Математическая логика и логическое программирование

mk.cs.msu.ru ightarrow Лекционные курсы ightarrow Математическая логика и логическое программирование (3-й поток)

Вопрос 3

Логика 1-го порядка Выполнимость и общезначимость Общая схема метода резолюций Лектор:

Подымов Владислав Васильевич

E-mail:

valdus@yandex.ru

Вопрос 3 1/3

Логика предикатов 1-го порядка (ЛП): алфавит

Базовые символы

Предметные константы

Ими обозначаются конкретные (именованные, фиксированные) предметы

Например: я, 2, π , Солнце, c_1 , ...

Const — множество всех констант

Предметные переменные

Ими обозначаются безымянные (нефиксированные) предметы

Они будут записываться привычно: x, y', z_4 , ...

Var — множество всех переменных

Далее это множество полагается счётным и заданным однозначно

Вопрос 3 2/31

Логика предикатов 1-го порядка (ЛП): алфавит

Базовые символы

Функциональные символы

Ими обозначаются операции над предметами

Hапример: +, **сосед**, \lim , ...

Каждому функциональному символу сопоставляется особое

натуральное число — местность

 ${f f}^{(k)}$ — запись функционального символа ${f f}$ с обозначением местности k Func — множество всех функциональных символов

с сопоставленными им местностями

Предикатные символы

Ими обозначаются отношения между предметами и свойства предметов

Например: <, является_соседом, красный, ...
При задании языка логики предикатов каждому предикатному символу сопоставляется особое натуральное число — местность

 $P^{(k)}$ — запись предикатного символа P с обозначением местности k Pred — множество всех предикатных символов

С СОПОСТАВЛЕННЫМИ ИМ МЕСТНОСТЯМИ

Логика предикатов 1-го порядка (ЛП): алфавит

Логические операции

```
Логические связки & \vee \neg \rightarrow 

Кванторы 

Квантор всеобщности («для любого предмета»): \forall 

Квантор существования («существует предмет»): \exists 

Знаки препинания (),
```

Сигнатурой алфавита логики предикатов называется тройка (Const, Func, Pred)

Выбором сигнатуры определяется рассматриваемый вариант языка логики предикатов:

- Символы сигнатуры отвечают понятиям, высказывания о которых предполагается записывать на языке логики предикатов
- Символы, не входящие в сигнатуру, одинаковы для всех вариантов языка

Вопрос 3 4/31

БНФ, определяющая синтаксис формул логики предикатов:

$$t ::= x \mid \mathbf{c} \mid \mathbf{f}^{(n)}(t_1, t_2, \dots, t_n)$$

$$\varphi ::= P^{(k)}(t_1, t_2, \dots, t_k) \mid (\varphi \& \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid (\neg \varphi) \mid (\forall x \varphi) \mid (\exists x \varphi),$$

где:

- φ формула
- $ightharpoonup t, t_1, t_2, \dots, t_n$ термы
- $\mathbf{x} \in \mathsf{Var}$
- **c** ∈ Const
- ▶ $\mathbf{f}^{(n)} \in \mathsf{Func}$
- $ightharpoonup P^{(k)} \in \mathsf{Pred}$

Вопрос 3 5/31

$$t ::= x \mid \mathbf{c} \mid \mathbf{f}^{(n)}(t_1, t_2, \dots, t_n)$$

При помощи термов описываются предметы, получающиеся в результате применения заданных функций (операций) к заданным предметам

Term — множество всех термов

(над заданными множествами Var, Const, Func)
$$\widetilde{\mathbf{x}}^{\mathbf{n}}$$
 — сокращённая запись последовательности $\ll \mathbf{x}_1, \ldots, \mathbf{x}_{\mathbf{n}} \gg$

Если t — терм, то:

Вопрос 3

 Var_t — множество всех переменных, входящих в терм t $t(\widetilde{\mathbf{x}}^{\mathbf{n}})$ — синоним t, если $Var_t \subseteq \{\mathbf{x}_1, \ldots, \mathbf{x}_{\mathbf{n}}\}$

$$arphi$$
 ::= $P^{(k)}(t_1, t_2, \dots, t_k) \mid (arphi \& arphi) \mid (arphi \lor arphi) \mid (arphi \to arphi) \mid (\neg arphi) \mid (\forall x \ arphi) \mid (\exists x \ arphi)$

При помощи формул описываются отношения между предметами, строящиеся из «базовых» отношений при помощи логических операций В некоторых случаях (*отношение местности 0*) формулой может

описываться и высказывание, оцениваемое как истина или ложь

Формула атомарна (является атомом), если имеет вид $P(t_1, t_2, ..., t_k)$, где $P^{(k)} \in \text{Pred } u \ t_1, t_2, ..., t_k \in \text{Term}$

Остальные формулы называются составными

Приоритет логических операций (в порядке убывания):

 \forall , \exists , \neg ; затем &; затем \lor ; затем \rightarrow

Как работают приоритеты (пример)

Следующие формулы считаются синтаксически одинаковыми:

```
 \forall x \ \neg P(x) \& \ \exists y \ R(x,y) \rightarrow \exists x \ (\neg P(x) \lor P(y)) 
 \forall x \ (\neg P(x)) \& \ (\exists y \ R(x,y)) \rightarrow \exists x \ ((\neg P(x)) \lor P(y)) 
 (\forall x \ (\neg P(x))) \& \ (\exists y \ R(x,y)) \rightarrow (\exists x \ ((\neg P(x)) \lor P(y))) 
 ((\forall x \ (\neg P(x))) \& \ (\exists y \ R(x,y))) \rightarrow (\exists x \ ((\neg P(x)) \lor P(y))) 
 (((\forall x \ (\neg P(x))) \& \ (\exists y \ R(x,y))) \rightarrow (\exists x \ ((\neg P(x)) \lor P(y)))
```

Bonpoc 3 7/3

Квантор связывает ту переменную, которая следует за ним

Область действия внешнего квантора в формулах вида \forall х φ и \exists х φ — это подформула φ

Вхождение переменной в область действия связывающего её квантора — связанное вхождение

Вхождение переменной, не являющееся связанным, — свободное вхождение

Переменная, имеющая свободное вхождение, свободная переменная формулы

Пример:

$$\exists y (\forall x \neg P(y, f(x,y)) \rightarrow R(x))$$

Квантор связывает ту переменную, которая следует за ним

Область действия внешнего квантора в формулах вида \forall х φ и \exists х φ — это подформула φ

Вхождение переменной в область действия связывающего её квантора — связанное вхождение

Вхождение переменной, не являющееся связанным, — свободное вхождение

Переменная, имеющая свободное вхождение, свободная переменная формулы

Пример:

$$\exists y (\forall x \neg P(y, f(x,y)) \rightarrow R(x))$$
Переменная у связана квантором \exists

Квантор связывает ту переменную, которая следует за ним

Область действия внешнего квантора в формулах вида $\forall \mathbf{x} \ \varphi$ и $\exists \mathbf{x} \ \varphi$ — это подформула φ

Вхождение переменной в область действия связывающего её квантора — связанное вхождение

Вхождение переменной, не являющееся связанным, — свободное вхождение

Переменная, имеющая свободное вхождение, свободная переменная формулы

Пример:

$$\exists y (\forall x \neg P(y, f(x,y)) \rightarrow R(x))$$
Переменная x связана квантором \forall

Квантор связывает ту переменную, которая следует за ним

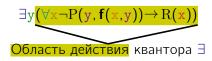
Область действия внешнего квантора в формулах вида $\forall \mathbf{x} \ \varphi$ и $\exists \mathbf{x} \ \varphi$ — это подформула φ

Вхождение переменной в область действия связывающего её квантора — связанное вхождение

Вхождение переменной, не являющееся связанным, — свободное вхождение

Переменная, имеющая свободное вхождение, свободная переменная формулы

Пример:



Квантор связывает ту переменную, которая следует за ним

Область действия внешнего квантора в формулах вида \forall х φ и \exists х φ — это подформула φ

Вхождение переменной в область действия связывающего её квантора — связанное вхождение

Вхождение переменной, не являющееся связанным, — свободное вхождение

Переменная, имеющая свободное вхождение, свободная переменная формулы

Пример:

Квантор связывает ту переменную, которая следует за ним

Область действия внешнего квантора в формулах вида \forall х φ и \exists х φ — это подформула φ

Вхождение переменной в область действия связывающего её квантора — связанное вхождение

Вхождение переменной, не являющееся связанным, — свободное вхождение

Переменная, имеющая свободное вхождение, свободная переменная формулы

Пример:

Квантор связывает ту переменную, которая следует за ним

Область действия внешнего квантора в формулах вида \forall х φ и \exists х φ — это подформула φ

Вхождение переменной в область действия связывающего её квантора — связанное вхождение

Вхождение переменной, не являющееся связанным, — свободное вхождение

Переменная, имеющая свободное вхождение, — свободная переменная формулы

Пример:

$$\exists y (\forall x \neg P(y, f(x,y)) \rightarrow R(x))$$
Связанное вхождение переменной x

Квантор связывает ту переменную, которая следует за ним

Область действия внешнего квантора в формулах вида $\forall \mathbf{x} \ \varphi$ и $\exists \mathbf{x} \ \varphi$ — это подформула φ

Вхождение переменной в область действия связывающего её квантора — связанное вхождение

Вхождение переменной, не являющееся связанным, — свободное вхождение

Переменная, имеющая свободное вхождение, свободная переменная формулы

Пример:

$$\exists y (\forall x \neg P(y, f(x,y)) \rightarrow R(x))$$

Свободное вхождение переменной x

 ${\sf Var}_{\it arphi}$ — множество всех свободных переменных формулы $\it arphi$

Если φ — формула, то:

- $ightharpoonup arphi(\widetilde{\mathbf{x}}^{\mathrm{n}})$ синоним arphi, если $\mathsf{Var}_{arphi} \subseteq \{\mathbf{x}_1,\ldots,\mathbf{x}_{\mathrm{n}}\}$
- lacktriangle если ${\sf Var}_{oldsymbol{arphi}}=\emptyset$, то $oldsymbol{arphi}$ замкнутая формула, или предложение

ЛП: семантика

Интерпретация (сигнатуры (Const, Func, Pred)) — это система $\langle D, \overline{Const}, \overline{Func}, \overline{Pred} \rangle$, где:

- ▶ D непустое множество предметов (область интерпретации; предметная область; универсум)
- **►** Const : Const \rightarrow D оценка констант
- ▶ $\overline{\text{Func}}$: $\text{Func} o \cup_{n \geq 1} (\mathsf{D}^n o \mathsf{D})$ оценка функциональных символов
- ▶ $\overline{\text{Pred}}: \text{Pred} \to \bigcup_{n \geq 1} (\mathsf{D}^n \to \{\mathtt{t}, \mathtt{f}\})$ оценка предикатных символов

$$\overline{\mathbf{c}} = \overline{\mathsf{Const}}(\mathbf{c})$$
 — предмет, сопоставленный константе \mathbf{c}

$$\overline{\mathbf{f}} = \overline{\mathsf{Func}}(\mathbf{f}) : \mathsf{D}^n \to \mathsf{D} - \mathsf{ф}$$
ункция, сопоставленная символу $\mathbf{f}^{(n)}$

 $\overline{\mathbb{P}} = \overline{\mathsf{Pred}}(\mathbb{P}) : \mathsf{D}^n \to \{\mathfrak{t},\mathfrak{f}\}$ — предикат, сопоставленный символу $\mathbb{P}^{(n)}$

Bonpoc 3 10/

ЛП: семантика термов

Значение $t(\widetilde{\mathbf{x}}^n)[d^n]$ терма $t(\widetilde{\mathbf{x}}^n)$ в интерпретации \mathcal{I} на наборе предметов d_1, \ldots, d_n из области интерпретации — это **предмет**, задаваемый так:

термы-переменные:

$$x_i[\widetilde{d}^n] = d_i$$

▶ термы-константы:

$$\mathbf{c}[\widetilde{d}^n] = \overline{\mathbf{c}}$$

• остальные термы:

$$\mathbf{f}(t_1,\ldots,t_k)[\widetilde{d}^n]=\overline{\mathbf{f}}(t_1[\widetilde{d}^n],\ldots,t_k[\widetilde{d}^n])$$

Bonpoc 3 11/3:

ЛП: семантика формул

Отношение выполнимости формулы $\varphi(\widetilde{\mathbf{x}}^n)$ в интерпретации \mathcal{I} на наборе предметов d_1, \ldots, d_n из области интерпретации $(\mathcal{I} \models \varphi(\widetilde{\mathbf{x}}^n)[\widetilde{d}^n])$ определяется так:

атомарная формула:

$$\mathcal{I} \models P(t_1, \ldots, t_k)[\widetilde{d}^n]
\Leftrightarrow
\overline{P}(t_1[\widetilde{d}^n], \ldots, t_k[\widetilde{d}^n]) = \mathfrak{t}$$

• отрицание:

$$\mathcal{I} \models (\neg \varphi)[\widetilde{d}^n] \\ \Leftrightarrow \\ \mathcal{I} \not\models \varphi[\widetilde{d}^n]$$

Вопрос 3 12/3

ЛП: семантика формул

Отношение выполнимости формулы $\varphi(\widetilde{\mathbf{x}}^n)$ в интерпретации \mathcal{I} на наборе предметов d_1,\ldots,d_n из области интерпретации $(\mathcal{I}\models\varphi(\widetilde{\mathbf{x}}^n)[\widetilde{d}^n])$ определяется так:

конъюнкция:

$$\begin{split} \mathcal{I} &\models (\varphi \,\&\, \psi)[\widetilde{d}^n] \\ &\Leftrightarrow \\ \mathcal{I} &\models \varphi[\widetilde{d}^n] \text{ in } \mathcal{I} &\models \psi[\widetilde{d}^n] \end{split}$$

дизъюнкция:

$$\mathcal{I} \models (\varphi \lor \psi)[d^n]$$
 \Leftrightarrow $\mathcal{I} \models \varphi[\widetilde{d}^n]$ или $\mathcal{I} \models \psi[\widetilde{d}^n]$

импликация:

$$\mathcal{I} \models (\varphi \rightarrow \psi)[\widetilde{d}^n]$$
 \Leftrightarrow $\mathcal{I} \not\models \varphi[\widetilde{d}^n]$ или $\mathcal{I} \models \psi[\widetilde{d}^n]$

Bonpoc 3 13/3

ЛП: семантика формул

Отношение выполнимости формулы $\varphi(\widetilde{\mathbf{x}}^n)$ в интерпретации \mathcal{I} на наборе предметов d_1,\ldots,d_n из области интерпретации $(\mathcal{I}\models\varphi(\widetilde{\mathbf{x}}^n)[\widetilde{d}^n])$ определяется так:

квантор всеобщности:

$$\mathcal{I} \models (\forall \mathbf{x}_0 \ \varphi(\mathbf{x}_0, \widetilde{\mathbf{x}}^n))[\widetilde{d}^n]$$

$$\Leftrightarrow$$

для любого предмета d_0 из области интерпретации верно $\mathcal{I} \models \varphi(\mathbf{x}_0, \widetilde{\mathbf{x}}^n)[d_0, \widetilde{d}^n]$

квантор существования:

$$\mathcal{I} \models (\exists \mathbf{x}_0 \ \varphi(\mathbf{x}_0, \widetilde{\mathbf{x}}^n))[\widetilde{d}^n]$$

хотя бы для одного предмета d_0 из области интерпретации верно

$$\mathcal{I} \models \varphi(\mathbf{x}_0, \widetilde{\mathbf{x}}^n)[d_0, \widetilde{d}^n]$$

$$arphi[\mathtt{x}_1/d_1,\ldots,\mathtt{x}_\mathrm{n}/d_n]$$
 — синоним записи $arphi(\mathtt{x}_1,\ldots,\mathtt{x}_\mathrm{n})[d_1,\ldots,d_n]$

ЛП: выполнимость, общезначимость

Формула $\varphi(\widetilde{\mathbf{x}}^{\mathbf{n}})$ выполнима в интерпретации \mathcal{I} , если **существует** набор предметов \widetilde{d}^n из области интерпретации \mathcal{I} , такой что $\mathcal{I} \models \varphi(\widetilde{\mathbf{x}}^{\mathbf{n}})[\widetilde{d}^n]$

Формула $\varphi(\widetilde{\mathbf{x}}^{\mathbf{n}})$ истинна в интерпретации \mathcal{I} ($\mathcal{I} \models \varphi$), если **для любого** набора предметов \widetilde{d}^n из области интерпретации \mathcal{I} верно $\mathcal{I} \models \varphi(\widetilde{\mathbf{x}}^{\mathbf{n}})[\widetilde{d}^n]$

Формула φ выполнима,

если существует интерпретация, в которой она выполнима

Формула φ общезначима

(тождественно истинна; является тавтологией; $\models \varphi$),

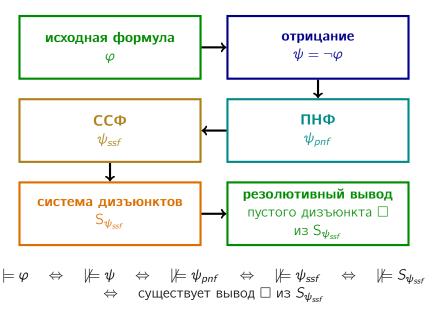
если она истинна в любой интерпретации

Про невыполнимую формулу также часто говорят,

что она тождественно ложна

Проблема общезначимости формул логики предикатов:

для заданной произвольной формулы логики предикатов φ проверить соотношение $\models \varphi$



Bonpoc 3 16/31

Эквивалентность (логическая связка):

$$arphi\leftrightarrow\psi$$
 — это сокращение для формулы $(arphi
ightarrow\psi)$ & $(\psi
ightarrow\varphi)$

Формулы arphi, ψ равносильны $(arphi \sim \psi)$, если формула $arphi \leftrightarrow \psi$ общезначима

Утверждение. Для любых равносильных формул $\varphi(\widetilde{\mathbf{x}}^n)$, $\psi(\widetilde{\mathbf{x}}^n)$ ЛП, интерпретации \mathcal{I} и набора предметов \widetilde{d}^n верно следующее: $\mathcal{I} \models \varphi[\widetilde{d}^n] \quad \Leftrightarrow \quad \mathcal{I} \models \psi[\widetilde{d}^n]$

Утверждение. ∼ — отношение эквивалентности

Утверждение. Если формула φ общезначима, то любая равносильная ей формула ψ также общезначима

Утверждение. Если формула φ выполнима, то любая равносильная ей формула ψ также выполнима

Bonpoc 3 17/31

 $|\phi| \psi - \phi$ обозначение формулы ϕ , содержащей подформулу ψ

 $|\varphi| \psi/\chi - \varphi$ формула, получающаяся из φ заменой некоторого вхождения подформулы ψ на χ

Теорема (о равносильной замене в ЛП) Для любых формул φ , ψ , χ логики предикатов верно:

$$\psi \sim \chi \quad \Rightarrow \quad arphi[\![\psi]\!] \sim arphi[\![\psi/\chi]\!]$$

Вопрос 3 18/31

Замкнутая формула логики предикатов находится в предварённой нормальной форме ($\Pi H \Phi$), если она имеет вид

$$Q_1 \mathbf{x}_1 \ldots Q_n \mathbf{x}_{\mathbf{n}}$$
 $\left(\mathsf{D}_1 \, \& \ldots \& \, \mathsf{D}_k \right)$, где кванторная приставка матрица

- $ightharpoonup Q_1, \ldots, Q_n \in \{\forall, \exists\}$
- ▶ матрица это бескванторная формула в конъюнктивной нормальной форме (КНФ):
 - ightharpoonup $D_i = L_1^i \lor \cdots \lor L_{m_i}^i$ множитель
 - $ightharpoonup L_{i}^{i}$ литера: атом или его отрицание

Наряду с «находится в ПНФ» будем говорить «является ПНФ»

Теорема (о предварённой нормальной форме) Для любой замкнутой формулы логики предикатов существует равносильная ей предварённая нормальная форма

19/31 19/31

Замкнутая формула логики предикатов находится в сколемовской стандартной форме (ССФ), если

- она находится в предварённой нормальной форме и
- ▶ её кванторная приставка не содержит кванторов ∃:

$$\forall \widetilde{\mathbf{x}}^{\mathbf{n}} (\mathsf{D}_1 \& \ldots \& \mathsf{D}_k)$$

Лемма (об удалении ∃)

Пусть $\varphi=\forall\widetilde{\mathbf{x}}^{\mathbf{n}}\;\exists\mathbf{x}_{\mathbf{n}+1}\;\chi$ — замкнутая формула ЛП ($n\geq0$) и функциональный символ f не содержится в χ . Тогда формула φ выполнима

формула $orall \widetilde{x}^n \left(\chi\{x_{n+1}/f(\widetilde{x}^n)\}
ight)$ выполнима

Небольшая вольность: если слева от \exists не стоит ни одного \forall , то, согласно лемме, $\mathbf{f} = 0$ -местный функциональный символ: так будем называть **константы**, и писать $\langle \mathbf{f}() \rangle$ наряду с $\langle \mathbf{f}() \rangle$

```
Алгоритм сколемизации \Pi H \Phi
Дано: \Pi H \Phi \varphi_{pnf}
Требуется получить CC\Phi Sk(\varphi_{pnf}), такую что
\varphi_{pnf} выполнима \Leftrightarrow Sk(\varphi_{pnf}) выполнима
```

Алгоритм. Пока в кванторной приставке есть хотя бы один квантор \exists , самый левый \exists удаляется при помощи подстановки сколемовского терма по лемме об удалении \exists

Теорема (о сколемизации). Для любой ПНФ φ_{pnf} формула $Sk(\varphi_{pnf})$ является ССФ, для которой верно следующее: формула φ_{pnf} выполнима \Leftrightarrow формула $Sk(\varphi_{pnf})$ выполнима

21/3 21/3

Дизъюнктом называется ССФ с одним множителем в матрице: $\forall \widetilde{\mathbf{x}}^{\mathbf{n}} \, \big(\mathsf{L}_1 \lor \dots \lor \mathsf{L}_k \big),$

где L_i — литера (атом или его отрицание)

Для краткости иногда будем опускать кванторную приставку дизъюнктов:

$$\forall \widetilde{\mathbf{x}}^{\mathbf{n}} \left(\mathsf{L}_{1} \vee \cdots \vee \mathsf{L}_{k} \right) = \mathsf{L}_{1} \vee \cdots \vee \mathsf{L}_{k}$$

Для упрощения технических выкладок дизъюнкты, получающиеся друг из друга перестановкой слагаемых, принято отождествлять

То есть дизъюнкт отождествляется с мультимножеством его литер:

$$L_1 \vee \cdots \vee L_k = \{L_1, \ldots, L_k\}$$

Вопрос 3 22/3:

Пустой дизъюнкт \square — это особый дизъюнкт, представляющий собой пустое множество литер

Пустой дизъюнкт будем считать невыполнимым:

$$\mathsf{L}_1 \lor \dots \lor \mathsf{L}_k \ll \sim \gg \mathsf{L}_1 \lor \dots \lor \mathsf{L}_k \lor \mathsf{f}$$
, а значит, $\square \ll \sim \gg \mathsf{f}$

Системой дизъюнктов будем называть (любое) множество дизъюнктов

Система дизъюнктов *S* выполнима, если она имеет хотя бы одну модель, и невыполнима иначе

Теорема (о переходе к дизъюнктам)

Для ССФ с любым набором множителей $D_1, ..., D_k$ верно: формула $\forall \widetilde{\mathbf{x}}^n \ (D_1 \& ... \& D_k)$ выполнима \Leftrightarrow

система $\{ \forall \widetilde{\mathbf{x}}^{\mathbf{n}} \; \mathsf{D}_1, \ldots, \forall \widetilde{\mathbf{x}}^{\mathbf{n}} \; \mathsf{D}_k \}$ выполнима

Вопрос 3 23/3

Композиция подстановок θ и η — это подстановка $\theta\eta$, такая что для любой переменной \mathbf{x} верно равенство $\mathbf{x}(\theta\eta)=(\mathbf{x}\theta)\eta$

Подстановка θ называется унификатором выражений E_1 , E_2 , если $E_1\theta=E_2\theta$

 $V(E_1, E_2)$ — множество всех унификаторов выражений E_1, E_2

Утверждение

Для любых подстановок θ , η и любых выражений E_1 , E_2 верно: если $\theta \in \mathbf{Y}(E_1,E_2)$, то $\theta \eta \in \mathbf{Y}(E_1,E_2)$

Подмножество S множества подстановок Θ называется полным в Θ , если любая подстановка θ из Θ представима в виде $\theta=\eta\mu$, где $\eta\in S$

Подстановка θ называется наиболее общим унификатором выражений E_1 , E_2 , если множество $\{\theta\}$ является полным в $V(E_1,E_2)$

 $\mathsf{HOV}(E_1,E_2)$ — множество всех наиболее общих унификаторов выражений E_1 , E_2

24/31 24/31

Положительная литера — это атом

Отрицательная литера — это отрицание атома

Правило резолюции:

$$\frac{\mathsf{D}_1 \vee \mathsf{L}_1, \; \mathsf{D}_2 \vee \neg \mathsf{L}_2}{(\mathsf{D}_1 \vee \mathsf{D}_2)\theta}$$

Здесь

- ▶ D₁, D₂ дизъюнкты
- ▶ L_1 , L_2 положительные литеры
- ▶ $\theta \in \mathsf{HOY}(\mathsf{L}_1, \mathsf{L}_2)$

При использовании правила резолюции допускается перестановка слагаемых дизъюнктов

Дизъюнкт $(D_1 \lor D_2)\theta$ — резольвента дизъюнктов $D_1 \lor L_1$, $D_2 \lor \neg L_2$

Литеры L_1 , $\neg L_2$ образуют контрарную пару

Правило склейки

$$\frac{\mathsf{D} \vee \mathsf{L}_1 \vee \mathsf{L}_2}{(\mathsf{D} \vee \mathsf{L}_1)\theta}$$

Здесь

- ▶ D дизъюнкт
- ▶ L₁, L₂ литеры
- ▶ $\theta \in HOY(L_1, L_2)$

При использовании правила склейки допускается перестановка слагаемых дизъюнктов

Дизъюнкт
$$(D \lor L_1)\theta$$
 — склейка дизъюнкта $D \lor L_1 \lor L_2$

Литеры L_1 , L_2 образуют склеиваемую пару

Вопрос 3 26/31

Для логического выражения E и подстановки θ , являющейся биекцией θ : Var \to Var $E\theta$ — вариант выражения E

Пусть S — система дизъюнктов

Резолютивный вывод из S — это конечная последовательность дизъюнктов

$$D_1, \ldots, D_i, \ldots, D_k,$$

такая что каждый дизъюнкт D_i является

- ightharpoonup вариантом дизъюнкта из S,
- ightharpoonup склейкой дизъюнкта D_i , где j < i, или
- ightharpoonup резольвентой дизъюнктов D_j , D_m , где j < i и m < i

Дизъюнкт резолютивно выводим из S, если существует резолютивный вывод из S, оканчивающийся этим дизъюнктом

Резолютивный вывод успешен, если он оканчивается пустым дизъюнктом (\Box)

Успешный резолютивный вывод также называется резолютивным опровержением

Теорема (о корректности резолютивного вывода) Если из системы дизъюнктов S резолютивно выводи́м \square , то система S невыполнима

Теорема (о полноте резолютивного вывода). Из любой невыполнимой системы дизъюнктов резолютивно выводим пустой дизъюнкт

Пример: обоснование общезначимости формулы $\exists x \ (P(x) \& (\forall x \ P(x) \to \exists y \ R(x,y)) \to \exists y \ R(x,y))$ методом резолюций

Вопрос 3 28/31

Этап 1: поставить отрицание
$$\models \exists x \; (P(x) \& (\forall x \; P(x) \to \exists y \; R(x,y)) \to \exists y \; R(x,y)) \\ \Leftrightarrow \\ \not\models \neg \exists x \; (P(x) \& (\forall x \; P(x) \to \exists y \; R(x,y)) \to \exists y \; R(x,y)) \\ \ni \forall x \; (P(x) \& (\forall x \; P(x) \to \exists y \; R(x,y)) \to \exists y \; R(x,y)) \\ \neg \exists x \; (P(x) \& (\forall x \; P(x) \to \exists y \; R(x,y)) \to \exists y \; R(x,y)) \\ \sim (\textit{переименование переменных}) \\ \neg \exists x \; (P(x) \& (\forall z \; P(z) \to \exists y \; R(x,y)) \to \exists u \; R(x,u)) \\ \sim (\textit{удаление импликаций}) \\ \neg \exists x \; (\neg (P(x) \& (\neg \forall z \; P(z) \lor \exists y \; R(x,y))) \lor \exists u \; R(x,u)) \\ \sim (\textit{продвижение отрицаний}) \\ \forall x \; (P(x) \& (\exists z \; \neg P(z) \lor \exists y \; R(x,y)) \& \forall u \; \neg R(x,u)) \\ \sim (\textit{вынесение кванторов}) \\ \forall x \; \exists z \; \exists y \; \forall u \; (P(x) \& (\neg P(z) \lor R(x,y)) \& \neg R(x,u)) \\ \sim (\textit{получение КНФ}) \\ \forall x \; \exists z \; \exists y \; \forall u \; (P(x) \& (\neg P(z) \lor R(x,y)) \& \neg R(x,u)) \\ \end{cases}$$

$$\models \exists x \ (P(x) \& (\forall x \ P(x) \rightarrow \exists y \ R(x, y)) \rightarrow \exists y \ R(x, y))$$

$$\Leftrightarrow$$

$$\not\models \forall x \ \exists z \ \exists y \ \forall u \ (P(x) \& (\neg P(z) \lor R(x, y)) \& \neg R(x, u))$$

Этап 3: построить ССФ, применив алгоритм сколемизации $\not\models \forall x \; \exists z \; \exists y \; \forall u \; (P(x) \& (\neg P(\underline{z}) \lor R(x,y)) \& \neg R(x,u))$

$$\Leftrightarrow$$

$$\not\models \forall x \ \forall u \ (P(x) \& (\neg P(\mathbf{f}(x)) \lor R(x, \mathbf{g}(x))) \& \neg R(x, u))$$

Этап 4: перейти к системе дизъюнктов

$$\not\models \forall x \ \forall u \ (P(x) \& (\neg P(f(x)) \lor R(x, g(x))) \& \neg R(x, u))$$

$$\Leftrightarrow$$

$$\not\models \{P(x), \neg P(f(x)) \lor R(x, g(x)), \neg R(x, u)\}$$

Bonpoc 3 30/31

$$\models \exists x \ (P(x) \& (\forall x \ P(x) \rightarrow \exists y \ R(x, y)) \rightarrow \exists y \ R(x, y))$$

$$\Leftrightarrow$$

$$\not\models \{P(x), \neg P(\mathbf{f}(x)) \lor R(x, \mathbf{g}(x)), \neg R(x, u)\}$$

 \mathcal{I} \mathcal{I} \mathcal{I} резолютивно вывести \square

$$P(x_1) \xrightarrow{\neg P(\boldsymbol{f}(x_2)) \vee R(x_2, \boldsymbol{g}(x_2))} R(x_3, \boldsymbol{g}(x_3)) \xrightarrow{\neg R(x_4, u_4) \longrightarrow} \Box$$

Оказалось, что
резолютивно выводим из построенной системы дизъюнктов

Следовательно (по спектру изложенных ранее теорем), исходная формула

 $\exists x \ (P(x) \& (\forall x \ P(x) \rightarrow \exists y \ R(x, y)) \rightarrow \exists y \ R(x, y))$

общезначима

Вопрос 3 31/31