

$$\approx$$

$$\neg \exists x_1 \ (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

$$\neg \exists x_1 \ (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

$$\neg \exists x_1 \ (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

$$\neg \exists x_1 \ (\neg(P(x_1)\&(\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1,y_1))) \lor \exists y_2 \ R(x_1,y_2))$$

$$\approx \qquad (\neg \exists x \ \varphi \approx \forall x \ \neg \varphi)$$

$$\forall x_1 \ \neg(\neg(P(x_1)\&(\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1,y_1))) \lor \exists y_2 \ R(x_1,y_2))$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

$$\neg \exists x_1 \ (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))$$
$$\forall x_1 \ \neg (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

$$\neg \exists x_1 \ (\neg (P(x_1)\&(\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))
\forall x_1 \ \neg (\neg (P(x_1)\&(\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))
\approx (\neg (\varphi \lor \psi) \approx \neg \varphi \& \neg \psi)
\forall x_1 \ (\neg \neg (P(x_1)\&(\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \& \neg \exists y_2 \ R(x_1, y_2))$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

$$\neg \exists x_1 \ (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))$$

$$\forall x_1 \ \neg (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))$$

$$\forall x_1 \ (\neg \neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \& \neg \exists y_2 \ R(x_1, y_2))$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

$$\neg \exists x_1 \ (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))$$

$$\forall x_1 \ \neg (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))$$

$$\forall x_1 \ (\neg \neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \& \neg \exists y_2 \ R(x_1, y_2))$$

$$\approx \qquad (\neg \neg \varphi \approx \varphi; \ \neg \exists x \ \varphi \approx \forall x \ \neg \varphi)$$

$$\forall x_1 \ (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1)) \& \forall y_2 \ \neg R(x_1, y_2))$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

$$\neg \exists x_1 \ (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))$$

$$\forall x_1 \ \neg (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))$$

$$\forall x_1 \ (\neg \neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \& \neg \exists y_2 \ R(x_1, y_2))$$

$$\forall x_1 \ (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1)) \& \forall y_2 \ \neg R(x_1, y_2))$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

$$\neg \exists x_1 \ (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))
\forall x_1 \ \neg (\neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \lor \exists y_2 \ R(x_1, y_2))
\forall x_1 \ (\neg \neg (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1))) \& \neg \exists y_2 \ R(x_1, y_2))
\forall x_1 \ (P(x_1) \& (\neg \forall x_2 \ P(x_2) \lor \exists y_1 \ R(x_1, y_1)) \& \forall y_2 \ \neg R(x_1, y_2))
\approx (\neg \forall x \ \varphi \approx \exists x \ \neg \varphi)
\forall x_1 \ (P(x_1) \& (\exists x_2 \ \neg P(x_2) \lor \exists y_1 \ R(x_1, y_1)) \& \forall y_2 \ \neg R(x_1, y_2))$$

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

Теорема о предварённой нормальной форме Для любой замкнутой формулы φ существует равносильная формула φ_{pnf} в предварённой нормальной форме

Доказательство.

5. Приведение матрицы к КНФ

Применяются законы булевой алгебры (коммутативность, ассоциативность, дистрибутивность, идемпотентность, ...)

$$\varphi_{pnf} = \forall x_1 \; \exists x_2 \; \exists y_1 \; \forall y_2 \; (P(x_1) \& (\neg P(x_2) \lor R(x_1, y_1)) \& \neg R(x_1, y_2))$$

В результате получена формула $\varphi_{\it pnf}$,

- находящаяся в предварённой нормальной форме и
- ightharpoonup равносильная исходной формуле φ

конец доказательства

Определение. Замкнутая формула находится в сколемовской стандартной форме (ССФ), если

- она находится в предварённой нормальной форме и
- ▶ её кванторная приставка не содержит кванторов ∃:

$$\forall x_1 \ldots \forall x_n M(x_1, \ldots, x_n)$$

Например:

$$\forall x_1 \ \forall y_2 \ (P(x_1)\&(\neg P(f(x_1)) \lor R(x_1,g(x_1)))\&\neg R(x_1,y_2))$$

$$R(c_1,f(c_1,c_2)) \lor P(c_2)$$

Теорема о сколемовской стандартной форме Для любой замкнутой формулы φ существует формула φ_{ssf} в сколемовской стандартной форме, такая что φ выполнима $\Leftrightarrow \varphi_{ssf}$ выполнима

Схема доказательства:

- 1. привести формулу к предварённой нормальной форме
- 2. удалить кванторы существования

Лемма об удалении кванторов существования Пусть $\varphi = \forall x_1 \dots \forall x_n \exists x_{n+1} \ \chi(x_1, \dots, x_{n+1})$ — замкнутая формула $(n \geq 0)$ и n-местный функциональный символ f не содержится в формуле φ .

Тогда
$$\varphi$$
 выполнима \Leftrightarrow выполнима формула $\psi = \forall x_1 \dots \forall x_n \ \chi(x_1, \dots, x_n, f(x_1, \dots, x_n))$

Доказательство леммы.

(\Leftarrow): Пусть / — модель для ψ

Тогда для любых предметов d_1, \ldots, d_n верно:

$$I \models \chi[d_1,\ldots,d_n,\overline{f}(d_1,\ldots,d_n)]$$

Пусть $d_{n+1} = \overline{f}(d_1, \ldots, d_n)$

Такой предмет обязательно существует, и

$$I \models \chi[d_1,\ldots,d_n,d_{n+1}]$$

А значит, $I \models \forall x_1 \dots \forall x_n \exists x_{n+1} \ \chi(x_1, \dots, x_{n+1})$

Лемма об удалении кванторов существования Пусть $\varphi = \forall x_1 \dots \forall x_n \exists x_{n+1} \ \chi(x_1, \dots, x_{n+1})$ — замкнутая формула $(n \geq 0)$ и n-местный функциональный символ f не содержится в формуле φ .

Тогда
$$\varphi$$
 выполнима \Leftrightarrow выполнима формула $\psi = \forall x_1 \ldots \forall x_n \; \chi(x_1, \ldots, x_n, f(x_1, \ldots, x_n))$

Доказательство леммы.

(⇒): Пусть / — модель для φ

Тогда для любых предметов d_1, \ldots, d_n существует предмет d_{n+1} , такой что $I \models \chi[d_1, \ldots, d_n, d_{n+1}]$

Перейдём к интерпретации J: возьмём I, добавим f в сигнатуру (если его не было), оценим f так: $\overline{f}(d_1,\ldots,d_n)=d_{n+1}$

Тогда $J \models \chi[d_1,\ldots,d_n,\overline{f}(d_1,\ldots,d_n)]$

A значит, $J \models \forall x_1 \dots \forall x_n \ \chi(x_1, \dots, x_n, f(x_1, \dots, x_n))$

конец доказательства

Сколемовская стандартная форма

Теорема о сколемовской стандартной форме Для любой замкнутой формулы φ существует формула φ_{ssf} в сколемовской стандартной форме, такая что

arphi выполнима $\Leftrightarrow arphi_{\mathit{ssf}}$ выполнима Доказательство.

1. Считаем, что формула φ находится в предварённой нормальной форме (теорема о предварённой нормальной форме):

$$\varphi = Q_1 x_1 \dots Q_n x_n M(x_1, \dots, x_n)$$

Сколемовская стандартная форма

Теорема о сколемовской стандартной форме

Для любой замкнутой формулы φ существует формула φ_{ssf} в сколемовской стандартной форме, такая что

$$arphi$$
 выполнима $\Leftrightarrow arphi_{\mathit{ssf}}$ выполнима

Доказательство.

2. Удаляем кванторы ∃ (лемма об удалении кванторов ∃):

 $\forall x_1 \dots \forall x_k \exists x_{k+1} \forall x_{k+2} \dots \forall x_m \exists x_{m+1} \dots$ $\psi(x_1, \dots, x_k, x_{k+1}, x_{k+2}, \dots, x_m, x_{m+1}, \dots)$

 $\forall x_1 \dots \forall x_k \forall x_{k+2} \dots \forall x_m \exists x_{m+1} \dots$ $\psi(x_1, \dots, x_k, f(x_1, \dots, x_k), x_{k+2}, \dots, x_m, x_{m+1}, \dots)$

 $\forall x_1 \dots \forall x_k \forall x_{k+2} \dots \forall x_m \dots$

 $\psi(x_1,\ldots,x_k,f(x_1,\ldots,x_k),x_{k+2},\ldots,x_m,g(x_1,\ldots,x_k,x_{k+2},\ldots,x_m),\ldots)$

 φ_{ssf}

Выполнимость сохраняется на каждом шаге

Сколемовская стандартная форма

Пример

$$arphi_{pnf} = \forall x_1 \exists x_2 \exists y_1 \forall y_2 \; (P(x_1) \& (\neg P(x_2) \lor R(x_1, y_1)) \& \neg R(x_1, y_2))$$

$$\forall x_1 \exists y_1 \forall y_2 \; (P(x_1) \& (\neg P(f(x_1)) \lor R(x_1, y_1)) \& \neg R(x_1, y_2))$$

$$arphi_{ssf} = \forall x_1 \forall y_2 \; (P(x_1) \& (\neg P(f(x_1)) \lor R(x_1, g(x_1))) \& \neg R(x_1, y_2))$$

$$arphi_{pnf} \; \text{выполнима} \Leftrightarrow arphi_{ssf} \; \text{выполнима}$$

Процесс удаления кванторов \exists — сколемизация

Подставляемые при удалении \exists термы — сколемовские термы (здесь — $f(x_1)$, $g(x_1)$)

Если слева от удаляемого \exists нет ни одного \forall , то подставляется сколемовская константа

Общая схема метода резолюций

Общая схема метода резолюций

Определение

Дизъюнкт — это формула в сколемовской стандартной форме с одним множителем в матрице:

$$\forall x_1 \dots \forall x_n (L_1 \vee \dots \vee L_k)$$

 L_i — это литера: либо атом, либо отрицание атома

Для краткости кванторную приставку дизъюнкта будем опускать

(и тогда дизъюнкт здесь и в определении $\Pi H \Phi$ — одно и то же)

Также особо выделяется пустой дизъюнкт \square — дизъюнкт, не содержащий ни одной литеры

Пустой дизъюнкт считается невыполнимым

(почему?)

Потому что $L_1 \lor \cdots \lor L_k \approx L_1 \lor \cdots \lor L_k \lor$ false, и при k=0

имеем $\square \approx$ false

Система дизъюнктов невыполнима (противоречива), если она не имеет модели

Утверждение

$$\forall x (\varphi \& \psi) \approx \forall x \varphi \& \forall x \psi$$

Доказательство: очевидно (например, методом семантических таблиц)

Что это означает?

Можно считать, что у каждого дизъюнкта в φ_{ssf} своя кванторная приставка

Теорема

Формула в сколемовской стандартной форме

$$\forall x_1 \ldots \forall x_n (D_1 \& \ldots \& D_n)$$

невыполнима тогда и только тогда, когда система дизъюнктов

$$\{D_1, \ldots, D_n\}$$

невыполнима

Вспоминаем, какую задачу мы решаем:

$$\models \varphi$$
?

arphi общезначима $\Leftrightarrow \psi = \neg arphi$ невыполнима $\Leftrightarrow \psi_{pnf}$ невыполнима $\Leftrightarrow \psi_{ssf}$ невыполнима \Leftrightarrow система дизъюнктов S_{ω} невыполнима

 ${\sf NTOFO}$: проверка общезначимости формулы φ сводится к проверке невыполнимости системы дизъюнктов S_{φ}

Например

$$\models \exists x \ (P(x)\&(\forall x \ P(x) \to \exists y \ R(x,y)) \to \exists x \ R(x,y))?$$

Отрицание:

$$\neg\exists x\ (P(x)\&(\forall x\ P(x)\to\exists y\ R(x,y))\to\exists x\ R(x,y))$$

Предварённая нормальная форма:

$$\forall x_1 \exists x_2 \exists y_1 \forall y_2 \ (P(x_1) \& (\neg P(x_2) \lor R(x_1, y_1)) \& \neg R(x_1, y_2))$$

Сколемовская стандартная форма:

$$\forall x_1 \forall y_2 (P(x_1) \& (\neg P(f(x_1)) \lor R(x_1, g(x_1))) \& \neg R(x_1, y_2))$$

Система дизъюнктов:

$$\left\{
\begin{array}{l}
P(x_1), \\
\neg P(f(x_1)) \lor R(x_1, g(x_1)), \\
\neg R(x_1, y_2)
\end{array}
\right\}$$

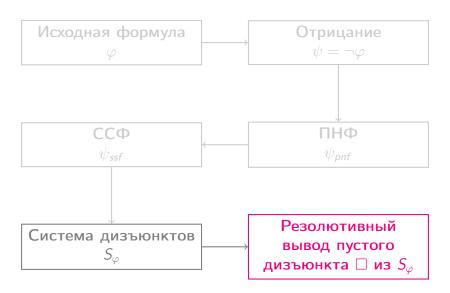
Система дизъюнктов:

$$S_{\varphi} = \left\{ \begin{array}{l} P(x_1), \\ \neg P(f(x_1)) \lor R(x_1, g(x_1)), \\ \neg R(x_1, y_2) \end{array} \right\}$$

Как проверить невыполнимость системы дизъюнктов S_{φ} ?

Об этом будет несколько следующих лекций

Об этом будет несколько следующих лекций



Конец лекции 6