Лекция 1. Конечнозначные функции. Элементарные k-значные функции. Способы задания k-значных функций: таблицы, формулы, 1-я и 2-я формы, полиномы. Полнота. Теорема о полноте системы Поста. Функция Вебба.

Лектор - Селезнева Светлана Николаевна selezn@cs.msu.su

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте http://mk.cs.msu.su

Конечнозначные функции

Пусть $k \ge 2$ — целое число, $E_k = \{0, 1, \dots, k-1\}$. Функция $f(x_1,...,x_n)$ называется k-значной, если

Способы задания

$$f^n: E_k^n \to E_k,$$

где $n = 1, 2, \ldots$

Множество всех k-значных функций обозначим как P_k , множество всех k-значных функций, зависящих от переменных x_1, \ldots, x_n , обозначим как P_k^n .

При k=2 функции называются функциями *алгебры логики*, или булевыми функциями, при k > 3 — многозначными функциями.

Аналогично двузначному случаю равенство многозначных функций ($k \ge 3$) рассматривается с точностью до несущественных (фиктивных) переменных.

Существенные и несущественные переменные

Способы задания

Переменная x_i называется **существенной** для функции $f(x_1,\ldots,x_n)\in P_k$, если найдутся такие элементы $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in E_k$, что

$$\varphi(x_i) = f(a_1, \ldots, a_{i-1}, x_i, a_{i+1}, \ldots, a_n) \neq Const.$$

Переменная x_i является существенной, если все другие переменные можно так определить, что полученная функция одной переменной x_i принимает хотя бы два различных значения.

Переменная, не являющаяся существенной, называется несущественной, или фиктивной.

Несущественные переменные можно удалять и добавлять.

Равенство и конгруэнтность функций

Функции f и g называются **равными**, если конечным числом удалений или добавлений несущественных переменных их можно сделать совпадающими.

Функции f и g называются конгруэнтными, если равные им функции осуществляют одинаковые отображения, т.е. отличаются только именами переменных.

Примеры.

- 1. Функции $f_1(x) = 0$ и $f_2 = 0$ равны.
- **2**. Функции g(x) = x и h(y) = y конгруэнтны.

Применение

Конечнозначные функции применяюся для построения моделей решения прикладных задач, в которых можно выделить исходное множество, состоящее из конечного числа элементов. Не столь широкое применение k-значных функций при $k \geq 3$ по сравнению с двузначными связано, в первую очередь, с физической реализацией вычислительной техники на двузначной основе.

Проводятся исследования, относящиеся к разработке физических схем, построенных на многозначных функциях; существуют промышленные цифровые устройства на многозначной основе.

Таблицы значений

Конечнозначные функции

Как можно задавать k-значные функции?

1. Таблицы значений.

Упорядочим все наборы множества E^n_{ν} в лексико-графическом, или *алфавитном* порядке (в алфавите 0, 1, ..., k-1), сопоставим каждому набору значение функции на нем.

<i>x</i> ₁	 x_{n-1}	Xn	$f(x_1,\ldots,x_{n-1},x_n)$
0	 0	0	$f(0,\ldots,0,0)$
0	 0	1	$f(0,\ldots,0,1)$
0	 0	k-1	$f(0,\ldots,0,k-1)$
k-1	 k-1	0	$f(k-1,\ldots,k-1,0)$
$\begin{vmatrix} k-1\\ k-1 \end{vmatrix}$			f(k-1,,k-1,k-2) f(k-1,,k-1,k-1)

Число k-значных функций

Теорема 1. Пусть $k \ge 2$. При $n \ge 1$ верно $|P_k^n| = k^{k^n}$. Доказательство.

Рассмотрим произвольную функцию $f(x_1, ..., x_n) \in P_k^n$. В ее таблице k^n строк.

В каждой строке вне зависимости от других строк — ее значение на этом наборе из k возможных значений.

Отсюда $|P_k^n| = k^{k^n}$.

Формулы.

Элементарные k-значные функции ($k \ge 3$).

n = 0:

константы $0, 1, \ldots, k-1$.

n = 1:

X	X	\bar{x}	$\sim x$	-x
0	0	1	k-1	
1	1	2	k-2	k-1
k-2	k-2	k-1	1	2
k-1	k-1	0	0	1

x — тождественно x;

 $\bar{x} = x + 1 \pmod{k}$ — отрицание Поста x;

 $\sim x = (k-1) - x$ — отрицание Лукасевича x;

 $-x = k - x \pmod{k}$ — минус x.

Характеристические функции выделенного значения $J_i(x)$, $j_i(x)$, $i=0,1,\ldots,k-1$:

$$J_i(x) = \begin{cases} k-1, & x = i, \\ 0, & x \neq i; \end{cases}$$

$$j_i(x) = \begin{cases} 1, & x = i, \\ 0, & x \neq i. \end{cases}$$

```
n = 2:
x + y \pmod{k}, x - y \pmod{k}, x \cdot y \pmod{k} — сложение,
вычитание и умножение по модулю k;
\min(x,y) = \begin{cases} x, & x \leq y, \\ v. & x > v. \end{cases} — минимум из x и y;
\max(x,y) = \left\{ \begin{array}{ll} x, & x \geq y, \\ y, & x < y, \end{array} \right. — максимум из x и y;
x - y = \begin{cases} x - y, & x \ge y, \\ 0, & x < y, \end{cases} — усеченная разность;
x 	o y = \left\{ egin{array}{ll} k-1, & x \leq y, \\ (k-1)-(x-y), & x > y, \end{array} 
ight. — импликация.
обобщения:
\max(x_1, x_2, \dots, x_n) = \max(x_1, \max(x_2, \dots, x_n));
\min(x_1, x_2, \dots, x_n) = \min(x_1, \min(x_2, \dots, x_n));
x^m = \underbrace{x \cdot \ldots \cdot x} — степень.
```

Как двузначные функции обобщаются на многозначные функции?

n	P_2	P_k , $k \geq 3$	пояснения
n = 0	0, 1	$0, 1, \ldots, k-1$	константы
n=1	X	X	тождественная функция
	\bar{x}	\bar{x} , $\sim x$	отрицание
n=2	x&y	min(x, y)	конъюнкция или минимум
	$x \lor y$	$\max(x, y)$	дизъюнкция или максимум
	$x \oplus y$	$x + y \pmod{k}$	сложение по модулю <i>k</i>
	$x \rightarrow y$	$x \rightarrow y$	импликация

В связи с расширением исходного множества значений появляются элементарные функции, не имеющие явного элементарного прообраза в двузначном случае: -x, $J_i(x)$, $j_i(x)$, x-y.

Формула

Понятия формулы и функции, определяемой формулой, вводятся аналогично двузначному случаю. Пусть $A \subseteq P_k$.

Формула над множеством A определяется по индукции.

- 1. Базис индукции. Если $f^n \in A-n$ -местная функция и u_1, \ldots, u_n набор из n произвольных переменных, то выражение $f(u_1, \ldots, u_n)$ формула.
- 2. Индуктивный переход. Если F_1, \ldots, F_n уже построенные формулы или переменные и $f^n \in A$ n-местная функция, то выражение $f(F_1, \ldots, F_n)$ формула.
- 3. Других формул нет, т.е. каждая формула построена либо по по базису индукции, либо по индуктивному переходу.

Формулы

Пример. Пусть $A \subseteq P_5$ — множество элементарных функций.

Тогда

$$F_1 = x^2$$

формула по базису индукции для функции $x^2 \in A$ и переменной x;

$$F_2 = 3$$

формула по базису индукции для функции 3 ∈ *A*:

$$F_3 = 3 \cdot x^2$$

формула по индуктивному переходу для уже построенных формул F_1 , F_2 и функции $x \cdot y \in A$;

$$F_4 = \sim (3 \cdot x^2)$$

формула по индуктивному переходу для уже построенной формулы F_3 и функции $\sim x \in A$: и т.д.

4□ → 4周 → 4 = → 4 = → 9 Q P

Функция, определяемая формулой

Способы задания

Каждая формула над множеством $A \subseteq P_k$ задает некоторую k-значную функцию.

Функция f_F , задаваемая формулой F, определяется по индукции.

- 1. Базис индукции. Если F=u, где u переменная, то $f_F=u$. т.е. функция f_F тождественно равна переменной u.
- **2**. Индуктивный переход. Если $F = f(F_1, \dots, F_n)$, где F_1, \ldots, F_n — формулы или переменные и $f^n \in A$, то $f_{F} = f(f_{F_1}, \dots, f_{F_n}).$

Функции, определяемые формулами

Пример. Найдем функцию $f_{F_4}(x) \in P_5$, которая задается формулой F_4 :

X	x^2	$3 \cdot x^2$	$\sim (3 \cdot x^2)$
0	0	0	4
1	1	3	1
2	4	2	3
3	4	2	3
4	1	3	1

Функция f_{F_4} , определяемая формулой F_4 , записана в самом правом столбце.

Полнота

Эквивалентные формулы

Формулы F_1 и F_2 называются **эквивалентными**, если они определяют равные функции, т.е. функции f_{F_1} и f_{F_2} равны. Обозначение эквивалентных формул: $F_1 = F_2$

Верны следующие свойства:

1) коммутативность связок \cdot , +, min, max;

Способы задания

- 2) ассоциативность связок \cdot , +, min, max;
- 3) дистрибутивность умножения относительно сложения:

$$(x + y) \cdot z = x \cdot z + y \cdot z$$
.

И многие другие.

Доказательство эквивалентностей

Примеры.

1. Докажем эквивалентность: $-(\bar{x}) = \sim x$.

$$-(\bar{x}) = -(x+1) = (k-1) - x = \sim x.$$

2. Докажем эквивалентность: $\sim \max(\sim x, \sim y) = \min(x, y)$.

Теорема 2 (о 1-й форме). Пусть $k \ge 2$. Каждая k-значная функция $f(x_1, \ldots, x_n) \in P_k$ может быть задана формулой вида:

$$f(x_1,\ldots,x_n) = \max_{(\sigma_1,\ldots,\sigma_n)\in E_k^n} \min\left(J_{\sigma_1}(x_1),\ldots,J_{\sigma_n}(x_n),f(\sigma_1,\ldots,\sigma_n)\right).$$

Доказательство.

Рассмотрим произвольный набор $lpha=(a_1,\ldots,a_n)\in E_k^n$. Тогда

$$f(a_1,\ldots,a_n) = \max_{(\sigma_1,\ldots,\sigma_n)\in E_k^n} \min\left(J_{\sigma_1}(a_1),\ldots,J_{\sigma_n}(a_n),f(\sigma_1,\ldots,\sigma_n)\right) =$$

$$= \max(0,\ldots,0,f(a_1,\ldots,a_n),0,\ldots,0) = f(a_1,\ldots,a_n).$$

1-я форма

Пример.

Пусть
$$f(x) = \bar{x} \in P_3$$
:

Найдем ее 1-ю форму:

$$f(x) = \max(\min(J_0(x), f(0)), \min(J_1(x), f(1)), \min(J_2(x), f(2))) =$$

$$= \max(\min(J_0(x), 1), \min(J_1(x), 2), \min(J_2(x), 0)) =$$

$$= \max(\min(J_0(x), 1), J_1(x)).$$

2-я форма

Теорема 3 (о 2-й форме) Пусть $k \ge 2$. Каждая k-значная функция $f(x_1, \ldots, x_n) \in P_k$ может быть задана формулой вида:

$$f(x_1,\ldots,x_n)=\sum_{(\sigma_1,\ldots,\sigma_n)\in E_k^n}j_{\sigma_1}(x_1)\cdot\ldots\cdot j_{\sigma_n}(x_n)\cdot f(\sigma_1,\ldots,\sigma_n).$$

2-я форма

Пример. Пусть $g(x) = J_2(x + x^2) \in P_4$:

X	x^2	$x + x^2$	g
0	0	0	0
1	1	2	3
2	0	2	3
3	1	0	0

Найдем ее 2-ю форму:

$$g(x) = j_0(x) \cdot g(0) + j_1(x) \cdot g(1) + j_2(x) \cdot g(2) + j_3(x) \cdot g(3) =$$

= $j_0(x) \cdot 0 + j_1(x) \cdot 3 + j_2(x) \cdot 3 + j_3(x) \cdot 0 = 3j_1(x) + 3j_2(x).$

Моном

Формула вида

$$X_{i_1}^{s_1} \cdot \ldots \cdot X_{i_r}^{s_r}$$

где все переменные попарно различны и $s_1, \dots, s_r \geq 1$, называется *мономом*.

Число его сомножителей $r,\ r\geq 1$, называется pангом, сумма степеней его сомножителей $s=\sum\limits_{i=1}^r s_i,\ s\geq 1$, называется его степенью.

По определению будем считать константу 1 мономом ранга r=0 и степени s=0.

Формула вида

$$c_1K_1+\ldots+c_lK_l,$$

где K_i — попарно различные мономы и $c_i \in E_k \setminus \{0\}$ — коэффициенты, $i=1,\ldots,I$, называется полиномом по модулю k.

Число I, $I \ge 1$, слагаемых K_i называется его длиной. По определению будем считать константу 0 (пустым) полиномом по модулю k с длиной I=0.

Примем, что в полином можно добавлять слагаемые с нулевыми коэффициентами. Полученное выражение (формулу) будем также называть полиномом. Будем считать, что такой полином совпадает с полиномом без всех слагаемых с нулевыми коэффициентами.

Теорема 4 (о задании k-значных функций полиномами) Пусть $k \geq 2$. Каждая k-значная функция $f(x_1, \ldots, x_n) \in P_k$ задается полиномом по модулю k тогда и только тогда, когда k — простое число.

Доказательство.

Пусть $f(x_1, ..., x_n) \in P_k$. Запишем ее во 2-й форме:

$$f(x_1,\ldots,x_n)=\sum_{(\sigma_1,\ldots,\sigma_n)\in E_k^n}j_{\sigma_1}(x_1)\cdot\ldots\cdot j_{\sigma_n}(x_n)\cdot f(\sigma_1,\ldots,\sigma_n).$$

Заметим, что $j_{\sigma}(x)=j_{0}(x-\sigma)$. Тогда

$$f(x_1,\ldots,x_n)=\sum_{(\sigma_1,\ldots,\sigma_n)\in E_{\nu}^n}j_0(x_1-\sigma_1)\cdot\ldots\cdot j_0(x_n-\sigma_n)\cdot f(\sigma_1,\ldots,\sigma_n).$$

Доказательство.

1. Если k — простое число, то по малой теореме Ферма $a^{k-1} = 1 \pmod{k}$ при 1 < a < k-1. Тогда $j_0(x) = 1 - x^{k-1}$ и

$$f(x_1,\ldots,x_n)=$$

$$=\sum_{(\sigma_1,\ldots,\sigma_n)\in E_k^n}(1-(x_1-\sigma_1)^{k-1})\cdot\ldots\cdot(1-(x_n-\sigma_n)^{k-1})\cdot f(\sigma_1,\ldots,\sigma_n).$$

Затем перемножаем скобки по свойствам дистрибутивности, коммутативности и ассоциативности; приводим подобные слагаемые. Получим полином по модулю k для функции $f(x_1,\ldots,x_n).$

Существование полинома по модулю k для каждой k-значной функции при простых k доказано.

Доказательство.

2. Пусть k — составное число. Тогда $k = k_1 \cdot k_2$, где $k_1 \ge k_2 > 1$. Докажем от противного, что в этом случае функция $j_0(x)$ не задается полиномом по модулю k.

Доказательство.

Пусть функция $j_0(x)$ задается полиномом по модулю k:

$$j_0(x) = c_s x^s + c_{s-1} x^{s-1} + \ldots + c_1 x + c_0,$$

 $c_s, c_{s-1}, \dots, c_1, c_0 \in E_k$ — коэффициенты, $c_s \neq 0$.

Тогда

$$j_0(0)=c_0=1;$$

$$j_0(k_2) = c_s k_2^s + c_{s-1} k_2^{s-1} + \ldots + c_1 k_2 + 1 = 0.$$

Отсюда

$$k_2 \cdot (c_s k_2^{s-1} + c_{s-1} k_2^{s-2} + \ldots + c_1) = k - 1 \pmod{k}.$$

Т.к. число k_2 — делитель числа k, число k-1 обязано делиться на $k_2 > 1$ — противоречие.

T.e. при составных k никакой полином по модулю k не задает функцию $j_0(x)$.

Полиномиальные функции

Способы задания

Элементарные функции

$$x;$$
 $\bar{x} = x + 1;$
 $\sim x = (k - 1) - x = (k - 1)x + (k - 1);$
 $-x = k - x = (k - 1)x;$
 $x + y;$
 $x - y = x + (k - 1)y;$
 $x \cdot y;$
 $x^m;$

являются полиномиальными при всех значениях k- и простых, и составных.

Неполиномиальные функции

Способы задания

Элементарные функции

$$j_i(x), i \in E_k;$$

 $J_i(x), i \in E_k;$
 $\max(x, y);$
 $\min(x, y);$
 $x - y;$
 $x \to y;$

являются полиномиальными при простых k и НЕ ЯВЛЯЮТСЯ полиномиальными при всех составных k (будет доказано далее).

Полиномиальные функции

Множество всех k-значных функций, задающихся полиномами по модулю k, обозначается как Pol_k .

Следствие 4.1.

Если k — простое число, то $Pol_k = P_k$; если k — составное число, то $Pol_k \neq P_k$.

Вопросы:

Как строить полиномы для k-значных функций при простых k? Как выяснить, задается ли полиномом заданная k-значная функция, если k — составное?

Если k — простое число

Методы построения полиномов k-значных функций при простых k:

- 1. метод из доказательства теоремы 4 по 2-й форме;
- 2. метод неопределенных коэффициентов;

Eсли k — составное число

Если k — составное число, то можно применять метод неопределенных коэффициентов для выяснения, задается ли данная k-значная функция полиномом по модулю k.

Если k — составное число

Примеры.

1. Пусть $f(x) = J_1(x) + J_2(x) \in P_4$.

Способы задания

Выясним, задается ли функция $f(x) \in P_4$ полиномом по модулю 4 методом неопределенных коэффициентов.

Предположим, что функция f(x) задается полиномом по модулю 4.

Сначала построим таблицу степеней x^s :

X	x^2	x^3	x^4
0	0	0	0
1	1	1	1
2	0	0	0
3	1	3	1

Так как $x^4 = x^2$, степени в полиноме по модулю 4 можно записывать только до третьей.

Eсли k — составное число

Тогда

$$f(x) = ax^3 + bx^2 + cx + d,$$

где $a, b, c, d \in E_4$ — неизвестные коэффициенты.

Для определения коэффициентов составим систему уравнений по значениям данной функции $f(x) = J_1(x) + J_3(x) \in P_4$:

$$f(0) = d = 0;$$

 $f(1) = a + b + c + d = 3;$
 $f(2) = 2c + d = 3;$
 $f(3) = 3a + b + 3c + d = 0.$

Eсли k — составное число

Из первого и третьего уравнения получаем:

$$2c = 3$$
.

Подставляя все возможные значения $c \in E_4$, выясняем, что равенство не выполняется ни при каких значениях $c \in E_4$:

$$2 \cdot 0 = 0$$
; $2 \cdot 1 = 1$; $2 \cdot 2 = 0$; $2 \cdot 3 = 2$.

Следовательно, система не имеет решений (по модулю 4), и

$$f(x) = J_1(x) + J_2(x) \notin Pol_4.$$

Полиномы

Если k — составное число

2. Пусть $g(x) = 2(J_1(x) + J_2(x)) \in P_4$.

Способы задания

Аналогично, выясним, задается ли функция $g(x) \in P_4$ полиномом по модулю 4.

Тогда

$$g(x) = ax^3 + bx^2 + cx + d,$$

где $a, b, c, d \in E_4$ — неизвестные коэффициенты. Составляем систему уравнений:

$$g(0) = d = 0;$$

 $g(1) = a + b + c + d = 2;$
 $g(2) = 2c + d = 2;$
 $g(3) = 3a + b + 3c + d = 0.$

Eсли k — составное число

Из первого и третьего уравнения получаем:

$$2c = 2, c = 1.$$

Тогда

$$a + b = 1;$$

 $3a + b = 1.$

Отсюда

$$a = 0, b = 1.$$

Следовательно, функция g(x) задается полиномом по модулю 4, и один из ее полиномов по модулю 4

$$g(x) = 2(J_1(x) + J_2(x)) = x^2 + x \in Pol_4.$$

Операция замыкания

Пусть $A \subseteq P_k$ — множество k-значных функций.

Замыканием множества A называется множество всех функций, задаваемых формулами над множеством A. Обозначение: [A].

Если A = [A], то множество A называется **замкнутым классом**.

Примеры: \emptyset , P_k , Pol_k .

Полные системы

Если $[A] = P_k$, то множество A называется полной системой.

Примеры.

- 1. $\{0,1,\ldots,k-1,J_0(x),J_1(x),\ldots,J_{k-1}(x),\max(x,y),\min(x,y)\}$ система 1-й формы.
- **2**. $\{0,1,\ldots,k-1,j_0(x),j_1(x),\ldots,j_{k-1}(x),x+y,x\cdot y\}$ система 2-й формы.
- **3**. $\{0, 1, \dots, k-1, x+y, x \cdot y\}$ при простых k система полиномов.

Теорема 5. Пусть $k \ge 3$. Система Поста $\{\bar{x}, \max(x, y)\}$ является полной системой в P_k .

Доказательство. Построим формулами на системой Поста все функции из системы 1-й формы.

1. Построение констант.

$$ar{x}=x+1;\;\;(x+1)+1=x+2;\;\;\ldots;\;\;(x+(k-1))+1=x.$$
 Тогда
$$\max(x,x+1,x+2,\ldots,x+(k-1))=k-1.$$

Отсюда
$$(k-1)+1=0; 0+1=1; 1+1=2; \dots; (k-2)+1=k-1.$$

Все константы получены.

Конечнозначные функции

Доказательство.

2. Построение $J_i(x)$, $i \in E_k$.

Проверим, что

$$J_i(x) = 1 + \max_{t \neq (k-1)-i} (x+t).$$

Если x = i, то

$$k-1 = J_i(i) = 1 + \max_{t \neq (k-1)-i} (i+t) = 1 + (k-2) = k-1.$$

Если $x \neq i$, то

$$0 = J_i(x) = 1 + \max_{t \neq (k-1)-i} (x+t) = 1 + (k-1) = 0.$$

Bce $J_i(x)$, $i \in E_k$, получены.

.

Доказательство.

3. Построение min(x, y).

Проверим, что

$$g_{i,a}(x) = a \cdot j_i(x) = (a+1) + \max(J_i(x), (k-1) - a).$$

Если x = i, то

$$a = a \cdot j_i(i) = (a+1) + \max(J_i(i), (k-1) - a) = (a+1) + (k-1) = a.$$

Если $x \neq i$, то

$$0 = a \cdot j_i(x) = (a+1) + \max(J_i(x), (k-1) - a) = (a+1) + (k-1) - a = 0.$$

Доказательство.

Тогда получена каждая функция $f(x) \in P^1_k$, так как

$$f(x) = \max(g_{0,f(0)}(x), g_{1,f(1)}(x), \dots, g_{k-1,f(k-1)}(x)).$$

Действительно, для каждого значения $a \in E_k$ верно

$$f(a) = \max(g_{0,f(0)}(a), \dots, g_{a,f(a)}(a), \dots, g_{k-1,f(k-1)}(a)) =$$

$$= \max(0,\ldots,0,f(a),0,\ldots,0) = f(a).$$

В частности, получена функция $f(x) = \sim x$.

Тогда

$$min(x, y) = \sim max(\sim x, \sim y).$$

Функция min(x, y) получена.

Все функции системы 1-й формы построены формулами над функциями системы Поста. Система Поста — полна.

Функция Вебба

Следствие 5.1. Пусть $k \geq 3$. Множество, состоящее из одной функции Вебба $V_k(x,y) = \max(x,y) + 1$, является полной системой в P_k .

Доказательство. Построим из функции Вебба функции из системы Поста.

$$\bar{x} = V_k(x, x) = \max(x, x) + 1 = x + 1;$$

$$\max(x,y) = V_k(x,y) + \underbrace{1 + \ldots + 1}_{k-1}.$$

Неполиномиальность максимума

Следствие 5.2. Если k — составное число, то $\max(x,y) \notin Pol_k$. Доказательство проведем от противного. Пусть $\max(x, y) \in Pol_k$ при некотором составном k. Ho $\bar{x} = x + 1 \in Pol_k$. Тогда $\{\bar{x}, \max(x, y)\} \subseteq Pol_k$.

Но система Поста полна в P_k , следовательно, каждая функция из P_k задается полиномом по модулю k при составном k-1противоречие.

Отсюда, $\max(x, y) \notin Pol_k$.

Бесконечные полные системы в P_k

Следствие 5.3. Из каждой бесконечной полной в P_k системы можно выделить конечную полную подсистему.

Доказательство. Пусть $A \subseteq P_k$ — бесконечная полная система.

Т.к. система A — полна, в ней найдутся функции такие g_1, \ldots, g_t , что функция Вебба $V_k(x,y)$ выражается формулой над ними.

Тогда подсистема $A' = \{g_1, \dots, g_t\}$ — полна в P_k .

Литература к лекции

- 1. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001. Ч. І, гл. 2, стр. 43–50.
- 2. Гаврилов Г.П., Сапоженко А.А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. Гл. III 1.1, 1.11, 1.12, 2.7, 2.12, 2.22.

Конец лекции