
Проектирование больших систем на
C++

Коноводов В. А.

кафедра математической кибернетики ВМК

Лекция 5
06.10.2017

lvalue, xvalue, prvalue

int f();
const int& g();
int&& h();
// ...
int x = 5;
int *p = &x;

f();
g();
h();
*p;
14;
static_cast<int&&>(x);
std::move(5);

lvalue, xvalue, prvalue

int f();
const int& g();
int&& h();
// ...
int x = 5;
int *p = &x;

f(); // prvalue
g(); // lvalue
h(); // xvalue
*p; // lvalue
14; // prvalue
static_cast<int&&>(x); // xvalue
std::move(5); // xvalue

std::move

class TSuperClass {
public:

// ...
TSuperClass(const TSuperClass&);
TSuperClass(TSuperClass&&);
// ...

};

class TMyType {
public:

TMyType(const TSuperClass val) : field(std::move(val));
private:

TSuperClass field;
}

В чем тут проблема?

std::move

class TSuperClass {
public:

// ...
TSuperClass(const TSuperClass&);
TSuperClass(TSuperClass&&);
// ...

};

class TMyType {
public:

TMyType(const TSuperClass val) : field(std::move(val));
private:

TSuperClass field;
}

В чем тут проблема?

std::forward

I std::move выполняет безусловное приведение своего
аргумента к rvalue

I std::forward выполняет приведение только при соблюдении
определенных условий.

std::forward

class A{};
void Do(const A& x) {

std::cout << "call Do lvalue" << std::endl;
}
void Do(A&& x) {

std::cout << "call Do rvalue" << std::endl;
}
template <typename T>
void call(T&& obj) {

Do(obj);
}
int main() {

A x;
call(x);
call(std::move(x));

}

call Do lvalue

call Do lvalue

std::forward

class A{};
void Do(const A& x) {

std::cout << "call Do lvalue" << std::endl;
}
void Do(A&& x) {

std::cout << "call Do rvalue" << std::endl;
}
template <typename T>
void call(T&& obj) {

Do(obj);
}
int main() {

A x;
call(x);
call(std::move(x));

}

call Do lvalue

call Do lvalue

std::forward

class A{};
void Do(const A& x) {

std::cout << "call Do lvalue" << std::endl;
}
void Do(A&& x) {

std::cout << "call Do rvalue" << std::endl;
}
template <typename T>
void call(T&& obj) {

Do(std::forward<T>(obj));
}
int main() {

A x;
call(x);
call(std::move(x));

}

call Do lvalue

call Do rvalue

Как работает std::forward

Шаблон с универсальной ссылкой
template <typename T>
void call(T&& obj);

I Если в качестве аргумента передается lvalue, то T
выводится как lvalue-ссылка.

I Если в качестве аргумента передается rvalue, то T не
является ссылкой.

int x;
call(x);
call(std::move(x));

Как работает std::forward

Шаблон с универсальной ссылкой
template <typename T>
void call(T&& obj);

I Если в качестве аргумента передается lvalue, то T
выводится как lvalue-ссылка.

I Если в качестве аргумента передается rvalue, то T не
является ссылкой.

int x;
call(x);
call(std::move(x));

Как работает std::forward

Шаблон с универсальной ссылкой
template <typename T>
void call(T&& obj);

I Если в качестве аргумента передается lvalue, то T
выводится как lvalue-ссылка.

I Если в качестве аргумента передается rvalue, то T не
является ссылкой.

int x;
call(x); // T - int&
call(std::move(x)); // T - int

Свертывание ссылок

Стандарт определяет следующие правила свертки ссылок,
применимые для определений typedef и decltype, а также
параметров шаблонов:

I A& & становится A&
I A& && становится A&
I A&& & становится A&
I A&& && становится A&&

Свертывание ссылок

template <typename T>
struct A {

typedef T&& TRef;
};
// ...
A<int&> x;

typedef int& && TRef; → typedef int& TRef;

Свертывание ссылок

Свертывание ссылок применяется при:
I инстанциировании шаблонов,
I генерации типа auto,
I typedef и using,
I decltype.

Универсальные ссылки и rvalue-ссылки

class A {
public:

template <typename T>
void set(T&& x) {

text = std::move(x);
}

private:
std::string text;

};

int main() {
A obj;
std::string text = "123";
obj.set(text); // text теперь пусто

}

Универсальные ссылки и rvalue-ссылки

Тогда так:
class A {

public:
void set(const std::string& x) {

text = x;
}
void set(std::string&& x) {

text = std::move(x);
}

private:
std::string text;

};

Универсальные ссылки и rvalue-ссылки

Воспользуемся std::forward:
class A {

public:
template <typename T>
void set(T&& x) {

text = std::forward<T>(x);
}

private:
std::string text;

};

Оптимизация

template <typename T>
MyType f(T&& obj) { // универсальная ссылка

obj.modify();
return std::forward<T>(obj);

}

Без std::forward — всегда копия.

MyType f() {
MyType obj;
return std::move(obj);

}

Но это лишнее! Почему?

Оптимизация

template <typename T>
MyType f(T&& obj) { // универсальная ссылка

obj.modify();
return std::forward<T>(obj);

}

Без std::forward — всегда копия.

MyType f() {
MyType obj;
return std::move(obj);

}

Но это лишнее! Почему?

Return value optimization

Устранение временного объекта для создание возвращаемого
функцией значения.
Вместо
MyType f() {

MyType obj;
return std::move(obj);

}

правильнее
MyType f() {

MyType obj;
return obj;

}

Когда не работает RVO?

Return value optimization

Устранение временного объекта для создание возвращаемого
функцией значения.
Вместо
MyType f() {

MyType obj;
return std::move(obj);

}

правильнее
MyType f() {

MyType obj;
return obj;

}

Когда не работает RVO?

Перегрузка

void Do(std::set<std::string>& strings,
const std::string& str) {

std::cout << str << std::endl;
strings.emplace(str);

}

int main() {
std::set<std::string> strings;
std::string s1("text");
Do(strings, s1);
Do(strings, "some");
Do(strings, std::string("string"));
return 0;

}

Перегрузка

Перепишем на универсальную ссылку:
template <typename T>
void Do(std::set<std::string>& strings, T&& str) {

std::cout << str << std::endl;
strings.emplace(std::forward<T>(str));

}

int main() {
std::set<std::string> strings;
std::string s1("text");
Do(strings, s1);
Do(strings, "some");
Do(strings, std::string("string"));
return 0;

}

Перегрузка

void Do(std::set<std::string>& strings, int x) {
strings.emplace(std::to_string(x));

}

И внезапно ломается код:
short x = 2;
Do(strings, x);

Функции с универсальными ссылками могут выполнить
инстанциирование с точным соответствием практически
любому типу.

Перегрузка

void Do(std::set<std::string>& strings, int x) {
strings.emplace(std::to_string(x));

}

И внезапно ломается код:
short x = 2;
Do(strings, x);

Функции с универсальными ссылками могут выполнить
инстанциирование с точным соответствием практически
любому типу.

Перегрузка

void Do(std::set<std::string>& strings, int x) {
strings.emplace(std::to_string(x));

}

И внезапно ломается код:
short x = 2;
Do(strings, x);

Функции с универсальными ссылками могут выполнить
инстанциирование с точным соответствием практически
любому типу.

Перегрузка: еще пример

class A {
private:

std::string text;
public:

template <typename T>
explicit A(T&& str) : text(std::forward<T>(str)) {}

explicit A(int x) : text(std::to_string(x)) {}
};

int main() {
A x("123");
auto copyX(x);

}

Перегрузка: еще пример

Класс после инстанциирования
class A {

private:
std::string text;

public:
explicit A(A& str) : text(std::forward<A&>(str)) {}
A(const A& rhs); // сгенерировано компилятором
explicit A(int x) : text(std::to_string(x)) {}

};

Прямая передача

template <typename T>
void fwd(T&& x) {

f(std::forward<T>(x));
}

Целевая функция f должна получить в точности те же
объекты, которые переданы функции fwd.

void f(const std::vector<int>& v);
f({0, 1, 0, 1}); // ok
fwd({0, 1, 0, 1}); // error

auto x = {0, 1, 0, 1}; // std::initializer_list<int>
fwd(x); // ok

Прямая передача

template <typename T>
void fwd(T&& x) {

f(std::forward<T>(x));
}

Целевая функция f должна получить в точности те же
объекты, которые переданы функции fwd.
void f(const std::vector<int>& v);
f({0, 1, 0, 1}); // ok
fwd({0, 1, 0, 1}); // error

auto x = {0, 1, 0, 1}; // std::initializer_list<int>
fwd(x); // ok

Прямая передача

template <typename T>
void fwd(T&& x) {

f(std::forward<T>(x));
}

Целевая функция f должна получить в точности те же
объекты, которые переданы функции fwd.
void f(const std::vector<int>& v);
f({0, 1, 0, 1}); // ok
fwd({0, 1, 0, 1}); // error

auto x = {0, 1, 0, 1}; // std::initializer_list<int>
fwd(x); // ok

Перемещающие операции

Перемещающий конструктор и перемещающий оператор
присваивания:

I генерируются только при необходимости;
I выполняют «почленное перемещение»;
I не генерируются при явном объявлении;
I не являются независимыми;
I не генерируются при явном объявлении копирующих

операций или деструктора.

Перемещающие операции

Если все-таки нужно сгенерировать?

class A {
public:

A(A&&) = default;
A& operator(A&&) = default;
virtual ~A() { ...}

};

Перемещающие операции

Если все-таки нужно сгенерировать?
class A {

public:
A(A&&) = default;
A& operator(A&&) = default;
virtual ~A() { ...}

};

Некоторые выводы
I Перемещение — новая ключевая идея С++ — обычно

используется для оптимизации копирования.
I std::move ничего не перемещает, std::forward ничего не

передает.
I Не объявляйте объекты константными, если нужно

выполнять перемещение из них.
I Применяйте std::move к rvalue-ссылкам, а std::forward к

универсальным ссылкам.
I Перегрузка для универсальных ссылок может привести к

неприятным эффектам (конструкторы с прямой передачей
соответствуют неконстантным lvalue обычно лучше
копирующих конструкторов)

I Большинство стандартных типов в С++11 перемещаемы,
например, контейнеры STL.

I Некоторые типы только перемещаемы, например, объекты
потоков, std::thread, std::unique_ptr.

