
Проектирование больших систем на
C++

Коноводов В. А.

кафедра математической кибернетики ВМК

Лекция 9
03.11.2017

Пример: паттерн Singleton
Глобальные переменные — это некоторое зло.

a.cpp:

std::vector<int> va;
//...

b.cpp:

extern std::vector<int> va;
struct TInit {

TInit() { va.push_back(1);}
};
TInit Init;

Порядок инициализации?
Глобальные объекты → local static объекты:

std::vector& GetVal() {
static std::vector<int> va;
return va;

}

Пример: паттерн Singleton
Singleton — класс, у которого в любой момент времени
существует не более одного объекта.

class Singleton {
private:
Singleton(){}
static Singleton* instance;

public:
// data
// ...
Singleton(const Singleton&) = delete;
static Singleton* Instance() {

if (instance == nullptr) {
instance = new Singleton();

}
return instance;

}
};

Singleton* Singleton::instance = nullptr;

Пример: паттерн Singleton
Singleton — класс, у которого в любой момент времени
существует не более одного объекта.

class Singleton {
private:
Singleton(){}
static Singleton* instance;

public:
// data
// ...
Singleton(const Singleton&) = delete;
static Singleton* Instance() {

if (instance == nullptr) {
instance = new Singleton();

}
return instance;

}
};

Singleton* Singleton::instance = nullptr;

Пример: паттерн Singleton

class Singleton {
protected:
Singleton(){ /*...*/ }
~Singleton(){ /*...*/ }

public:
// data
// ...
Singleton(const Singleton&) = delete;
Singleton(Singleton&&) = delete;
Singleton& operator=(Singleton const&) = delete;
Singleton& operator=(Singleton &&) = delete;
static Singleton& Instance() {

static Singleton instance;
return instance;

}
};

Пример: паттерн Singleton

Почему это плохой паттерн?
I Это скрытие глобальной переменной — в обход всего к ней

можно получить доступ.
I Сложно работать с наследованием.
I Невозможно простым способом развернуть код в

несколько функций с разными объектами-синглтонами.

Пример: паттерн Strategy

Паттерн, предназначенный для определения семейства
алгоритмов, инкапсуляции каждого из них и обеспечения их
взаимозаменяемости.

I Инкапсуляция алгоритма,
I увеличение модульности и проверяемости кода,
I дешевое масштабирование кода,
I выбор алгоритма, основываясь на данных (в процессе

исполнения кода можно это изменить).

Когда?
I Нужны разные варианты алгоритма или поведения,
I нужно изменять поведение объектов в runtime,
I нужны разные алгоритмы в зависимости от состояния.

Пример: паттерн Strategy

Паттерн, предназначенный для определения семейства
алгоритмов, инкапсуляции каждого из них и обеспечения их
взаимозаменяемости.

I Инкапсуляция алгоритма,
I увеличение модульности и проверяемости кода,
I дешевое масштабирование кода,
I выбор алгоритма, основываясь на данных (в процессе

исполнения кода можно это изменить).
Когда?

I Нужны разные варианты алгоритма или поведения,
I нужно изменять поведение объектов в runtime,
I нужны разные алгоритмы в зависимости от состояния.

Пример: паттерн Strategy

Пример: паттерн Strategy и кофе-машина
class Recipe {

public:
virtual double GetAmountOfWater() const = 0;
virtual void Make() = 0;

};
class HotBeverage {

void BoilWater(double amount) {
std::cout << "boiling " << amount << " ml of water..."
<< std::endl;

}
void Pour() {

std::cout << "pouring in cup" << std::endl;
}
std::shared_ptr<Recipe> recipe;

public:
HotBeverage(std::shared_ptr<Recipe> r) : recipe(r) {}
void prepare() {

BoilWater(recipe->GetAmountOfWater());
recipe->Make();
Pour();

}
};

Пример: паттерн Strategy и кофе-машина
class Coffee: public Recipe {

double AmountOfWater;
int StrongLevel;

public:
Coffee(double amountOfWater, int level)

: AmountOfWater(amountOfWater)
, StrongLevel(level)

{ }
virtual double GetAmountOfWater() const { return AmountOfWater; }
virtual void Make() { std::cout << "brewing coffee...";}

};

class HotChocolate : public Recipe {
double AmountOfWater;

public:
HotChocolate(double amountOfWater)

: AmountOfWater(amountOfWater)
{ }
virtual double GetAmountOfWater() const { return AmountOfWater; }
virtual void Make() { std::cout << "making hot chocolate..."; }

};

Пример: паттерн Strategy и кофе-машина

int main() {
auto coffee = std::make_shared<Coffee>(200, 3);
auto hotChocolate = std::make_shared<HotChocolate>(100);
std::vector<HotBeverage> beverages = {

HotBeverage(coffee),
HotBeverage(hotChocolate)

};
for (auto&x : beverages) x.prepare();

}

Пример: паттерн Strategy и кофе-машина
через лямбды

class HotBeverage {
void BoilWater(double amount) {

std::cout << "boiling " << amount << " ml of water...";
}
void Pour() {

std::cout << "pouring in cup" << std::endl;
}
std::function<double()> GetAmountOfWater;
std::function<void()> Make;

public:
HotBeverage(std::function<double()> getAmountOfWater,

std::function<void()> make)
: GetAmountOfWater(getAmountOfWater)
, Make(make) {}

void prepare() {
BoilWater(GetAmountOfWater());
Make();
Pour();

}
};

Пример: паттерн Strategy и кофе-машина
через лямбды

static void MakeCofee() { std::cout << "brewing coffee..."; }
static void MakeHotChocolate() { std::cout << "making chocolate..."; }
static double GetAmountOfWater(double amount) { return amount; }

int main() {
auto coffee = HotBeverage(

[] { return GetAmountOfWater(200); },
MakeCofee

);
auto hotChocolate = HotBeverage(

[] { return GetAmountOfWater(100); },
MakeHotChocolate

);
std::vector<HotBeverage> beverages = {

coffee, hotChocolate
};
for (auto&x : beverages) x.prepare();

}

Пример: паттерн Decorator

Динамически добавляет дополнительное поведение объекту.

Декоратор создает список объектов-оберток над другими
объектами. Они наследуются от того же самого интерфейса.

Перегрузкой методов можно либо использовать исходные
варианты, либо добавлять свою функциональность.

Пример: паттерн Decorator

I Декоратор имеет тот же интерфейс, что и Component
(использование декоратора).

I Декоратор содержит указатель на конкретный Component
(реализация декоратора).

Пример: паттерн Decorator
class TWriterInterface {

public:
virtual ~TWriterInterface() = default;
virtual void Write(const std::string& s) = 0;

};

class TStandardWriter : public TWriterInterface {
public:

virtual ~TStandardWriter() = default;
virtual void Write(const std::string& s) { std::cout << s

<< std::endl; }
};
using TWriterInterfacePtr = std::unique_ptr<TWriterInterface>;

class Decorator : public TWriterInterface {
TWriterInterfacePtr Interface;

public:
Decorator(TWriterInterfacePtr ptr) { Interface = std::move(ptr);}
virtual void Write(const std::string& s) override {

Interface->Write(s);
}

};

Пример: паттерн Decorator
class DecoratorWithBorder : public Decorator {

std::string Name;
public:

DecoratorWithBorder(TWriterInterfacePtr ptr, const std::string& n)
: Decorator(std::move(ptr))
, Name(n) {}

virtual void Write(const std::string& s) override {
std::cout << "=== " << Name << " ===" << std::endl;
Decorator::Write(s);
std::cout << "====" << std::string(Name.size(), '=')

<< "====" << std::endl;
}

};
class DecoratorWithExclamation : public Decorator {

public:
DecoratorWithExclamation(TWriterInterfacePtr ptr)

: Decorator(std::move(ptr)) {}
virtual void Write(const std::string& s) override {

std::cout << "ATTENTION!!!" << std::endl;
Decorator::Write(s);

}
};

Пример: паттерн Decorator

int main() {
TWriterInterfacePtr writer = std::make_unique<TStandardWriter>();
writer->Write("some information");

}

some information

Пример: паттерн Decorator

int main() {
TWriterInterfacePtr writer = std::make_unique<TStandardWriter>();
TWriterInterfacePtr writer2 =

std::make_unique<DecoratorWithBorder>(
std::move(writer), "Magic");

writer2->Write("some information again");
}

=== Magic ===
some information again
=============

Пример: паттерн Decorator

int main() {
TWriterInterfacePtr writer = std::make_unique<TStandardWriter>();
writer->Write("some information");
TWriterInterfacePtr writer2 =

std::make_unique<DecoratorWithBorder>(
std::move(writer), "Magic");

TWriterInterfacePtr writer3 =
std::make_unique<DecoratorWithExclamation>(std::move(writer2));

writer3->Write("some information again and again");
}

ATTENTION!!!
=== Magic ===
some information again and again
=============

Пример: паттерн Decorator
Feature: возможность кастомизации и конфигурации ожидаемого
поведения. Работа начинается с пустым объектом, который имеет
базовую функциональность. Затем происходит выбор декораторов,
оборачивающих и обогощающих базовый объект.

Наследование или Декоратор?

I В случае декоратора проще изменять объекты в run-time.

I Проще создавать множественные изменения поведений.

I Если динамически менять поведение объекта не нужно — не
нужен и декоратор, наследование может быть проще.

Стратегия? Декоратор?

I Декораторы оборачивают объект снаружи, стратегии же
вставляются в него внутрь по неким интерфейсам.

I Недостаток стратегии: класс должен быть спроектирован с
возможностью вставки стратегий.

I Недостаток декоратора: не всегда желательное смешение
публичного интерфейса и интерфейса кастомизации.

Пример: паттерн Decorator
Feature: возможность кастомизации и конфигурации ожидаемого
поведения. Работа начинается с пустым объектом, который имеет
базовую функциональность. Затем происходит выбор декораторов,
оборачивающих и обогощающих базовый объект.
Наследование или Декоратор?

I В случае декоратора проще изменять объекты в run-time.

I Проще создавать множественные изменения поведений.

I Если динамически менять поведение объекта не нужно — не
нужен и декоратор, наследование может быть проще.

Стратегия? Декоратор?

I Декораторы оборачивают объект снаружи, стратегии же
вставляются в него внутрь по неким интерфейсам.

I Недостаток стратегии: класс должен быть спроектирован с
возможностью вставки стратегий.

I Недостаток декоратора: не всегда желательное смешение
публичного интерфейса и интерфейса кастомизации.

Пример: паттерн Decorator
Feature: возможность кастомизации и конфигурации ожидаемого
поведения. Работа начинается с пустым объектом, который имеет
базовую функциональность. Затем происходит выбор декораторов,
оборачивающих и обогощающих базовый объект.
Наследование или Декоратор?

I В случае декоратора проще изменять объекты в run-time.

I Проще создавать множественные изменения поведений.

I Если динамически менять поведение объекта не нужно — не
нужен и декоратор, наследование может быть проще.

Стратегия? Декоратор?

I Декораторы оборачивают объект снаружи, стратегии же
вставляются в него внутрь по неким интерфейсам.

I Недостаток стратегии: класс должен быть спроектирован с
возможностью вставки стратегий.

I Недостаток декоратора: не всегда желательное смешение
публичного интерфейса и интерфейса кастомизации.

Пример: паттерн Observer

Определяет зависимость типа «один ко многим» между
объектами таким образом, что при изменении состояния одного
объекта все зависящие от него оповещаются об этом событии.

I субъекты (объекты, которые могут изменяться)
I наблюдатели (объекты, уведомляемые при изменении

состоянии)

Субъекты не заинтересованы в управлении временем жизни
своих наблюдателей, но заинтересованы в том, чтобы если
наблюдатель был уничтожен, субъекты не пытались к нему
обратиться. Тогда так: каждый субъект хранит контейнер
указателей ????_ptr на своих наблюдателей.

Пример: паттерн Observer

Определяет зависимость типа «один ко многим» между
объектами таким образом, что при изменении состояния одного
объекта все зависящие от него оповещаются об этом событии.

I субъекты (объекты, которые могут изменяться)
I наблюдатели (объекты, уведомляемые при изменении

состоянии)

Субъекты не заинтересованы в управлении временем жизни
своих наблюдателей, но заинтересованы в том, чтобы если
наблюдатель был уничтожен, субъекты не пытались к нему
обратиться. Тогда так: каждый субъект хранит контейнер
указателей ????_ptr на своих наблюдателей.

Пример: паттерн Observer
class Observer {

std::string name;
public:

Observer(const std::string& s) : name(s) {}
void Notify(const std::string& source) {/*...*/ }

};

class Observable {
std::string name;

public:
void Subscribe(std::shared_ptr<Observer> observer);
void Unsubscribe(std::shared_ptr<Observer> observer);
void Notify();
Observable(const std::string& s) : name(s) {}

private:
std::vector<std::weak_ptr<Observer>> observers;

};

Пример: паттерн Observer
void Observable::Subscribe (std::shared_ptr<Observer> observer) {

observers.push_back(observer);
}
void Observable::Notify() {

for (auto wptr: observers) {
if (!wptr.expired()) {

auto observer = wptr.lock();
observer->Notify(this->name);

}
}

}
void Observable::Unsubscribe(std::shared_ptr<Observer> observer) {

observers.erase(
std::remove_if(

observers.begin(),
observers.end(),
[&](const std::weak_ptr<Observer>& wptr) {

return wptr.expired() || wptr.lock() == observer;
}

),
observers.end());

}

Пример: паттерн Observer

