MpoekTupoBaHue BoNbLINX CUCTEM Ha

Cot

Konosogos B. A.

kacbegpa MaTemaTudeckoli knubepHetnkn BMK

Jlekymsa b
06.10.2017

Ivalue, xvalue, prvalue

int fQ);

const int& gQO;
int&& hQ);
/o

int x = 5;

int *p = &x;

£0O;

g

h();

*p;

14,
static_cast<int&&>(x);
std: :move(5);

Ivalue, xvalue, prvalue

int fQ);

const int& g();
int&& h();
/o

int x = 5;

int *p = &x;

£0O; // prvalue

gO; // lvalue

hQ; // zvalue

*p; // lvalue

14; // prvalue
static_cast<int&&>(x); // zvalue
std::move(5); // zvalue

std::move

class TSuperClass {
public:
/o
TSuperClass(const TSuperClass&) ;
TSuperClass (TSuperClass&&) ;

/o

std::move

class TSuperClass {
public:
/o
TSuperClass(const TSuperClass&) ;
TSuperClass (TSuperClass&&) ;
//
s

class TMyType {
public:
TMyType (const TSuperClass val) : field(std::move(val));
private:
TSuperClass field;
}

B 4yem TyT npobnema?

std::forward

> std::move BbINoAHAET BE3yCNOBHOE NPUBEAEHNE CBOEro
aprymeHTa K rvalue

» std::forward BbinosHsieT npuBeaeHne TONLKO Npu coboaeHnn
OnpeseseHHbIX YCAOBUIA.

std::forward

class A{};
void Do(const A& x) {
std: :cout << "call Do lvalue" << std::endl;
}
void Do(A&& x) {
std: :cout << "call Do rvalue" << std::endl;
}
template <typename T>
void call(T&& obj) {

Do (obj);
}
int main() {
A x;
call(x);

call(std: :move(x));

std::forward

class A{};
void Do(const A& x) {
std: :cout << "call Do lvalue" << std::endl;
}
void Do(A&& x) {
std: :cout << "call Do rvalue" << std::endl;
}
template <typename T>
void call(T&& obj) {

Do (obj);
}
int main() {

A x;

call(x);

call(std: :move(x));
}

call Do lvalue

call Do lvalue

std::forward

class A{};
void Do(const A& x) {
std: :cout << "call Do lvalue" << std::endl;
}
void Do(A&& x) {
std: :cout << "call Do rvalue" << std::endl;
}
template <typename T>
void call(T&& obj) {
Do(std: : forward<T>(obj));

}
int main() {

A x;

call(x);

call(std: :move(x));
}

call Do lvalue

call Do rvalue

Kak paboraert std::forward

LLlabnoH ¢ yHMBepcanbHO CCbINKOIA

template <typename T>
void call(T&& obj);

» Ecnu B KavecTBe aprymenTa nepepaetcs lvalue, To T
BbIBOANTCS Kak |value-ccbinka.

» Ecnu B KavecTBe aprymeHnTa nepegaetcs rvalue, To T He
SABJISIETCS CCbIIKON.

Kak paboraert std::forward

LLlabnoH ¢ yHMBepcanbHO CCbINKOIA

template <typename T>
void call(T&& obj);

» Ecnu B KauecTBe aprymenTa nepepaetcs lvalue, To T
BbIBOANTCS Kak |value-ccbinka.

» Ecnu B KavecTBe aprymeHnTa nepegaetcs rvalue, To T He
SABJISIETCS CCbIIKON.

int x;
call(x);
call(std: :move(x));

Kak paboraert std::forward

LLlabnoH ¢ yHMBepcanbHO CCbINKOIA

template <typename T>
void call(T&& obj);

» Ecnu B KavecTBe aprymenTa nepepaetcs lvalue, To T
BbIBOANTCS Kak |value-ccbinka.

» Ecnu B KavecTBe aprymeHnTa nepegaetcs rvalue, To T He
ABNSETCS CChIJIKOM.
int x;
call(x); // T - inté
call(std: :move(x)); // T - int

CBeprIBaHVIe CCbIJIOK

CraHpapT onpegensieT ChefyloLme nNpaBsmia CBEPTKM CChIIOK,
npumeHuMble ans onpeaenenuin typedef n decltype, a Takxe
napameTpos WwabaoHos:

> A% & cranoBumTCca A&

> A& && crTamoBuTca A&

> Ak& & cTamoBuTCa A&
A&& && cramoBuTCca A&&

v

CBeprIBaHVIe CCbIJIOK

template <typename T>
struct A {

typedef T&& TRef;
s
/o

A<int&> x;

typedef int& && TRef; — typedef int& TRef;

CBeprIBaHVle CCbIJIOK

CBeprIBaHI/Ie CCbIJIOK NPUMEHAETCA Npu:
> NHCTaHUMNPOBaHNN LIJ36J'IOHOB,

> reHepauum Tmna auto,

v

typedef n using,

v

decltype.

VHMBepcaanble ccbinkn un rvalue-ccbinkn

class A {
public:
template <typename T>
void set(T&& x) {
text = std::move(x);
}
private:
std: :string text;
s

int main() {
A obj;
std::string text = "123";
obj.set(text); // text meneps nycmo

VHMBepcaanble ccbinkn n rvalue-ccbinkn

Torpa Tak:
class A {
public:
void set(const std::string& x) {
text = x;
}

void set(std::string&& x) {
text = std::move(x);

b

private:
std::string text;
s

VHMBepcaanble ccbinkn n rvalue-ccbinkn

Bocnonb3ayemcs std::forward:

class A {
public:
template <typename T>
void set(T&& x) {
text = std::forward<T>(x);
}
private:
std: :string text;
s

OnTmunsauyus

template <typename T>

MyType f(T&& obj) { // ynusepcasvras ccuinka
obj.modify();
return std::forward<T>(obj);

b

Bes std::forward — Bceraga konus.

OnTmunsauyus

template <typename T>

MyType f(T&& obj) { // ynusepcasvras ccuinka
obj.modify();
return std::forward<T>(obj);

b

Bes std::forward — Bceraga konus.
MyType £O {

MyType obj;

return std::move(obj);

3

Ho 370 nnwnee! Mouemy?

Return value optimization

VcTpaHeHne BPEMEHHOTo 0bbekTa 151 CO3AaHNe BO3BPALLAEMOrO
byHKLMER 3HAYEHNS.
BmecTo

MyType £ {
MyType obj;
return std::move(obj);

¥

npaBuiabHee

MyType £ {
MyType obj;
return obj;

Return value optimization

VcTpaHeHne BPEMEHHOTo 0bbekTa 151 CO3AaHNe BO3BPALLAEMOrO
byHKLMER 3HAYEHNS.
BmecTo
MyType £ {
MyType obj;
return std::move(obj);

¥

npaBuiabHee

MyType £ {
MyType obj;
return obj;

}
Korga e pabotaer RVO?

lNeperpy3ka

void Do(std::set<std::string>& strings,

int

const std::string& str) {
std: :cout << str << std::endl;
strings.emplace(str);

main() {

std: :set<std::string> strings;
std::string s1("text");

Do(strings, sl1);

Do(strings, "some");

Do(strings, std::string("string"));
return O;

lNeperpy3ka

ﬂepenmmeM Ha YHNBEPCAJNIbHYHO CCbIJIKY:

template <typename T>

void Do(std::set<std::string>& strings, T&& str) {
std: :cout << str << std::endl;
strings.emplace(std: :forward<T>(str));

int main() {
std: :set<std::string> strings;
std: :string s1("text");
Do(strings, sl1);
Do(strings, "some");
Do(strings, std::string("string"));
return O;

lNeperpy3ka

void Do(std::set<std::string>& strings, int x) {
strings.emplace(std: :to_string(x));

¥

lNeperpy3ka

void Do(std::set<std::string>& strings, int x)
strings.emplace(std: :to_string(x));

¥

/I BHe3anHO nomaeTcs Kof:

short x = 2;
Do(strings, x);

lNeperpy3ka

void Do(std::set<std::string>& strings, int x) {
strings.emplace(std: :to_string(x));

}

/I BHe3anHO nomaeTcs Kof:
short x = 2;
Do(strings, x);

DyHKLMM C YHUBEPCANBHBIMU CCbIIKAMU MOTYT BbINOAHUTL
WHCTaHLMNPOBaHME C TOYHBIM COOTBETCTBMEM MPaKTUYECKN
nobomy Tuny.

lNeperpys3ka: ewe npumep

class A {
private:
std::string text;
public:
template <typename T>
explicit A(T&& str) : text(std::forward<T>(str)) {}

explicit A(int x) : text(std::to_string(x)) {}
s

int main() {
A x("123");
auto copyX(x);

lNeperpys3ka: ewe npumep

Knacc nocne nHctaHummpoBaHus

class A {
private:
std: :string text;
public:
explicit A(A%& str) : text(std::forward<A&>(str)) {}
A(const A& rhs); // czenepupo8aHO KOMRUAAMOPOM
explicit A(int x) : text(std::to_string(x)) {}
s

lNpsimas nepepayva

template <typename T>
void fwd(T&& x) {

f(std: :forward<T>(x));
}

Uenesas dyHkumnsi f gomkHa nonyyunTe B TOYHOCTN Te Xe
0bbekTbI, KoTOpble nepeaarbl yHkummn fwd.

lNpsimas nepepayva

template <typename T>
void fwd(T&& x) {

f(std: :forward<T>(x));
}

Uenesas dyHkumnsi f gomkHa nonyyunTe B TOYHOCTN Te Xe
0bbeKTbI, KoTopble nepegaHbl dyHkuumn fwd.

void f(const std::vector<int>& v);
£({0, 1, 0, 1}); // ok
fwd({0, 1, 0, 1}); // error

lNpsimas nepepayva

template <typename T>
void fwd(T&& x) {

f(std: :forward<T>(x));
}

Uenesas dyHkumnsi f gomkHa nonyyunTe B TOYHOCTN Te Xe
0bbeKTbI, KoTopble nepegaHbl dyHkuumn fwd.

void f(const std::vector<int>& v);
£({0, 1, 0, 1}); // ok
fwd({0, 1, 0, 1}); // error

auto x = {0, 1, 0, 1}; // std::initializer_list<int>
fwd(x); // ok

Nepemewatowme onepauyun

Nepemellatownii KOHCTPYKTOP 1 MepemeLLatoLnii onepaTop
MpMCBaNBaHUS:

> FeHEepMPYIOTCS TOJILKO MpU HEODXOAUMOCTN;
> BbINOJIHAIOT «MO4YJIEHHOE NepeMeLleHne ;
> He reHepupyroTCsl NMpU SIBHOM ODbBSIBNEHUN;
> He SABASAIOTCA HE3ABUCUMbIMU;

> He reHepupytoTCs MpU SIBHOM ODBSIBAEHNU KOMUPYHOLLUX
onepauunii nan ecTpykTopa.

Nepemewatowme onepauyun

Ecnu Bce-Takn Hy>HO creHepmpoBaTb?

Nepemewatowme onepauyun

Ecnu Bce-Takn Hy>HO creHepmpoBaTb?

class A {
public:
A(A%&) = default;
A% operator (A&&) = default;
virtual "AQ) { ...}
s

HeKOTOpre BbiBO/ bl

>

Mepemewienne — Hogas kntodesas naess C++ — obbIYHO
NCNONbL3YETCs At ONTUMU3ALNUN KOMUPOBAHMS.

std::move Huuero He nepemelaet, std::forward Huvero He
nepeaaer.

He obbasnsiite 06beKTbl KOHCTAHTHLIMM, ECAN HYXKHO
BbINOHATL NEpeMeELLEHNE U3 HUX.

MpumensiiTe std::move k rvalue-ccoiikam, a std::forward «
YHUBEPCAIbHBIM CChIKAM.

Meperpyska anst yHMBEpPCasbHbLIX CCbIIOK MOXET MPUBECTU K
HenpusTHbIM 3bdpekTam (KOHCTPYKTOpbI C NPsiMOll nepeaadeii
COOTBETCTBYIOT HEKOHCTaHTHbIM |Ivalue 0bbiuHO ny4lie
KOMMPYIOLLNX KOHCTPYKTOPOB)

BonbwmnHcTeo ctangapTHbix Tunos B C++11 nepemeltaemsl,
Hanpumep, KoHTeliHepbl STL.

HekoTopble TUNbI TOMBLKO NEpeMELLAaEMbI, HanpuMep, obbEKTI
noTtokos, std::thread, std::unique ptr.

