MpoekTupoBaHue BoNbLINX CUCTEM Ha

Cot

Konosogos B. A.

kacbegpa MaTemaTudeckoli knubepHetnkn BMK

Jlekumsa 9
03.11.2017

NMpumep: natTepH Singleton
[nobanbHble NepeMeHHblE — 3TO HEKOTOPOE 3J10.

a.cpp:

std: :vector<int> va;

/7

b.cpp:

extern std::vector<int> va;
struct TInit {

TInit() { va.push_back(1);}
}s
TInit Init;

Mopsigok uHuumanusauymu?

nobanbHble 0b6bekTbl — local static obbekThi:

std: :vector& GetVal() {
static std::vector<int> va;
return va;

NMpumep: natTepH Singleton

Singleton — knacc, y KoToporo B 1t060ii MOMEHT BpeMeHu
CyLlecTByeT He bonee ogHoro obbekTa.

NMpumep: natTepH Singleton

Singleton — knacc, y KoToporo B 1t060ii MOMEHT BpeMeHu
CyLlecTByeT He bonee ogHoro obbekTa.

class Singleton {
private:
Singleton(){}
static Singleton* instance;
public:
// data
/7
Singleton(const Singleton&) = delete;
static Singleton* Instance() {
if (instance == nullptr) {
instance = new Singleton();
}
return instance;
}
};

Singleton* Singleton::instance = nullptr;

NMpumep: natTepH Singleton

class Singleton {
protected:
Singleton(O{ /*...*/}
“Singleton(){ /*...*/}
public:
// data
/.
Singleton(const Singleton&) = delete;
Singleton(Singleton&&) = delete;
Singleton& operator=(Singleton const&) = delete;
Singleton& operator=(Singleton &&) = delete;
static Singleton& Instance() {
static Singleton instance;
return instance;
}
+

NMpumep: natTepH Singleton

Mouemy 3To nnoxoli naTTepH?

> JTO CKpbITWE rNobanbHON NepemMeHHOl — B 0OXOL BCEro K Heii
MOXXHO MONYYUTb JOCTYM.

» CnoxHo paboTaTb C HacnefoOBaHUEM.

> HeBO3MOXHO MpOCTLIM CMOCODOM pa3BepHYThL KOZ, B
HECKOJIbKO hYHKLWI C pasHbIMU OB BEKTAMU-CUHTATOHAMMN.

NMpumep: natTepH Strategy

[MaTTepH, NnpeaHa3HavYeHHbIA ANs onpefeseHnss ceMeicTea
aNropuTMOB, WHKAMNCY/SILMA KaXKAOMO M3 HUX U obecneyveHns unx
B3aMMO3aMeHSIEMOCTH.

>

>

|/|HKaI'ICyJ'IFILI.I/IFI ajaropmnTtMa,
yBeIn4eHne MoayabHOCTN N NMPOBEPAEMOCTN KOAaA,
A€ELIeEBOE MaCLIJTa6VIPOBaHI/Ie KoAda,

BbIOOP anropMTMa, OCHOBLIBAsICb Ha faHHbIX (B mpouecce
NCMOJIHEHNSI KOAA MOXHO 3TO U3MEHUTD).

NMpumep: natTepH Strategy

[MaTTepH, NnpeaHa3HavYeHHbIA ANs onpefeseHnss ceMeicTea
aNropuTMOB, WHKAMNCY/SILMA KaXKAOMO M3 HUX U obecneyveHns unx
B3aMMO3aMeHSIEMOCTH.

> VlHKaI'ICyJ'IﬂLI.I/Iﬂ ajaropmnTtMa,
> yBeNNYEHNE MOOYNBbHOCTU N NPOBEPSIEMOCTN KOAa,
> fewleBoe MaCLIJTa6VIPOBaHI/Ie KoAda,

> BbIOOp anropnTMa, OCHOBbIBasiCb Ha AaHHbIX (B mpouecce
NCMOJIHEHNSI KOAA MOXHO 3TO U3MEHUTD).

Korpa?
> Hy>KHbl pa3Hble BapuaHTbl aNropuTMa WUin NoOBELEHUS,
> HY)KHO U3MEHSITb NoBefeHne 0bbEKTOB B runtime,

> HY>XHbl pa3Hble aNrOPUTMbl B 3aBUCUMOCTU OT COCTOAHNA.

Mpumep: nattepH Strategy

Client
context Interface
-strategy
+algorithm()
I |
ImplementationOne ImplementationTwo
+algorithm() +algorithm()

Mpumep: natTtepH Strategy un kodpe-malumHa

class Recipe {
public:
virtual double GetAmountOfWater() const = 0;
virtual void Make() = 0;
};
class HotBeverage {
void BoilWater (double amount) {
std::cout << "boiling " << amount << " ml of water..."
<< std::endl;
}
void Pour() {
std::cout << "pouring in cup" << std::endl;
}
std: :shared_ptr<Recipe> recipe;
public:
HotBeverage(std: :shared_ptr<Recipe> r) : recipe(r) {}
void prepare() {
BoilWater (recipe->GetAmountOfWater());
recipe->Make();
Pour();

Mpumep: natTtepH Strategy un kodpe-malumHa

class Coffee: public Recipe {
double AmountOfWater;
int StrongLevel;
public:
Coffee(double amountOfWater, int level)
: AmountOfWater (amountOfWater)

, StrongLevel(level)
{17
virtual double GetAmountOfWater() const { return AmountOfWater; }
virtual void Make() { std::cout << "brewing coffee...";}

};

class HotChocolate : public Recipe {
double AmountOfWater;
public:
HotChocolate(double amountOfWater)
: AmountOfWater (amountOfWater)

{7
virtual double GetAmountOfWater() const { return AmountOfWater; }
virtual void Make() { std::cout << "making hot chocolate..."; }

};

Mpumep: natTtepH Strategy un kodpe-malumHa

int main() {
auto coffee = std::make_shared<Coffee>(200, 3);
auto hotChocolate = std::make_shared<HotChocolate>(100);
std: :vector<HotBeverage> beverages = {
HotBeverage (coffee),
HotBeverage (hotChocolate)
3

for (auto&x : beverages) x.prepare();

Mpumep: natTtepH Strategy un kodpe-malumHa
Yyepe3 NAMOAbI

class HotBeverage {
void BoilWater (double amount) {
std::cout << "boiling " << amount << " ml of water...";
}
void Pour() {
std::cout << "pouring in cup" << std::endl;
}
std: :function<double()> GetAmountOfWater;
std: :function<void()> Make;
public:
HotBeverage (std: :function<double()> getAmountOfWater,
std: :function<void()> make)
: GetAmountOfWater (getAmountOfWater)
, Make(make) {}
void prepare() {
BoilWater (GetAmountOfWater());
Make () ;
Pour();

Mpumep: natTtepH Strategy un kodpe-malumHa
Yyepe3 NAMOAbI

static void MakeCofee() { std::cout << "brewing coffee..."; }
static void MakeHotChocolate() { std::cout << "making chocolate..."; }
static double GetAmountOfWater (double amount) { return amount; }

int main() {

auto coffee = HotBeverage(
[1 { return GetAmountOfWater(200); 1},
MakeCofee

);

auto hotChocolate = HotBeverage (
[1 { return GetAmountOfWater (100); I,
MakeHotChocolate

);

std::vector<HotBeverage> beverages = {
coffee, hotChocolate

};

for (auto&x : beverages) x.prepare();

MNpumep: nattepH Decorator

OuHamuyeckn nobaensieT oNoSHUTENbHOE NoBeAeHNE 0bbEKTY.

[ekopaTop co3paeT cnmcok obbEKTOB-06epTOK Hag Apyrumu
obbekTamu. OHM HAC/IERYIOTCS OT TOMO XX& CaMoro mHTepdeiica.

lNeperpyskoii METOLOB MOXHO MO0 NCMONBL30BaTh UCXOAHBIE
BapuaHTbl, 11nbo fobaBnsATL CBOKO PYHKLMOHANBHOCTD.

MNpumep: nattepH Decorator

Comp
Operationy()
| | comy
ponent
ConcreteComponent Dy
Operation() Operation() O-f-=-==============
I |
ConcreteDecoratorA ConcreteDecoratorB
Operation() Operation() ©------1
AddedBehavior()
addedState

‘{ cnmponent-.aOperarionq]ﬂ

Decorator::Operation();
AddedBehavior();

> [lekopaTop nmeeT TOT e uHTepdeiic, 4to u Component
(ncnonb3oBaHue pekopaTtopa).

> [lekopaTop COLEepXXUT yKa3aTenb Ha koHKpeTHblii Component
(peanusaums gekopatopa).

MNpumep: nattepH Decorator

class TWriterInterface {
public:
virtual “TWriterInterface() = default;
virtual void Write(const std::string& s) = 0;

};

class TStandardWriter : public TWriterInterface {
public:
virtual “TStandardWriter() = default;
virtual void Write(const std::string& s) { std::cout << s
<< std::endl; }
};

using TWriterInterfacePtr = std::unique_ptr<TWriterInterface>;

class Decorator : public TWriterInterface {

TWriterInterfacePtr Interface;
public:
Decorator (TWriterInterfacePtr ptr) { Interface = std::move(ptr);}
virtual void Write(const std::string& s) override {
Interface->Write(s);

}

1

MNpumep: nattepH Decorator

class DecoratorWithBorder : public Decorator {
std: :string Name;
public:

DecoratorWithBorder (TWriterInterfacePtr ptr, const std::string& n)
: Decorator(std: :move(ptr))
, Name(n) {}

virtual void Write(const std::string& s) override {
std::cout << "=== " << Name << " ===" << std::endl;
Decorator: :Write(s);
std::cout << "====" << std::string(Name.size(), '=')

<< "====" << std::endl;

};
class DecoratorWithExclamation : public Decorator {
public:
DecoratorWithExclamation(TWriterInterfacePtr ptr)
: Decorator(std: :move(ptr)) {}
virtual void Write(const std::string& s) override {
std: :cout << "ATTENTION!!!" << std::endl;
Decorator: :Write(s);

MNpumep: nattepH Decorator

int main() {
TWriterInterfacePtr writer = std::make_unique<TStandardWriter>();
writer->Write("some information");

some information

MNpumep: nattepH Decorator

int main() {
TWriterInterfacePtr writer = std::make_unique<TStandardWriter>();
TWriterInterfacePtr writer2 =
std::make_unique<DecoratorWithBorder>(
std: :move(writer), "Magic");
writer2->Write("some information again");

=== Magic ===
some information again

MNpumep: nattepH Decorator

int main() {
TWriterInterfacePtr writer = std::make_unique<TStandardWriter>();
writer->Write("some information");
TWriterInterfacePtr writer2 =
std::make_unique<DecoratorWithBorder>(
std: :move(writer), "Magic");
TWriterInterfacePtr writer3 =
std: :make_unique<DecoratorWithExclamation>(std: :move(writer2));
writer3->Write("some information again and again");

}

ATTENTION!!!
=== Magic ===
some information again and again

MNpumep: nattepH Decorator
Feature: BO3SMOXXHOCTb KaCTOMU3aLMN N KOHUIYPALN OXKINAAEMOTO
nosefernst. PaboTta HaumHaeTcs ¢ nycTbiM ODBEKTOM, KOTOPLIN NMeeT
6a30Byt0 PYHKLMOHANBHOCTL. 3aTeM NPoOUCXoauT BbIDOp 4EKOPaTOPOB,
obopaumsatoLmx 1 oborowatouimx 6asoebili 06bEKT.

MNpumep: nattepH Decorator
Feature: BOSMOXHOCTb KaCTOMW3ALMKU U KOHAUIYpaLUN OXKNAAEMOrO
noeegeHnst. PaboTa HaumHaeTca ¢ NycTbiM 0B6BLEKTOM, KOTOPbLI UMeeT
6a30BY10 PYHKLMOHANBHOCTb. 3aTeM NMpPOUCXOANT BbIbOpP AEKOPaTOPOE,
obopaumsatoLmx 1 oborowatouimx 6asoebili 06bEKT.

Hacneposanue nnu Oekopatop?
> B cny4ae gekopatopa npouye n3MeHsTb 0bbekThl B run-time.
> [pouwie co30aBaTh MHOXKECTBEHHbIE N3MEHEHUS NOBEAEHWIA.

> Ecnm guHamMmyeckn MeHsiTb noBefeHne obbeKTa HE HY)KHO — HE
HYXKeH 1 JekopaTop, HacjefoBaHMe MOXeT bbiTb npoLue.

MNpumep: nattepH Decorator
Feature: BOSMOXHOCTb KaCTOMW3ALMKU U KOHAUIYpaLUN OXKNAAEMOrO
noeegeHnst. PaboTa HaumHaeTca ¢ NycTbiM 0B6BLEKTOM, KOTOPbLI UMeeT
6a30BY10 PYHKLMOHANBHOCTb. 3aTeM NMpPOUCXOANT BbIbOpP AEKOPaTOPOE,
obopaumsatoLmx 1 oborowatouimx 6asoebili 06bEKT.

Hacneposanue nnu Oekopatop?
> B cny4ae gekopatopa npouye n3MeHsTb 0bbekThl B run-time.
> [pouwie co30aBaTh MHOXKECTBEHHbIE N3MEHEHUS NOBEAEHWIA.

> Ecnm guHamMmyeckn MeHsiTb noBefeHne obbeKTa HE HY)KHO — HE
HYXKeH 1 JekopaTop, HacjefoBaHMe MOXeT bbiTb npoLue.

Crpaternsa? Oekopatop?

> [lekopaTopbl 06OpaynBaloT OOBLEKT CHApYXXKW, CTPATErnn e
BCTaB/AIOTCSA B HEFrO BHYTPb NO HEKUM MHTepdelicam.

» HepoctaTok cTpaTerum: Knacc fosiKeH ObiTb CMPOEKTUPOBaH C
BO3MO>XHOCTbIO BCTaBKW CTpaTerunii.

> HepocTtaTok fekopaTopa: He BCErfa ><enaTesbHOe CMELLeHMe
nybnmyHoro nHrepdeiica n nHTepdeiica KactomusaLuu.

Mpumep: natTtepH Observer

OnpepensieT 3aBUCMMOCTb TUMA KOAWH KO MHOMUM>» MEXAY
obbekTamu TakuM 0bpa3oM, YTO NPU U3MEHEHUN COCTOSIHNS OAHOMO
obbekTa BCe 3aBUCALLME OT HEro ONOBELLAOTCA 06 3TOM CobbITUN.

> cybbekTbl (0OBEKTBI, KOTOPblE MOFYT U3MEHSTHCS)

> HabntopaTtenn (0OBbEKTLI, yBEAOMIISIEMbIE MPN U3MEHEHWN
COCTOSIHMN)

Mpumep: natTtepH Observer

OnpepensieT 3aBUCMMOCTb TUMA KOAWH KO MHOMUM>» MEXAY
obbekTamu TakuM 0bpa3oM, YTO NPU U3MEHEHUN COCTOSIHNS OAHOMO
obbekTa BCe 3aBUCALLME OT HEro ONOBELLAOTCA 06 3TOM CobbITUN.

> cybbekTbl (0OBEKTBI, KOTOPblE MOFYT U3MEHSTHCS)

> HabntopaTtenn (0OBbEKTLI, yBEAOMIISIEMbIE MPN U3MEHEHWN
COCTOSIHMN)

CybbeKkTbl He 3aMHTEPECOBaHbI B YNPABIEHNN BPEMEHEM >KN3HU
cBoux HabntopaTeneil, HO 3aMHTEPECOBaHbI B TOM, 4TODbI ecu
HabntogaTenb OblN YHUUTOXKEH, CYOBEKTBI HE NbITANNCE K HEMY
obpaTuTbesa. Torga Tak: KaXApblii CyObeKT XpaHUT KOHTERHep
ykasaTenein 7777 ptr Ha cBomx HabnwogaTenei.

Mpumep: natTtepH Observer

class Observer {
std: :string name;
public:
Observer(const std::string& s) : name(s) {}
void Notify(const std::string& source) {/*...*/}
s

class Observable {

std::string name;

public:
void Subscribe(std: :shared_ptr<Observer> observer);
void Unsubscribe(std::shared_ptr<Observer> observer);
void Notify();
Observable(const std::string& s) : name(s) {}

private:
std: :vector<std::weak_ptr<Observer>> observers;

};

Mpumep: natTtepH Observer

void Observable::Subscribe (std::shared_ptr<Observer> observer) {
observers.push_back(observer) ;
}
void Observable: :Notify() {
for (auto wptr: observers) {
if (lwptr.expired()) {
auto observer = wptr.lock();
observer->Notify(this->name) ;

}
void Observable::Unsubscribe(std::shared_ptr<Observer> observer) {
observers.erase(
std: :remove_if (
observers.begin(),
observers.end(),
[&] (const std::weak_ptr<Observer>& wptr) {
return wptr.expired() || wptr.lock() == observer;
}
),

observers.end());

Mpumep: natTtepH Observer

<<interface>>
Observable

+AddObserver(o: Observer)
+RemoveObserver(o: Observer)
+NotifyObserver()

JAN

ConcreteObservable
<<interface>>
-observers: Observer[] 0.+ Obseiver
+AddObserver(o: Observer) +HandleEvent()
+RemoveObserver(o: Observer)
+NotifyObserver() A
: ConcreteObserver
BuizsiBaeT metog HandleEvent()
y kawgoro HaBnogatens +HandleEvent()

