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Abstract Over the last two decades, there has been an ex-
tensive study of logical formalisms on specifying and veri-
fying real-time systems. Temporal logics have been an im-
portant research subject within this direction. Although nu-
merous logics have been introduced for formal specification
of real-time and complex systems, an up to date survey of
these logics does not exist in the literature. In this paper
we analyse various temporal formalisms introduced for spec-
ification, including propositional/first-order linear temporal
logics, branching temporal logics, interval temporal logics,
real-time temporal logics and probabilistic temporal logics.
We give decidability, axiomatizability, expressiveness, model
checking results for each logic analysed. We also provide a
comparison of features of the temporal logics discussed.

Keywords propositional temporal logics, first-order linear
temporal logics, branching temporal logics, interval tempo-
ral logics, real-time temporal logics, probabilistic temporal
logics, decidability, model checking, expressiveness

1 Introduction

Temporal logics are formal frameworks which describe state-
ments whose truth values change over time. Whereas clas-
sical logics do not include a time element, temporal logics
characterize state changes which depend on time. This makes
temporal logics a richer notation than classical logics.

Temporal logics have been extensively used in the spec-
ification of various systems, such as real-time and control
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systems, for more than two decades. They provide a mathe-
matical foundation to formally analyse these systems. Many
industrial applications and case studies proved the usability
of temporal logics within this context.

In general, temporal logics have been introduced for spe-
cific types of problems. The general trade-off is between the
complexity and expressiveness. In certain applications sim-
ple logics are preferred to the complex ones [1]. Complex
logics are generally difficult to deal with practically.

Numerous logics have been introduced for the formal
specification of real-time and complex systems, and various
aspects of logics have been studied. Some surveys (such
as [1–7]) can be found in the literature but these mainly con-
centrate on specific formal systems over specific structures
of time, and they do not cover a broad range of logics. Also,
numerous new results have been published recently; an up to
date survey of these does not exist in the literature.

In this paper we attempt to fill this gap by describing a
broad spectrum of temporal logics, and outlining main and
recent developments in this field. All these logics are differ-
ent in terms of ‘expressiveness’, ‘order’, ‘time metric’, ‘tem-
poral modalities’ and ‘time model’.

In this paper we survey the following aspects: ‘basic tem-
poral framework’, ‘real-time’ and ‘probability’. The real-
time aspect of temporal logics is important to express timing
requirements of real-time systems. The probabilistic aspect
is needed in order to reason about systems which include un-
certainty and probabilistic assumptions.

This paper contributes in the following directions: An up
to date survey including the recent results is conducted. Also,
to our best knowledge, no survey of probabilistic temporal
logics has been done so far. This paper also covers proba-
bilistic logics and attempts to contribute in this direction as
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well. In addition, the paper addresses a very wide range of
temporal logics, which was not done in the surveys we men-
tioned above. Indeed, the work includes propositional/first-
order linear temporal logics, branching temporal logics, in-
terval temporal logics, real-time temporal logics and proba-
bilistic temporal logics.

We will summarize important results on decidability, ax-
iomatizability, expressiveness, model checking, etc. for each
logic analysed, whenever possible, and will provide a com-
parison of features of the temporal logics discussed.

We believe that this survey will be very useful for re-
searchers to have a wide picture of the spectrum and to find
an up to date related works for important logics 1).

2 Preliminaries

Temporal logics can be considered as extensions of classi-
cal propositional and first-order logic. In fact, propositional
temporal logics are an extension of propositional logic with
temporal operators. Similarly, first-order temporal logics are
extension of first-order logic with temporal modalities. Tem-
poral logics are also a special type of modal logics, where
statements are evaluated on ‘worlds’ which represent time in-
stants.

We can classify temporal logics based on several cri-
teria. The common dimensions are ‘propositional versus
first-order’, ‘point-based versus interval-based’, ‘linear ver-
sus branching’, ‘discrete versus continuous’, etc [1,8,9]. Be-
low we discuss the most important criteria to classify tempo-
ral logics.

Point versus interval structures:

There are two structure types to model time in a tempo-
ral logic: points (instants) and intervals. A point structure
T can be represented as 〈T, <〉, where T is a nonempty set
of time points, and < is a ‘precedence’ relation on T . Dif-
ferent temporal relationships can be described using different
modal operators. Some logics include modal operators which
can express quantification over time. However, a relationship
between intervals is difficult to express using a point-based
temporal logic [10].

Interval temporal logics are expressive, since these log-
ics can express a relationship between two events, which are
represented by intervals. Also, interval logics [11–17] have a

1) Note that in some instances we think it is more convenient to refer to
the original text for clarification purposes. In the following, we will use
quotation marks to use the text from the original sources.

simpler and neater syntax to define a relationship between
intervals, which provides a higher level abstraction than a
point-based logic when modeling a system. This makes in-
terval logic formulas much simpler and more comprehensive
than point-based logic formulas.

Some of the known interval operators are meets, before,
and during [18], which denote the ordering of intervals2), the
chop modality [19], which denotes combining two intervals,
and duration, which denotes a length of an interval [6].

Interval structures can be considered in two ways: (i)
intervals are ‘primitive’ objects (ii) intervals are composed
from points. [20–22] consider intervals as primitive objects
of time. [20] defines a ‘period structure’ as the tuple 〈I,⊆,≺〉,
where I is a non-empty set of intervals, ⊆ is a sub-interval
relation, and ≺ is a precedence relation. One particular prob-
lem with this approach is that theoretical analyses are usually
very difficult. Also, although it is very easy to define proper-
ties such as linearity, density, discreteness, unboundedness in
a point-based logic, it is very difficult to define these proper-
ties in an interval logic where intervals are primitive objects.

[7, 17, 19] consider intervals as sets of points, where the
time flow is assumed as ‘a strict partial-ordering of time
points’. Namely, an interval structure is defined as 〈T, I(T)〉,
where T = 〈T, <〉 is a strict partial-ordering and I(T) is a set
of intervals. The properties mentioned above can be defined
in an interval logic where intervals are composed of time in-
stants.

Here we give the historical development of interval-based
temporal logics. The concept of time intervals was first stud-
ied by Walker [23], who considered a non-empty set of inter-
vals, which is partially ordered. However, his work does not
cover aspects of temporal logic in a general sense. In [24]
philosophical aspects of an interval ontology was analysed.
In [25] an interval tense logic was introduced. [26–32] stud-
ied interval logics within the natural language domain. It was
argued that interval-based semantics are more convenient for
human language and reasoning, and the interval-based ap-
proach is more suitable than the point-based approach for
temporal constructions of natural language. [18,33–35] stud-
ied event relations and interval ordering. The authors intro-
duced so-called Allen’s thirteen interval relations and worked
on axiomatisation and representation of interval structures.
Some further works on Allen’s algebra were carried out by
[14, 36]. Recently, [37] investigated the relation between

2) We say that an interval J meets another interval J if the end point of I
is the starting point of J, I before J if the end point of I is before the starting
point of J, and I during J if the starting point of I is after the starting point
of J and the end point of I is before the end point of J.
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Allen’s logic and LTL. Interval based-logics have been also
applied to other fields in computer science. [38–40] worked
on process logic, where intervals are used as representation
of information. Another important work was the develop-
ment of interval temporal logic (ITL), and its application to
design of hardware components [13, 41]. Since the devel-
opment of ITL, numerous variations have been proposed; in
particular, Duration Calculus [6] is an extension of interval
temporal logic with “a calculus to specify and reason about
properties of state durations”.

Temporal Structure:

There are important properties regarding the time flow and
temporal domain structure. Some properties are summarized
below:

Assume 〈T, <〉 represents a temporal structure, where T is
a nonempty set of time points, and < is a ‘precedence’ rela-
tion on T . In a temporal logic the structure of time is linear
if any two points can be compared. Mathematically, a strict
partial-ordering is called linear if any two distinct points sat-
isfy the condition: ∀x, y : x < y ∨ x = y ∨ x > y. This
definition suggests that in linear temporal logics each time
point is followed at most one successor.

Another class is the branching-time structures, where the
underlying temporal structure is branching-like, and each
point may have more than one successor point. The struc-
ture of time can be considered as a tree. A tree is a set of
time points T ordered by a binary relation < which satisfies
the following requirements [42]:

– 〈T, <〉 is irreflexive;
– 〈T, <〉 is transitive;
– ∀t, u, v ∈ T u < t and v < t → u < v, u = v or u > v

(i.e. the past of any point is linear);
– ∀x, y ∈ T,∃z ∈ T such that z < x and z < y (i.e. 〈T, <〉 is

connected);
– z ∈ T is the root of 〈T, <〉 iff ∀x ∈ T z ≤ x.

One important characteristic of branching logics is that the
syntax of these logics include path quantification which al-
lows formulas to be evaluated over paths. However, linear
temporal logics are restricted to only one path.

A temporal domain is discrete with respect to the prece-
dence relation < if each non-final point is followed by a
successor point. This can be formulated as follows: ∀x, y
(x < y → ∃z (x < z ∧ ¬∃u(x < u ∧ u < z))). The majority of
temporal logics used for system specification are defined on
discrete time, where points represent system states. A state

sequence, as a result of a program execution, can be consid-
ered as isomorphic to the discrete series of positive integers.

A temporal domain is dense if, between any two distinct
points, there is another point. This can be formally denoted
∀x, y(x < y → ∃z(x < z < y)). Above we mentioned that a
flow of discrete time can be represented as a set of positive
integers. Similarly, a dense domain can be represented as a
set of the positive real numbers. It is noteworthy to mention
that there is a distinction between density and continuity: “A
model of dense time is isomorphic to a dense series of ra-
tional numbers, meaning that there is always a rational num-
ber between any two rational numbers; whereas a model of
continuous time is isomorphic to a continuous series of real
numbers” [9].

A temporal domain is bounded above (bounded below)
if the temporal domain is bounded in the future (past)
time. This can be formulated as follows: ∃x¬∃y(x < y)
(∃x¬∃y(y < x)). Similarly, a temporal domain is unbounded
above (unbounded below) if each point has a successor (pre-
decessor) point, which is formally denoted ∀x∃y(x < y)
(∀y∃x(y < x)).

A temporal domain is Dedekind complete if all time point
sets (non-empty) are bounded above, and they have a least
upper bound.

Based on differences in temporal domain properties log-
ics have different characteristics. For example, we can con-
sider a temporal domain which is linear or branched; discrete
or dense; finite/infinite in future and/or past, etc. All these
choices result in different syntax, semantics, decidability and
complexity.

Before we end this section, we provide a brief account on
early historical development of temporal logic, mainly sum-
marised from [4]:

The development of temporal logic goes back to the mid-
dle of the twentieth century. The major work was done by
Prior, who developed a logical framework in order to for-
mally analyse some natural language constructions. Prior
dealt with a number of tense-logical systems, made impor-
tant discoveries in modal logic, and classified various pos-
sible positions in relation to temporal and modal logic. He
considered temporal instants as a special type of propositions.
Using his tense logic [43–45] 3), he predicted thirty different
tenses on certain given assumptions by using tense operators.
The language of his tense logic contains the following modal
operators (in addition to the the standard boolean operators):
“sometime in the past”, “sometime in the future”, “always in

3) A revised and expanded edition of [45] was published by Oxford Uni-
versity Press in 2003.



4
Savas KONUR. A survey on temporal logics for specifying and verifying real-time systems

the past” and “always in the future”.

Another important work of Prior was his contribution on
the development of the branching time. Until 1940s, time
models had been dominantly considered either as linear or
circular. The idea of branching time was first proposed by
Borges; but initial suggestions about branching time came
from Saul Kripke. However, there was no proper formulation
until Prior’s work. He provided a model for branching time
by considering the history as maximal linearly-ordered set of
time instants.

After the introduction of the tense logic, many logicians
have worked on it, e.g. [26, 31]. Among them Kamp’s work
was very influential. Kamp [46] introduced two new opera-
tors (“since” and “until”) and proved that any other temporal
operators can be defined in terms of these two operators pro-
vided that time is continuous.

One important extension to tense logic was the metric
tense logic introduced by Prior [44, 45], where he considered
numerical durations, such as “some future time within n”.

Prior initially considered the tense logic within philosoph-
ical logic. He later concentrated on the mathematical issues.
During the last two decades the relevance of temporal logic
within various disciplines was realised. Especially, in 1970s
the relevance to computer science was better understood. Af-
ter this time temporal logic has been used in various fields of
computer science ranging from natural language processing
to formal aspects of real-time systems.

3 Propositional Temporal Logics

Propositional temporal logics are an extension of classical
propositional logic with temporal operators. These logics are
used to reason about qualitative functional requirements of
real-time systems, which specify what a system should per-
form and what should not happen. The qualitative properties
stated by these requirements are mainly ordering of events
(event a is followed by event b), liveness (a request will be
eventually responded), safety (event a will never occur), etc.
These properties are extensively used in synchronous and re-
active systems.

Below, we discuss the most influential propositional tem-
poral logics, which have been extensively studied and widely
used in various system specification and verification. Many
extensions of these logics have been proposed, which will be
discussed in the following sections.

3.1 Linear Time Logics

An important success in temporal logic study was the intro-
duction of the temporal operators into the classical logic [46].
In [47] Pnueli introduced the influential Linear Temporal
Logic (LTL). LTL can express properties of linear sequences
of states. For example, properties such as ‘p holds at some
state in the sequence’ or ‘p holds at two consecutive states in
the future’ can be expressed in LTL.

The LTL language consists of a finite set of propositional
variables AP, the standard Boolean operators, i.e. ¬,∧,∨,→,
and the temporal operators d (‘next’) and U (‘until’). LTL
formulas over AP can be defined as follows:

– p ∈ AP is an LTL formula
– if ϕ1 and ϕ2 are LTL formulas, then true,¬ϕ1, ϕ1 ∧

ϕ2, dϕ1 and ϕ1Uϕ2 are LTL formulas

We can derive other temporal operators, such as ^ (‘even-
tually’) and � (‘always’) from d and U. For example,
^ψ ≡ true U ϕ and � ≡ ¬^¬ψ. Some example properties
expressed in LTL are given below [48]:

– p→ �q: q holds at all states after p holds.
– �((¬q) ∨ (¬p)): p and q cannot hold at the same time.
– p→ ^q: q holds at some time after p holds.
– �^p → ^q: If p repeatedly holds, q holds after some

time.
– �p→ ^q: If p always holds, q holds after some time.

LTL formulas are generally interpreted over a Kripke
structure, which is a tuple 〈S ,→, L〉, where S is a set of states,
→ is a transition relation and L : S 7→ 2AP is a labeling func-
tion. When executed, a Kripke structure corresponds to a
set of paths, which can be considered as a computation tree.
Each path of the computation tree is an infinite and linear se-
quence of states, which is isomorphic to the linear temporal
structure 〈T, <〉 defined in Section 2.

Let M = 〈S ,→, L〉 be a model4), σ be a path s0, s1, ... in
M, where si → si+1. The formal semantics of LTL formulas
are defined as follows:

M, σ |= p ∈ AP iff p ∈ L(σ[0])
M, σ |= ¬ϕ iff M, σ 6|= ϕ

M, σ |= ϕ1 ∧ ϕ2 iff M, σ |= ϕ1 andM, σ |= ϕ2

M, σ |= dϕ iff M, σ1 |= ϕ

M, σ |= ϕ1Uϕ2 iff ∃i ≥ 0 s.t. M, σi |= ϕ2 and
(∀ j < i)M, σ j |= ϕ1

where σ[i] denotes the ith element of the path σ and σi de-
notes the suffix si, si+1, ... Informally speaking, the formula

4) A model is an abstract representation of the behaviour of a system.



Front. Comput. Sci.
5

dϕ holds at the current state if ϕ is true at the next state, and
ϕ1Uϕ2 holds at the current state if ϕ2 is true at some future
state, and ϕ1 is true at all moments until that future state. Ba-
sically, we say an LTL formula ϕ is true at a state s ∈ S of
the Kripke structureM, if and only if, it is true at all paths σ
starting s, which can be formally expressed as:

M, s |= ϕ iffM, σ |= ϕ for all σ starting s.

In [49] LTL is defined over discrete time models with d
and U operators. [49] shows that LTL is decidable, and pro-
vides a sound and complete axiomatization. In [50] Sistla
and Clarke prove that the satisfiability and model checking
problems of LTL are PSPACE-complete. [50] shows that if
the syntax is restricted only to ^ (‘sometime’) operator, ordoperator, then the complexity of the satisfiability problem
reduces to NP-complete. However, when both operators are
included in the syntax PSPACE-completeness is preserved.

[50] provides a complete axiomatic system for LTL.
Among the proof systems existing in the literature are a
Hilbert-style proof system [14], a Gentzen-style proof sys-
tem [48] and a clausal resolution approach [51, 52]. These
proof systems are all sound and complete. In [53] LTL was
extended with the past operators, and a complete proof sys-
tem for both future and past operators was presented (A de-
tailed discussion can be found in [48, 54]). It is known that
adding past operators does not increase the expresiveness of
LTL (when interpreted over left-bounded domains). In [54]
an EXPTIME tableau algorithm is presented for the satisfia-
bility problem of LTL.

Recently, more results have been presented on LTL. [55]
shows that the satisfiability problem with the strict ‘until’
operator is PSPACE-complete. [56] extends the ‘since-until’
logic of real-line with the operators “sometime within n
time units”, and they show that the new logic is PSPACE-
complete. [57] shows that satisfiability problem for the
logic with ‘since-until’ operators over real-numbers time is
PSPACE-complete.

3.2 Branching Time Logics

A temporal logic system is called a branching time logic if
the underlying semantics of the structure of time is branching.
The underlying structure of time in branching time logics is a
tree-like structure. That is, every time instant can be followed
by several immediate successor time instants. In branching
time logics, there are two kinds of formulas: state formulas
and path formulas. State formulas are interpreted over states

and path formulas are interpreted over paths5).
Temporal logics with underlying branching time have

found many applications in artificial intelligence. In partic-
ular, they are very useful in planning systems, where agents
formulate different plans and action strategies according to
different future world states (which have branching charac-
teristics) [58, 59].

Since very efficient model checking algorithms have been
introduced for branching time logics, these logics have been
extensively used to verify finite state systems. On the other
hand, in linear time logics deductive proof systems have been
introduced for the verification of infinite state systems [3].

An initial work about branching time logics was done by
[60]. Later, the unified branching time system (UB) was in-
troduced in [61]. A simple branching time logic, CTL, was
introduced in [62]. Thereafter, CTL∗ was introduced in [63].
CTL∗ is an extension over CTL by adding the properties of
linear time temporal logic. CTL∗[P], an extension over CTL∗,
was introduced in [64]. UB, CTL and CTL∗ include only fu-
ture time temporal connectives, whereas CTL∗[P] contains
both past and future time temporal connectives.

3.2.1 Computational Tree Logic (CTL)

CTL is a point-based branching time logic, which is an ex-
tension of the logic UB by adding the operator U. Time is
included implicitly within the temporal operators, which al-
lows us to express some or all computations. In CTL a dis-
crete notion of time and only future modalities are used.

CTL formulas, ϕ, are defined according to the following
grammar:

ϕ ::= true | p | ¬ϕ | ϕ1 ∧ ϕ2 | ∃ψ | ∀ψ

ψ ::= dϕ | ϕ1Uϕ2

where p ∈ AP, which is a set of atomic propositions. The
formulas ^ and � can be obtained as in LTL.

CTL formulas are interpreted over transition systems. The
execution of a transition system constructs a set of paths,
which is an infinite tree of states, because the underlying
time flow 〈T, <〉 is a tree-like structure and it satisfies the
branching requirements discussed in Section 2. Assume
M = 〈S ,→, L〉 is a transition system (a Kripke structure).
For a given CTL-formula ϕ and a state s ∈ S , the satisfac-
tion relation |= is inductively defined on the structure of ϕ as
follows (here we skip standard logical formulas):

M, s |= ∃ψ iff M, σ |= ψ for some σ ∈ Paths(s)

5) Note that every state formula is also a path formula.
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M, s |= ∀ψ iff M, σ |= ψ for all σ ∈ Paths(s)

Path quantifiers ∃ and ∀ represent some path and all paths,
respectively, in the execution tree. The semantics of Path for-
mulas is the following:

M, σ |= dϕ iff M, σ[1] |= ϕ

M, σ |= ϕ1Uϕ2 iff ∃i ≥ 0 s.t. M, σ[i] |= ϕ2 and
(∀ j < i)M, σ[ j] |= ϕ1

where σ[i] denotes the ith element of a path σ, and Paths(s)
denotes the set of paths from a state s.

Some example CTL formulas are given below [65]:

– ∃^(p ∧ ¬q): There exists a state where p holds but q
does not hold.

– ∀�(p→ ∀^q): Whenever p holds, eventually q holds.
– ∀�(∃^p): At all paths p holds after some time.

CTL is a decidable logic [66]. It can be shown that CTL
has the finite model property. That is, a satisfiable formula
is satisfied in a finite model of size which is bounded by
“some function of length of the formula” [67]. [68] presents
a tableau method for checking the satisfiability of CTL for-
mulas. The complexity of this procedure is EXPTIME. The
model checking problem of CTL is easier than the satisfiabil-
ity problem. Indeed, model checking in CTL is linear in the
size of the model and the formula [69]. This shows that model
checking in CTL can be achieved very efficiently. In [70] a
sound and complete axiomatic system is provided for CTL.

3.2.2 CTL∗

The logic CTL∗ was introduced in [63]. CTL∗ is an extension
over CTL by adding the properties of linear time temporal
logic. CTL∗ formulas, ϕ, are defined as follows:

ϕ ::= true | p | ¬ϕ | ϕ1 ∧ ϕ2 | ∃ψ | ∀ψ

ψ ::= ϕ | ¬ψ | ψ1 ∧ ψ2 |
dψ | ψ1Uψ2

which suggests that the expressive powers of CTL and LTL
are combined. As the above grammar suggests, the path
quantifiers ∃ and ∀ can be arbitrarily nested with the op-
erators d and U. Since CTL∗ is more expressive than
CTL, theoretical analyses become more difficult. Although
model checking for CTL is linear, CTL∗ model checking is
PSPACE-complete [69]. Also, solving the satisfiability prob-
lem for CTL∗ is more difficult than solving the CTL sat-
isfiability. [71] provides an algorithm for the satisfiability
problem of CTL∗, which has 2-EXPTIME complexity in the
length of the formula. A sound and complete axiomatisation
for CTL∗ has recently been defined by Reynolds in [72].

3.2.3 CTL∗ with Past

In the logics CTL and CTL∗ we assumed that temporal op-
erators are restricted to future time. [64] introduces a logic
CTL∗[P], which also includes past time operators. As in the
linear case, addition of past operators to the language does
not increase expressive power if we have a finite past; but
this allows to express useful properties. Until recently the ax-
iomatizability of CTL∗[P] has been a long-lasting open ques-
tion. [73] gives a sound and complete axiomatisation sys-
tem for CTL∗[P]. [74] proposes a translation algorithm to
translateCTL∗[P] formulas into CTL formulas to use CTL
model checking, but no complexity result is provided. Re-
cently, [75] has shown that the satisfiability problem of CTL∗

with linear past-time operators is 2-EXPTIME-complete, and
the complexity of the model checking problem is between
EXPTIME-complete and 2-EXPTIME-complete.

3.2.4 Expressiveness of Branching Temporal Logics

The expressive powers of CTL and LTL are not comparable.
CTL allows quantification over paths, which LTL does not.
For example, the CTL formula

∀� ∃^ p

asserting that ‘it is always the case that p is eventually true’,
cannot be specified in LTL. On the other hand, the LTL for-
mula

�^p→ ^p

asserting that if ‘p is infinitely true along the path, then q
is eventually true’, cannot be expressed in CTL. CTL∗ com-
bines the expressive powers of CTL and LTL. For example,
the CTL∗ formula

∃(�^ p)

asserting that ‘there exists a path where p is infinitely true’,
cannot be expressed in either CTL or LTL.

UB and CTL can express important properties of concur-
rent programs, such as below [70]:

– ∀�p: safety property: p is true at all states of each path.
– ∀^p: liveness property: p is true at some state of each

path.

Despite being able to express important properties such as
safety and liveness, neither UB nor CTL can express fairness
constraints. CTL∗ can be used for specification of more com-
plex properties, which cannot be expressed by either UB and
CTL. Some examples are given below [70]:
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– �^p → �^q: fairness property: if p is infinitely true,
so is q.

– ∃ ((pUq) ∨ �p): weak until property

As seen above, the combination of branching and linear time
operators result in more expressive power. This rich syntax
enables to express more complex properties, such as fairness.
The branching logics mentioned in this section can be made
more expressive, while still keeping all their formulas as state
formulas, by allowing classical operators between the tempo-
ral and path operators. If we add past operators, expressive-
ness does not increase; but the resulting logic allows more
convenient notation to express some useful properties. Due
to complexity and expressiveness considerations some other
logics have been defined, such as CTL+ [66], ECTL [68],
ECTL+ [68]. These logics are more expressive than CTL;
but the complexities of the decidability and model checking
problems are less than that of CTL∗.

3.3 Partial-Order Temporal Logics

In concurrent systems computations are generally viewed as
partially ordered sets. Since linear temporal logics are more
suitable for totally ordered sets, it is difficult to apply them to
concurrent and distributed systems [76]. Partial-order tempo-
ral logics are suitable to express partial orderings represent-
ing the behaviour of concurrent systems [77].

In branching time structures, each time instant may have
several immediate successor points corresponding to differ-
ent futures. Partial order structures are similar to branching
structures except that each time instant can also have imme-
diate predecessors corresponding to different pasts [70].

Initial attempts to define a logic based on partial orders
were done in [77], where the logic POTL is introduced.
POTL can express partially ordered computations without
making any translation from totally orders sets. [77] shows
that POTL does not have the finite model property due to the
addition of past operators; but in spite of this negative result
the authors show that the logic has an exponential decision
procedure, and a complete axiomatisation system.

[78] introduces an extension of POTL, the logic
POTL[U,S], which extends POTL with ‘until’ and ‘since’ op-
erators. Similar to the case of POTL, POTL[U,S] can be seen
as an extension of CTL with past modalities. POTL[U,S] can
express all properties POTL can express as well as the proper-
ties concerning the “relative order of events in the future and
past” [70]. [78] presents an exponential decision procedure.
A sound and complete axiomatisation system for POTL[U,S]

is also given in [78]. POTL[U,S] has a high model check-
ing complexity. Indeed, [78] shows that the complexity is
exponential in the model size and doubly exponential in the
formulas size.

In the literature, there are more recent results for logics
with partial-order semantics. [79] presents a new temporal
logic, where linear and partial order semantics are combined.
Namely, a computation is modeled as a linear sequence of
states, which are associated with “past partial-order history”.
The authors also give a sound and partially complete proof
system for the logic. In [80] partial order reductions are stud-
ied for the logics CTL and CTL∗ based on the partial or-
der techniques to reduce the state space. [81] introduces a
new partial-order temporal logic based on different semanti-
cal model to increase the expressiveness. In [82] partial-order
reduction techniques are applied to linear and branching time
temporal logics for knowledge (without the next operator) to
reduce the model size before applying model checking pro-
cedure.

4 First-Order Temporal Logics

First-order temporal logics (FOTL) are extensions of propo-
sitional temporal logics. In addition to all propositional fea-
tures these logics also allow arbitrary data structures and
quantifiers. FOTLs have been extensively used in many areas
including specification and verification of reactive systems,
and analysis of hardware components. First-order logics pro-
vide an expressive formal framework for formalising the se-
mantics of executable modal logics. They allow obtaining
more robust techniques for reasoning about knowledge [83].
FOTLs have also found applications in information systems.
For example, temporal database query languages are mainly
based on first-order like languages [84].

Although first-order temporal logics have proved to be
useful in various areas, they suffer from high computational
complexity because these logics are very expressive. Indeed,
most FOTLs are not even recursively enumerable [42,85,86].
Some axiomatisations of first-order temporal logics were
studied in [87]. In some cases, fragments of first-order tem-
poral logics with lower computational complexity are defined
through restricted extensions to propositional temporal log-
ics [85, 88–90].

One important logic is monodic fragment of first-order
temporal logic, which is an expressive logic with a feasi-
ble computational behaviour. In monodic formulas, one free
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variable is allowed at most in temporal subformulas 6). In
[91] a finite axiomatic system is presented for the monodic
fragment. In [92, 93] monodic guarded decidable fragments
are introduced by restricting the quantification.

Here, we consider FOTL as a representative of first-order
temporal logics. FOTL has the following syntax (which does
not comprise equality and function symbols) [94]:

predicate symbols: P0, P1... ;
variables: x0, x1, ... ;
constants: c0, c1, ... ;
boolean connectives: ∨, ¬;
universal quantifier: ∀;
temporal operators: U (‘until’), S (‘since’)

Let M = 〈T,D,I〉 be a first-order temporal model where
T = 〈T, <〉 is a strict linear order representing time flow,D is
a non-empty domain set ofM, and I is a function assigning
a first-order structure of the form

I (t) =
〈
D, PI(t)

0 , ..., cI(t)
0 , ...

〉
to every t ∈ T . For every i, PI(t)

i is a predicate defined on D
which has the same arity with Pi. The formal semantics of
FOTL is defined as follows [94]:

M, α, t |= Pi (x1, ..., xn) iff PI(t)
i (α (x1) , ..., α (xn)) holds

in I (t), where each xi is eith.a variable or cons.
M, α, t |= ¬ϕ iff notM, α, t |= ϕ

M, α, t |= ϕ1 ∧ ϕ2 iffM, α, t |= ϕ1 andM, α, t |= ϕ2

M, α, t |= ∀xϕ iffM, β, t |= ϕ for any β which differs
from α at most in value of x

M, α, t |= ϕ1Sϕ2 iff (∃t′ < t)M, α, t′ |= ϕ2 and
(∀t′′ : t′ < t′′ < t)M, α, t′′ |= ϕ1

M, α, t |= ϕ1Uϕ2 iff (∃t′ > t)M, α, t′ |= ϕ2 and
(∀t′′ : t < t′′ < t′)M, α, t′′ |= ϕ1

where α and β are valuation functions which assign values
from D to variables. The temporal operators d, ^F (some-
time in future) and �F (always in future) can be derived from
U. Similarly, ^P (sometime in past) and �P (always in past)
can be derived from S. Here, we give an example specifica-
tion. The monodic formula

∀x�F(resp(x)→ d�F¬resp(x))

informally means that the server responds each message only
once. The following formula is not monodic, because the

6) A formula is said to be monodic if it has no subformulas of the kind
ϕUψ or ϕSψ with more than one free variable.

subformula dsend(x, y) is with a temporal operator over a for-
mula with two free variables:

�P�F(¬(∃y) send(x, y) ∧ dsend(x, y))

The above formula represents all processes that do not send
the same message consecutively. Here, the variable x and y
represents the process and message, respectively. Note that
the syntax of the formulas above looks same in different do-
main sets, e.g. N, Z, R, etc. (based on finite or infinite do-
mains), but their theoretical implications will be different.

Below, we assume FOTL(T) is the first-order temporal
logic of T, and FOTL f in(T) is the logic of T with finite do-
mains.

4.1 Undecidable Fragments of FOTL

In the literature, it is known that both the monadic and two-
variable fragments of first-order logic are decidable [95].
However, the computational complexities of their temporal
counterparts are different. Let FOTL2 denote the two - vari-
able fragment of FOTL (where every formula contains at
most two variables), and FOTLmo denote the monadic frag-
ment (not monodic) of FOTL (where formulas contain only
unary predicates). Assume T is either {〈N, <〉} or {〈Z, <〉}.
Then, FOTL2 ∩ FOTLmo ∩ FOTL(T) and FOTL2 ∩ FOTLmo

∩ FOTL f in (T) are not recursively enumerable [94].

4.2 Decidable Fragments of FOTL

The undecidable fragments given above have 3-dimensions in
the presence of a temporal operator (introducing the temporal
dimension) over a formula with two free-vars (introducing
the 2nd and 3rd dimension). This is the common property
of the undecidable fragments of FOTL, and it is the cause
of bad computational behaviour. It is known that the two-
variable fragment of first-order logic which are not monodic
is undecidable [95].

In order to preserve decidability, the monodic fragment,
denoted as FOTL1, has been introduced. FOTL1 contains
FOTL formulas ϕ such that any sub-formulas of ϕ of the
form ϕ1Uϕ2 and ϕ1Sϕ2 has at most one free variable. The
monodic fragments of FOTL(〈N, <〉) and FOTL(〈Z, <〉) are
recursively enumerable [96].

Let T
′

be {〈R, <〉} and T be the following classes of time
structures: “{〈N, <〉}, {〈Z, <〉}, {〈Q, <〉}, the class of all finite
strict linear orders, and any first-order-definable class of strict
linear orders” [96]. [94] proves that various fragments are
decidable, such as FOTL(T) ∩ FOTL1, FOTL(T) ∩ FOTL2

1,
FOTL(T) ∩ FOTLmo

1 , FOTL f in(T
′

) ∩ FOTL1, FOTL f in(T
′

) ∩
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FOTL2
1 and FOTL f in(T

′

) ∩ FOTLmo
1 . They also provide some

guarded fragment of first-order language (For a detailed dis-
cussion, see [94]).

In [97] it is shown that FOTL(〈N, <〉) ∩ FOTL1 is
EXPSPACE-hard. It is also shown that “the satisfiability
problem for FOTLmo

1 -formulas in models based on 〈N, <〉 is
EXPSPACE-complete” [96].

Here we assumed that FOTL and its fragments do not in-
clude equality and function symbols. It can be shown that un-
decidability is a major problem with the logic extended with
function symbols [91]. For instance, “the set of one-variable
formulas with one function symbol that are valid in models
based on 〈N, <〉 is not recursively enumerable” [96]. More-
over, “the set of monodic FOTL formulas with equality that
are valid in all temporal models based on 〈N, <〉 is not recur-
sively enumerable” [96]. [98] shows that the problem persists
even for a simpler fragment. Namely, the authors prove that
a fragment with “monodic monadic two-variable formulas”
is not recursively enumerable. In [91] a finite Hilbert-style
axiomatisation of the monodic fragment of first-order tempo-
ral logic was presented. It was also proved that “the monodic
fragment with equality is not recursively axiomatisable” [91].

Recent research results have showed that relatively ex-
pressive subsets of first-order temporal logic could be found.
[91, 94, 99] suggest that the expressive power of monodic
first-order temporal logic can be extended further. The decid-
ability results can be also be extended to temporal description
logics. Recently, tableau-based methods are presented for the
satisfiability checking of temporal description logics [100].
Tableau-based methods can also be devised for the satisfia-
bility checking of decidable monodic temporal logics. This
can be done by extending the tableau methods for the propo-
sitional temporal logics to the first-order case [100]. An alter-
native approach is to use the resolution method. [101] intro-
duces some resolution systems for monodic first-order tem-
poral logics.

5 Real-Time Temporal Logics

Real-time temporal logics have been introduced to formally
specify and reason about qualitative and quantitative func-
tional requirements of real-time systems, which specify what
a system should perform and what should not happen. The
qualitative requirements have already been discussed in Sec-
tion 3. The quantitative requirements express the properties
about “time-critical properties that relate the occurrence of
events” [102]. Some typical quantitative properties are as fol-

lows [103]:

• distance between two states: an event A is followed by
an event B within minimum/maximum/exactly 5 sec-
onds.

• bounded response time: there is an upper time limit for
a respond’s to arrive after the occurrence of an event A.

• periodicity: an event A occurs repeatedly every 5 sec-
onds.

Below we give a brief account of well-known real-time
temporal logics. All these logics are different in terms of ‘ex-
pressiveness’, ‘order’, ‘time metric’, ‘temporal modalities’,
‘time model’ and ‘time structure’. They also have different
capabilities for the specification and verification of real-time
systems.

Note that the majority of the logics discussed in this sec-
tion are point-based. We include some interval logics (e.g.
RTIL, TILCO and TRIO) in this section because, they are
closely related.

5.1 Real-time Extensions of LTL

There have been numerous attempts to extend LTL with
quantitative operators to capture quantitative (metric) real-
time properties, which cannot be expressed in classical LTL.
Due to the abundance of these logics, we will only highlight
important ones. The reader can consult to the referred sources
for a more detailed account.

The most widely studied and analysed real-time extension
of LTL is MTL [103], where time references are added to
temporal operators (‘until’, ‘next’ and ‘since’). Due to its
importance among other extensions, MTL will be discussed
in more detail in the next section.

TPTL [104] is another real-time extension of LTL, inter-
preted over infinite discrete sequences of states. TPTL al-
lows expressions with arithmetic operations; but this is only
allowed for integer constants (not for variables). In TPTL
explicit reference to clock is replaced by freezing quantifica-
tion, and clock values are recorded through “auxiliary static
timing variables” [3]. Namely, TPTL extends the language
of LTL with clock constraints and a freezing quantification.
This feature allows us to write real-time properties, which
refers to the exact system clock. For example, in the follow-
ing formula,

�x.(p→ (x ≤ 5))

asserting that whenever p is true it is satisfied in a state when
the clock value is less than 5, where x ≤ 5 is a clock constraint
and x.(..) is a freezing quantification. Another real-time re-
quirement we can specify with TPTL is that the system must
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switch to the state q within 5 seconds after being in the state
p, which is expressed in TPTL as follows [104]:

�x1.(p→ p U x2.(q ∧ x2 ≤ x1 + 5))

The satisfiability and model checking problems for TPTL
with discrete time semantics are EXPSPACE-complete; but
they become undecidable with dense time semantics [104].
[104] also presents a doubly-exponential-time decision pro-
cedure for TPTL. The model checking algorithm for the logic
is “exponential on the value of the product of all time con-
stants” [3]. [2] shows that if past operators are added to
the logic, the satisfiability problem for TPTL becomes non-
elementary. [105] proves that there is a complete finite ax-
iomatization for TPTL with discrete time semantics.

[106] introduces the logic RTPLTL, which is an extension
of LTL employing a “tractable fragment of regular expres-
sions" and quantitative constraints on the number of the states
where sub-expressions occur. RTPLTL can express regu-
lar sequences over paths (as well as properties expressible
in LTL). This is shown in the following example. Assume
that str1

∗
str2 denotes a string of system actions where str1

does not occur in the string and str2 is the last element, and
(str1

∗
str2)n denotes n successive occurrences of str1

∗
str2;

i.e. str2 occurs n consecutive times without any occurrence
of str1. The statement ‘if the server has received three con-
secutive requests and it has not responded yet, then the server
will respond before the fourth request arrives’ is expressed in
RTPLTL as follows [106]:

�
(
(req + resp∗req)3true→

(
(resp∗resp) ∩ (req∗req)≤3

)
true

)
.

RTPLTL employs an automata-theoretic model checking al-
gorithm whose time complexity is exponential in the size of
formulas. The main difference between TPTL and RTPLTL
is that RTPLTL is not restricted to models involving a single
time sequence.

Another quantitative extension, called CLTL, was intro-
duced in [107], where LTL is extended with counting quan-
tification on the number of states where a certain subformula
is true. Namely, the standard temporal U modality is re-
placed with U[C] which employs the counting quantification
C. For example, the statement ‘p eventually becomes true,
and until then q holds at most 3 times’ is expressed in CLTL
as

�
(
^[]q≤3] p

)
.

where ]q represents the number of states where q is true.
We can easily adapt this type of specifications to specify im-
portant real-time properties, such mutual exclusion protocol,

where two processes try to enter the critical section. For ex-
ample, the following specification asserts that whenever the
process 1 sends a request to enter the critical section, it will
do so after the process 2 enters the critical section at least 3
times [107]:

�
(
req1 → ^[]cs2≥3] cs1

)
.

CLTL formulas are interpreted over infinite discrete
words; that is the logic employs discrete linear time flow.
[107] shows that satisfiability and model checking problems
of this extension are both EXPSPACE-complete, and trans-
lating a formula of this extension to the equivalent LTL for-
mula leads to an exponential blow-up on the formula size.
They also show that if the constraints are extended with sub-
traction, then both satisfiability and model checking problems
become undecidable. CLTL can express more complex quan-
titative constraints, but cannot express ordering of events,
which RTPLTL can express.

5.2 Metric Temporal Logic (MTL)

MTL [103] is a propositional bounded-operator logic, which
is an extension of LTL with timing constraints. Namely, time
references are added to temporal operators. This is done by
replacing the U operator of LTL with UI , where I is an in-
terval of reals with endpoints in N ∪∞. In MTL explicit ref-
erence to clock is not allowed, which makes the logic more
practical because quantifications on a temporal domain are
no longer needed. MTL can express deadline properties, i.e.
when an action occurs, the system must respond in a certain
period. For example, the formula

p→ ^(0,10)q

asserts that if p occurs then q occurs within 10 time units.
More specifically, the property “every alarm is followed by
a shutdown event in 10 seconds unless all clear is sounded
first” is expressed in MTL as follows [108]:

�(alarm→ (^(0,10)allclear ∨ ^{10}shutdown))

where (0, 10) states ‘within 10 seconds’ and {10} states in ex-
actly 10 seconds. MTL is interpreted over linearly ordered
time domains, which can be either discrete, dense or contin-
uous. The semantics varies depending on the choice of the
time flow. Assume that f : R>0 → 2P is a mapping from
a real-time point t to the set of propositions holding at time
t, where f has the finite variability property, i.e. the number
of discontinuous points of any state in any unit interval has
a fixed upper bound. The formal semantics based on dense
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time is given as follows [108]:

f |= ϕ1UIϕ2 iff ∃t ∈ I s.t. f t |= ϕ2 and (∀t′ ∈ (0, t)) f t′ |= ϕ1.

where f t(s) = f (t + s). The semantics based on timed words
can be formulated as follows [108]:

σ[i] |= ϕ1UIϕ2 iff ∃ j ≥ i s.t. σ[ j] |= ϕ2, (t j − ti) ∈ I and
(∀i ≤ k < j) σ[k] |= ϕ1

where a timed word σ is a finite or infinite sequence
(e0, t0), (e0, t1), ..., where ti ∈ R>0 and ei ∈ E (E is a set of
events).

In [103], dense time domain is considered. This allows
MTL to express properties which cannot be precisely ex-
pressed in a discrete-time domain, such as variables based
on continuous time (e.g temperature and pressure). [2] states
that both the satisfiability and model checking problems for
MTL over dense time domain are undecidable, but a deduc-
tive proof system exists. [103] provides a sound axiomatic
system for MTL.

Because of the undecidability results of MTL, researchers
have considered various ways to obtain decidability. One ap-
proach is to restrict time domain: [2] shows that in case of
discrete time both satisfiability and model checking problems
reduce to EXPSPACE-complete. [2] also introduces a deci-
sion procedure for MTL over discrete time domain, which
has 2-EXPTIME complexity, and a model checking algo-
rithm, which is exponential on the value of the largest time
constant. [109] finds that the satisfiability problem for MTL
over finite timed words is decidable, but it has non-primitive
recursive complexity. If we assume infinite words, both satis-
fiability and model checking problems become undecidable.

Another option to achieve decidability is to restrict the
syntax: MTL0,∞ [110] is a subset of MTL, which is obtained
by restricting the interval I such that either the start point of
I is 0, or the end point of I is ∞. This can be considered
as adding upper and lower bound timing constraints to the
operatorU. For example, the following MTL0,∞ formula

�(p→ ^(10,∞)q)

states that p must be followed by q in more than 10 seconds.
The satisfiability and model checking problems of MTL0,∞

are both PSPACE-complete [110].
In [110] MTL is restricted to “interval-based strictly-

monotonic real-time semantics”. This logic is called MITL,
which uses operators with a bound. The authors state a close
relationship between undecidability and punctuality proper-
ties7) over dense time. For this reason, point intervals are

7) A punctuality property states that the event B follows A in exactly t
seconds.

not allowed in MITL, and thus it cannot express punctuality
properties. For example, the formula

�(p→ ^{3}q)

is not a valid formula because equality constraints are not al-
lowed. [110] shows that the satisfiability and model check-
ing problems for MITL were shown to be EXPSPACE-
complete. Regarding the expressivity, [111] shows that MTIL
and MTL0,∞ have the same expressive power under dense se-
mantics; and [112] shows that MTIL is strictly more expres-
sive than MTL0,∞ under discrete semantics.

Recently, [109, 113] have shown that restricting MTL to
positive-length intervals is not necessary to achieve the de-
cidability. They show that “MTL over finitary event-based
semantics” are decidable without this restriction. [114] com-
pares the past and future fragments of MITL with respect to
the “recognizability of their models by deterministic timed
automata”. The authors show that “timed languages specified
by the past fragment of MITL, can be accepted by determin-
istic timed automata; but certain languages expressed in the
future fragment of MITL are not deterministic.”

[5] introduces the logic QTL, which is a variant of MITL.
QTL replaces U operator of LTL with UI , where I is an in-
terval of reals with endpoints in (0, t), where t ∈ N. In addi-
tion to future ‘until’U operator, QTL also includes past time
‘since’ operator. [5] shows that the satisfiability problem is in
PSPACE. [5] also shows that QTL has the same expressive
power as MITL with ‘past’ operator.

[115] obtains a decidable sub-logic of MTL, called
BMTL, where all constraining intervals have finite length.
For example, the formula

�(0,5)(p→ ^(0,10)q)

is a BMTL formula; but

�(p→ ^(0,10)q)

is not a BMTL formula, because � is not constrained. Both
satisfiability and model checking problems of BMTL are
EXPSPACE-complete. MITL and BMTL have different
strengths, and the expressive powers of these two logics are
not comparable.

[115] also defines another subset of MTL, called CFMTL,
which subsumes both MITL and BMTL. Namely, CFMTL
includes a dual until operator ŨI as well asUI , and formulas
satisfy the following conditions:

ϕ1 UI ϕ2: either I has a finite length or ϕ2 is MITL formula
ϕ1 ŨI ϕ2: either I has a finite length or ϕ1 is MITL for-
mulawhere ϕ1 ŨI ϕ2 ≡ ¬(¬ϕ1 UI ¬ϕ2). For example, the
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following formula

�(p→ (^(0,10)q ∨ ^{10}r))

is in CFMTL; but not in MITL because of the punctuality op-
erator {10} and not in BMTL because of the unbounded oper-
ator �. The satisfiability problem for CFMTL is undecidable;
but the model checking problem is EXPSPACE-complete.

We finally report some comparison results. [116] has
proven that the logic TPTL is strictly more expressive than
MTL. This can be shown through the following real-time
specification: “within 5 time units after the occurrence of a
problem, the system triggers the alarm and then enters a fail-
safe mode”, which cannot be expressed in MTL, but can be
expressed in TPTL as follows [116]:

�x.(problem→ x.^(alarm ∧ ^ ( f ailsa f e ∧ x ≤ 5))).

5.3 Real-time Extensions of CTL

In [102] a real-time extension of CTL, called RTCTL, was
introduced. RTCTL has “point-based strictly-monotonic
integer-time semantics” [117]. The logic includes a metric
for time, it can therefore express quantitative temporal as-
sertions, such as “time-critical correctness properties of pro-
grams”. RTCTL replaces the until operator U of CTL with
the ‘bounded-until’ U≤k operator, where k is a constant, the
semantics of which is defined as follows:

M, σ |= ϕ1U
≤kϕ2 iff (∃i)0 ≤ i ≤ k s.t. M, σ[i] |= ϕ2 and

(∀ j < i)M, σ[ j] |= ϕ1

Intuitively, ϕ1U
≤kϕ2 holds at the current state if ϕ2 is true

within k steps, and ϕ1 is true until then. For example, the
following formula

∀(p U≤5 q)

asserts that p must be followed by q within 5 seconds. As
in CTL, the underlying time is discrete and RTCTL formulas
are interpreted over discrete transition systems.

The satisfiability problem of RTCTL is EXPTIME-
complete without ‘equality’8) and 2-EXPTIME-complete
with ‘equality’ [102]. The model-checking problem is linear
in the sizes of both formula and model [102].

[118] introduced the logic TCTL, which is a real-time ex-
tension of CTL, where constraints on duration are added to
temporal operators. Similar to the logic RTCTL, TCTL re-
places the CTL operator U with U∼k, where ∼∈ {<, >,≤,≥
,=} and k ∈ N. As can be seen, TCTL employs a richer set of

8) That is, the temporal operators of the formU=k are not allowed.

relational operators than RTCTL. The operators ^∼c and �∼c

can be derived in usual way. These operators are extensions
of the standard ^ and � operators with timing constraints.
For example, the formula ∃^≤5on states that “the system will
be in the ‘on’ state within 5 time units”.

Unlike RTCTL, TCTL employs a dense-time, and its for-
mulas are interpreted over dense time structures, which have
an infinite sequence of states. A path σ of a dense-time struc-

ture is defined as an infinite sequence s0
ξ0
→ s1

ξ1
→ s2

ξ2
→ . . . ,

where ξi ∈ R+ (for i ∈ N) denotes time passage. As defined
before, the ith element of σ is denoted by σ[i]. The semantics
ofU∼k operator can then be defined as follows:

M, σ |= ϕ1U
∼kϕ2 iff

∃i ≥ 0 s.t. M, σ[i] |= ϕ2,T (σ[0]
σ
7→ σ[i])∼ k, and

(∀ j < i)M, σ[ j]) |= ϕ1

where T (σ[0]
σ
7→ σ[i]) denotes the elapsed time of reaching

a state σ[i] from a state σ[0] within the path σ, which is the
sum of the delays along the path. Intuitively, the formula
ϕ1U

∼kϕ2 holds if ϕ2 is true at some time point in a path, the
elapsed time of reaching this point within the path satisfies
∼ k, and at all previous time points ϕ1 is true. Here we give an
example to show how the operators are nested. The formula

∀�(p→ ∀^≥5q)

states that after staying in the p−state the system must switch
to the q−state within 5 seconds.

Due to its dense time semantics, TCTL can model phe-
nomena which require continuous-time in nature. Although
discrete-time semantics is sufficient for synchronous systems,
dense-time models asynchronous systems (e.g. distributed
systems) more accurately, because these systems employ
components which may have different clock cycles. There-
fore, it is more adequate to use dense time (or continous time)
than discrete time.

The satisfiability checking of a TCTL formula is unde-
cidable if it is interpreted over dense time domains; but the
model checking problem still remains decidable [118], which
finds that the model checking complexity of TCTL is “expo-
nential in the number of clocks, exponential in the length of
timing constraints, linear in the size of the node-transition
graph, linear in the number of operators in the formula and
exponential in the length of the subscripts in the formula”.
[118] also shows that the upper bound can be improved
to PSPACE, and the model checking problem is PSPACE-
complete. [119] considers the model checking problem of
different subclasses of TCTL.
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Another branching time logic called TPCTL is introduced
in [120]. TPCTL is a probabilistic and real-time extension
of CTL, where the ‘until’U modality of CTL is replaced by
U<k
wp, where w∈ {>,≥}, k ∈ N and 0 ≤ p ≤ 1. U<k

wp informally
means that ‘within k time units with a probability at least p’.
TPCTL can express both hard and soft deadline properties,
such as ‘an error occurs with a probability at least 0.5 within
10 seconds’, which is expressed in TPCTL as follows:

∃(true U<10
≥0.5 err).

TPCTL semantics is defined over non-deterministic proba-
bilistic transition systems, and the underlying time structure
is represented by discrete time. TPCTL can also be regarded
as a probabilistic extension RTCTL. The main difference is
that they are interpreted over different structures. TPCTL is a
decidable logic, and the model checking problem was proven
to be polynomial [121].

Recently, another quantitative extension of CTL, called
CCTL, was introduced in [122], where CTL is extended with
counting quantification (denoted by ]) and formulas are in-
terpreted over infinite discrete words. For example, the state-
ment ‘p eventually becomes true, and until then q holds at
most 3 times’ is formally expressed as follows:

∀� ∃^[]q≤3] p

where p and q are atomic propositions, and ]q ≤ 3 is a con-
straint over the number of states (here ]q represents the num-
ber states where q is true).

[122] provides an analysis of the expressiveness and the
complexity of the model-checking problem for a range of
quantitative extensions. Depending on the extension, differ-
ent complexity results are obtained. If temporal operators are
restricted to atomic constraints (which has the form

∑
i ]ψi ∼

c) or diagonal constraints (which has the form
∑

i ∓]ψi ∼ c),
where c ∈ N and ∼∈ {<, >,=,≤,≥}, then a polynomial model
checking complexity is obtained. If the Boolean combina-
tions of atomic constraints are allowed, the model checking
becomes NP-complete. If the Boolean combinations of di-
agonal constraints are allowed, the model checking becomes
undecidable. If the freeze variables are used instead of count-
ing constraints, then the model checking problem becomes
PSPACE-complete.

5.4 Real-Time Logic (RTL)

RTL, introduced in [123], extends first-order temporal logic
with a set of constructs to reason about events and their re-
lations. It provides a suitable syntax to specify relative and

absolute timing of events. The logic includes a so-called oc-
currence function which maps each event to a time stamp.
The existence of an occurrence function allows RTL to ex-
press periodic and non-periodic real-time properties. In RTL,
time is measured with an ‘absolute’ clock whose value can be
referenced in a formula.

RTL extends integer arithmetic with operators to reason
about occurrences and relations of events. An action A is rep-
resented by two events: ↑ A, denoting the start of the action
A, and ↓ A, denoting the finish of the action A. Any exter-
nal event B is prefixed by a special symbol ΩB. The occur-
rence function @ assigns time values to event occurrences.
Namely, @(a, i) denotes the time of the ith occurrence of the
event a.

RTL formulas are formed by state predicates, path quan-
tifiers (∃,∀) and first-order logic connectives, where a state
predicate asserts the truth value of a state attribute during
an interval, and it is constructed from constants, variables
(events, actions), relational operators (<, >,=,≤,≥), arith-
metic operators and the occurrence function [124]. Since ab-
solute clocks are used, and clock values can be explicitly ref-
erenced in formulas, RTL can be used to express ordering and
quantitative temporal constraints. One disadvantage of this
functionality is that using explicit reference to time results in
complex formulas difficult to understand. For example, the
following RTL formula

∀i [@(ΩB, i) < @(↑ A, i) ∧@(↓ A, i) ≤ @(ΩB, i) + tb]

states that the action A is executed just after the external event
B occurs, and every execution of the action A is finished
within tb seconds after B occurs [124].

RTL is defined over a linear sequence of discrete time
points, which are bounded in the past, but unbounded in the
future. [2] shows that under these semantics RTL is undecid-
able. Some decidable fragments of have been defined, such
as ‘path RTL’ [125] and ‘extended path RTL’ [126], which
can only express timing constraints between two events. Re-
cently, a more expressive decidable fragment, called LRTL,
has been introduced. LRTL subsumes both ‘path RTL’ and
‘extended path RTL’ and it can express timing constraints of
more than two events; but it cannot specify ‘arithmetic ex-
pressions with a function may take an instance of itself as an
argument’ [127].

Early model checking procedures devised for RTL in gen-
eral are not practical. To increase the efficiency some meth-
ods were deployed. In [125], RTL formulas are re-structured
into “computational graphs” using a formalism called “mod-
echarts”, which resulted in “an exponential time decision pro-
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cedure (in the worst case)”. [126] uses decomposition tech-
niques (decomposing the constraint graph to subgraphs) to
improve model checking. [127] improves efficiency by using
linear algebra techniques rather than computational graphs.
This method has polynomial-time complexity.

5.5 Real-Time Temporal Logic (RTTL)

RTTL [128,129] is a first-order explicit clock logic. Discrete
linear time points are employed as temporal structure. The
sequence of time points are bounded in the past, but unlimited
in the future. In an RTTL formula the clock variable t is
explicitly referred. As an example, “the bounded response
time” is expressed in RTTL as follows [3]:

�T [(red ∧ t = T )→ ^(green ∧ T + 3 ≤ t ≤ T + 5)]

which means that “if the traffic light is red at time T, then
eventually within 3 to 5 ticks from T the light must turn
green”. Above t is the clock variable, and T is time variable,
which is quantified in the formula.

RTTL provides an explicit reference to clock value and
indirect quantification to time values. This results in a very
expressive language, and allows writing very complex quan-
titative constraints. This makes this logic very useful in real-
time system specification. However, undecidability is a major
problem. In addition, due to explicit clock reference, formu-
las become too complex and difficult to understand.

In addition to discrete semantics, RTTL formulas can be
also interpreted over a dense time domain. The logic is unde-
cidable in both discrete and dense semantics [2]. The model
checking in RTTL is also undecidable. RTTL has a sound
proof system [129].

Although RTL is not a more expressive logic than RTTL,
it can express certain properties more succinctly than RTTL;
but RTL cannot easily represent fairness properties and data
variables [129]. Some decidable fragments of RTTL are pre-
sented in the literature. Some well-known fragments are as
follows: XCTL [130] is a propositional fragment of RTTL.
It is an explicit clock logic, and it is interpreted over discrete
time. XCTL has a less restricted quantification than RTTL
in the sense that time variables can be quantified with only
one outermost quantification; but the syntax of XCTL allows
expressions with arithmetic operations. In [131] it is shown
that XCTL and MTL cannot be compared; namely, for both
logics, there is a property which is expressible in one logic,
but not in the other [3]. The satisfiability and model check-
ing problems for XCTL with dense time semantics are both
undecidable [130]. However, these problems are PSPACE-

complete for XCTL without quantification [130]. [130] pro-
vides a “single exponent decision procedure for the validity
of XCTL formulas” and a “double exponent procedure” for
XCTL model checking.

5.6 Real-Time Interval Logic (RTIL)

RTIL [16] is a propositional real-time interval logic with met-
ric for time. It can express event properties to reason about
events and their relations. It integrates both ‘time-stamps’
and ‘realtime’, and therefore it can specify properties like ‘the
value of a certain variable is 1 between the time value 2 and
5’. Note that this property cannot be specified by RTL and
RTTL unless these time points coincide with an occurrence
of an event.

RTIL allows assigning numerical values to interval bounds
and to measure interval durations. It also allows quantifi-
cation over finite domains. Intervals are sequences of dis-
crete points. Time points can be specified explicitly or rel-
ative to the beginning of the interval [1]. These character-
istics make RTIL to be useful in formalise specifications in
a neater syntax. For example, the temporal constraint “for
each occurrence of an event B which happens at a time in-
stant t0, the propositions startA and endA hold (marking an
interval [startA, endA] at which A is true), and the interval
[startA, endA] is subsumed by the interval [t0, t0 + tb] (where
t0 ≤ startA ≤ endA ≤ t0 + tb)” is specified in RTIL as fol-
lows [1]:

� [�B ↪→ tb]∗ (�startA→ �endA)

where �A extracts the time point at which A becomes true,
and the operator ∗ means there exists a subinterval. RTIL is a
highly undecidable logic.

5.7 Tempo Reale ImplicitO (TRIO):

TRIO [132] is an extension of first-order logic with metric op-
erators, which allows expressing quantitative real-time prop-
erties such as distance between two events and length of an
interval. It is interpreted over linearly and totally ordered
time domains, which can have a variety forms, such as dense,
finite discrete, infinite discrete etc.

In addition to standard FOL operators and quantifications,
the TRIO alphabet includes two temporal operators associ-
ated with a time metric: Futr(A, t) and Past(A, t), which de-
note that A occurs at the time instant t in the future and past,
respectively. The temporal operators ‘since’, ‘until’, ‘some-
time’ and ‘always’ can be derived from these two operators.
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TRIO allows quantification on temporal variables and al-
lows expressing the ordering (relation) between temporal
variables [1]. For this reason, TRIO formulas are, in gen-
eral, complex and the readability is hard. The specification
example in the previous section can be written in TRIO as
follows [1]:

Alw(B→ ∃t((0 < t < tb) ∧ Futr(endA, t)∧
∃t′(0 < t′ < t ∧ Futr(startA, t′)))

where Futr(A, t) denotes that A occurs at a time instant t in
the future, and Alw states that A holds in every time instant
of the temporal domain, which is formally defined as

∀t(t > 0→ Futr(A, t)) ∧ A ∧ ∀t(t > 0→ Past(A, t)).

Since TRIO is an extension of first-order logic, it is unde-
cidable. Satisfiability can be achieved if a restriction is put on
variable valuation domains and temporal domains. Namely,
if the temporal domain is restricted to limited intervals of in-
teger values, and every variable valuation domain is assumed
finite, then the satisfiability problem of TRIO becomes decid-
able [132].

Since TRIO does not have an axiomatic system, deductive
verification techniques cannot be applied. However, a spe-
cific model checking method can be defined for this logic.
TRIO can be considered as an executable logic. Therefore,
the model of a system can be constructed using TRIO for-
mulas. Then, “histories of system variables” can be checked
against a formal specification [1].

5.8 Temporal Interval Logic with Compositional Operators
(TILCO):

TILCO [133, 134] is an extension of first-order logic with
temporal operators. It is an interval logic; that is, the logic
is interpreted over linear intervals. TILCO does not provide
explicit temporal quantification on time points; but operators
quantify over intervals.

TILCO provides metric for time and can specify qualita-
tive and quantitative timing constraints. Namely, end points
of an interval at which an action or an event holds can be
specified with respect to that of other events of actions; in ad-
dition, this can be done with an absolute numerical measure.
This makes TILCO a very expressive logic, and very useful
to specify complex behaviours of real-time systems.

In TILCO, primitive temporal objects are intervals, which
are linear and composed of discrete time points. Intervals
are constructed by the delimiters (, ), [, ]. In addition to the
standard operators, TILCO includes the following temporal
operators:

the universal quantification @ over intervals, ? existen-
tial quantification over intervals, Until and Since.

ϕ@[t, t′] is true if the formula ϕ is true at every point in the
interval [t, t′], and ϕ?[t, t′] is true if the formula ϕ is true at
some point in the interval [t, t′]..

Since TILCO is an interval-based logic, it is more natu-
ral to specify temporal constraints with time bounds. There-
fore, TILCO is very efficient to express “invariants, prece-
dence among events, periodicity, liveness and safety condi-
tions, etc.” [134]. The specification in the previous section,
i.e. the action A is executed just after the external event B
occurs, and every execution of the action A is finished within
tb seconds after B occurs, can be expressed in TILCO as fol-
lows [1]:

B→ endA?(0, tb) ∧ ¬Until(endA,¬startA)

The logic is unsurprisingly undecidable, because it extends
first-order logic. However, a decidable subset can be obtained
if the variables with finite domain are binded by nontempo-
ral quantification. The complexity of validity checking for
this subset is exponential in the worst-case [134]. [133, 135]
provide a sound sound deductive system. This proof system
is used along with the Isabelle theorem prover [136] to pro-
vide an automatic proof tool for TILCO. [137] devices a tool
which executes TILCO specifications and generate program-
ming language source codes automatically. A property to be
executed is assumed to be a verified and validated specifica-
tion.

In [138], TILCO has been extended with new syntax and
semantics of quantifications @ and ?, where dynamic inter-
vals are used, counting of events over intervals are possible,
and Until and Since operators are replaced with a simpler
syntax [139]. [140] also extends TILCO, which supports pro-
cess composition and decomposition by allowing the specifi-
cation of communicating TILCO processes [139].

6 Interval Temporal Logics

Interval temporal logics are temporal logics which allow
reasoning about periods of time. Since representation for-
malisms based on intervals are more expressive than for-
malisms based on time points, the interval-based scheme
provides us with a richer representation formalism than the
point-based approach. Intervals logics can also be used in
reasoning about functional requirements of real-time sys-
tems.
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In this section, we present a selection of well-known in-
terval temporal logics. In the literature, many similar logics
can be found; but most of these logics are generalisations or
specialisations of the ones we will discuss below.

6.1 Propositional Interval Temporal Logics

In this section we will present the well-known propositional
interval logics, which involve unary or binary modal opera-
tors, and whose semantic structures are over partial-orderings
with linear interval property, i.e. every interval within partial
ordering is linear.

The syntax of propositional interval temporal logics is
constructed from the following: the set of propositional vari-
ables, the truth values, the classical operators (boolean oper-
ators, negation, etc.), and a set of temporal operators defined
for each logic.

6.1.1 Interval Structures

Assume T is a set of time points and T = 〈T, <〉 is a strict
partial ordering. An interval in T is defined as a pair [t1, t2]
with t1, t2 ∈ T . [t1, t2] is called a strict interval if t1 < t2, and
a non-strict interval if t1 ≤ t2. Intervals of the form [t1, t1] are
called point intervals.

Let I(T) be a set of intervals on T. We denote the set of
strict intervals on T as I(T)−, and the set of all (strict and
point) intervals on T as I(T)+. Also, we denote an interval
structure as 〈T, I(T)〉.

In this section we assume two different natural seman-
tics for interval temporal logics: a strict interval structure,
a tuple 〈T, I(T)−〉, and a non-strict interval structure, a tuple
〈T, I(T)+〉. Both semantics have linear interval property (see
Section 2).

6.1.2 The Logic HS

The logic HS (Halpern and Shoham) [17] is a relatively ex-
pressive logic, which is one of the mostly known proposi-
tional interval logics. Formulas are interpreted over intervals
rather than time points. HS introduces the notion of current
interval. All modal operators of HS are unary and qualitative,
which can access the current and other intervals.

The formulas of HS are recursively defined as follows:

ϕ ::= p | ¬ϕ | ϕ∧ψ | 〈A〉ϕ | 〈B〉ϕ | 〈E〉ϕ | 〈Ā〉ϕ | 〈B̄〉ϕ | 〈Ē〉ϕ

where p ∈ AP (AP is a set of propositions). Informally
speaking, if 〈X〉ϕ holds at the current interval, where X ∈

{A, B, E, Ā, B̄, Ē}, then for X = A, ϕ holds at some inter-
val starting immediately after the current interval ends; for
X = B, ϕ holds at some interval starting as the current inter-
val starts and ending during the current interval; for X = E,
ϕ holds at some interval starting during the current interval
and ending as the current interval ends; for X = Ā, ϕ holds
at some interval ending just before the current interval starts;
for X = B̄, ϕ holds at some interval that the current interval
starts with; and for X = Ē, ϕ holds at some interval that the
current interval ends with. We remark that Allen’s all rela-
tions [18] between two distinct intervals can be expressed by
means of these modal operators.

Given that 〈T, I(T)+〉 is a non-strict interval structure
with linear interval property, a model M is a tuple M =

〈T, I(T)+, L〉, where L : AP 7→ 2I(T)+

maps each proposition
into the set of intervals where it holds. The formal semantics
of HS formulas is then defined as follows [17]:

M, [t1, t2] |= 〈A〉ϕ iff (∃t3 : t2 < t3) s.t. M, [t2, t3] |= ϕ

M, [t1, t2] |= 〈B〉ϕ iff (∃t3 : t1 ≤ t3 < t2) s.t. M, [t1, t3] |= ϕ

M, [t1, t2] |= 〈E〉ϕ iff (∃t3 : t1 < t3 ≤ t2) s.t. M, [t3, t2] |= ϕ

M, [t1, t2] |= 〈Ā〉ϕ iff (∃t3 : t3 < t1) s.t. M, [t3, t1] |= ϕ

M, [t1, t2] |= 〈B̄〉ϕ iff (∃t3 : t2 < t3)M, [t1, t3] |= ϕ

M, [t1, t2] |= 〈Ē〉ϕ iff (∃t3 : t3 < t1)M, [t3, t2] |= ϕ

The logic HS has enough expressive power to distinguish
different temporal structures, such as of discrete, continuous,
bound or linear time structures. These are formally shown as
follows [17]:

– length0 ≡ [B]⊥
– length1 ≡ 〈B〉> ∧ [B]length0 (length1 holds at intervals

with no proper subintervals.)
– dense ≡ ¬length1
– discrete ≡ length0∨length1∨(〈B〉length1∧〈E〉length1)
– unbound ≡ 〈A〉 > ∧ 〈Ā〉>
– linear ≡ (〈A〉ϕ→ [A] (ϕ ∨ 〈B〉ϕ ∨ 〈B̄〉ϕ))∧

(〈Ā〉ϕ→ [Ā](ϕ ∨ 〈E〉ϕ ∨ 〈Ē〉ϕ))

where [X]ϕ is defined as ¬〈X〉¬ϕ for X ∈ {A, Ā, B, B̄, E, Ē}.
Here, length0 informally says that the interval is actually a
point; length1 asserts that there is no subinterval within the
interval (i.e. there is no third point between the endpoints
of the interval); dense asserts that subinterval exists (i.e. be-
tween any two points within the interval there is a third point);
unbound asserts that for any time point with the interval we
can find a predecessor and a successor; and linear asserts that
any two points with the interval can be comparable.

HS is a suitable formalism to represent qualitative proper-
ties regarding continuous processes which assert continuous
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change of time and make statements about events which re-
quire intervals rather than time points, e.g. ‘a warning is re-
ceived until the water level becomes normal’. The logic can
also be used in reasoning about automatic planning; namely it
can express properties regarding carrying out tasks, resource
management, interacting with agents, etc. For example, the
properties like “if a robot executes the charge-battery routine
then at the beginning of the following execution of the nav-
igate routine its batteries will be fully charged” [17] can be
expressed in HS.

HS is a quite expressive logic due to its large modal oper-
ator set. However, it is not axiomatisable and is highly unde-
cidable. The following theorems are taken from [17]:

• “The validity problem interpreted over any class of or-
dered structures with an infinitely ascending sequence is
r.e.-hard (Thus, in particular, HS is undecidable for the
class of all (non-strict) models, linear models, discrete
linear models, dense linear models and unbounded lin-
ear models).”

• “The validity problem interpreted over any class of
Dedekind complete ordered structures having an in-
finitely ascending sequence is ∏1

1-hard (For instance, the
validity in any of the orderings of the natural numbers,
integers, or reals is not recursively axiomatisable. Un-
decidability even occurs in the classes of structures with
no infinitely ascending sequences).”

• “The validity problem interpreted over any class of
Dedekind complete ordered structures having unbound-
edly ascending sequences is co-r.e.-hard.”

The undecidability results given above are based on the
observation that HS formulas encode the computation of a
Turing machine. In [141] undecidability was proved by
means of a tiling problem.

In [142] some interesting results for the logic HS were pre-
sented. By using a geometrical representation for the modal-
ities a sound and complete proof system for HS was intro-
duced. [142] also proved that HS is a more expressive logic
than any other temporal logic based on “linear orderings of
time instants”.

In [17] a translation machinery that converts an HS for-
mula to its equivalent first-order formula on a corresponding
first-order structure was provided. Such a translation is useful
to reduce problems to well-known results in first-order logic.

In the literature some sublogics of HS are introduced. The
logic BE is a fragment of HS containing the modal operators
〈B〉 and 〈E〉. BE can express the conditions on the underly-
ing interval structure as with HS, except the formula linear.

In [143] the satisfiability problem for BE formulas interpreted
over all non-strict linear structures was found to be undecid-
able.

We cannot mention the other studied fragments of HS due
to the space limitation. We refer the reader to the recently
published survey [144] on decidable and undecidable frag-
ments of the logic HS.

6.1.3 The Logic CDT

The logic CDT was introduced by Venema in [19]. It is one
of the most expressive propositional interval logic over linear
orderings [7]. CDT includes the binary modal operators C,D
and T . The formal semantics over non-strict linear structures
is defined as follows:

M, [t1, t2] |= π iff t1 = t2
M, [t1, t2] |= ϕCψ iff (∃t3 : t1 ≤ t3 ≤ t2) s.t. M, [t1, t3] |= ϕ

andM, [t3, t2] |= ψ

M, [t1, t2] |= ϕDψ iff (∃t3 : t3 ≤ t1) s.t. M, [t3, t1] |= ϕ and
M, [t3, t2] |= ψ

M, [t1, t2] |= ϕTψ iff (∃t3 : t2 ≤ t3) s.t. M, [t2, t3] |= ϕ and
M, [t1, t3] |= ψ

whereM is a tupleM = 〈T, I(T)+, L〉. Informally speaking,
ϕCψ holds at the current interval, if it can be chopped into
two intervals where ϕ holds at the first one and ψ holds at
the second one; ϕDψ holds at the current interval, if there
exist two intervals I at which ψ holds and J at which ϕ holds
such that the current interval starts during I and ends with
I, and the current interval is met by J (i.e. the end of J is
the beginning of the current interval); and ϕTψ holds at the
current interval, if there exist two intervals I at which ψ holds
and J at which ϕ holds such that the current interval starts
with I and ends during I, and the current interval meets J
(i.e. the end of the current interval is the beginning of J).

These operators subsume all unary modalities of proposi-
tional interval logics of Allen’s interval relations [145]:

〈B〉ϕ ≡ ϕ C (¬π) 〈B〉 ≡ (¬π) T ϕ

〈E〉ϕ ≡ (¬π) C ϕ 〈E〉 ≡ ϕ D (¬π)
〈A〉ϕ ≡ (¬π ∧ ϕ) T > 〈A〉 ≡ (¬π ∧ ϕ) D >

CDT can distinguish different classes of temporal struc-
tures, such as discrete, continuous, bound, linear or complete
time structures. For example, the discreteness of an interval
can be specified in CDT as follows:

(length1 C >) ∧ (> C length1).

Since CDT is more expressive than, all properties ex-
pressed in HS can also be expressed in CDT, e.g. qualitative
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properties regarding continuous processes, statements about
events which require intervals, automatic planning, etc.

[19] gives an axiomatic system which is sound and com-
plete for the logic CDT which is interpreted over non-strict
linear models. This axiomatic system can be extended for the
classes of discrete linear orderings, dense linear orderings,
etc. [7]. Since CDT subsumes HS, the satisfiability problem
for “CDT is not decidable over almost all classes of linear
orderings, including discrete, dense, continuous, etc.” [7].

The partial-order semantics of CDT has been recently
studied in [146], where the logic BCDT+ is introduced.
BCDT+ uses the language of CDT with partial-order seman-
tics of linear intervals. Finite axiomatizability of CDT and
its single-modality fragment, and decidability of these possi-
ble fragments were open for a long time. Recently, [147] has
shown that “almost all fragments of CDT, containing at least
one binary operator, are neither finitely axiomatizable with
standard rules nor decidable”. This result fills an important
gap in the spectrum.

6.1.4 The Logic PNL

Propositional Neighbourhood Logic (PNL) is the proposi-
tional fragment of First-Order Neighbourhood Logic intro-
duced in [148]. It has been studied on both strict and non-
strict linear structures in [149]. The language with non-strict
semantics is called PNLπ+ including the modalities ^r (met
by, i.e. right neighbouring) and ^l (meets, i.e. left neighbour-
ing), and the model constant π (representing point intervals).
The modal operators can have either strict or non-strict se-
mantics.

Given that M = 〈T, I(T)+, L〉, the formal (non-strict) se-
mantics of PNLπ+ formulas is then defined as follows:

M, [t1, t2] |= π iff t1 = t2
M, [t1, t2] |= ^rϕ iff (∃t3 ≥ t2) s.t. M, [t2, t3] |= ϕ

M, [t1, t2] |= ^lϕ iff (∃t3 ≤ t1) s.t. M, [t3, t1] |= ϕ

Assume PNL+ denotes the non-strict PNL without the
modal constant π, and PNL− denotes the strict PNL without
the modal constant π . The logic PNLπ+ subsumes both PNL+

and PNL− [145].
Given that formulas are interpreted over strict linear mod-

els, PNL− has enough expressive power to distinguish the dif-
ferent classes of linear structures, such as discreteness, con-
tinuity, boundness, or completeness. For example, unbound-
ness and density can be specified in PNL− as follows [7]:

– unbound ≡ �rϕ→ ^rϕ

– dense ≡ (^r^rϕ→ ^r^r^rϕ) ∧ (^r�rϕ→ ^r^r�rϕ)

PNL has a reach syntax, which is useful to specify qualita-
tive properties regarding planning, natural language process-
ing, digital systems etc. Here we give an example property
from digital systems. The following PNLπ+ formula

(¬π ∧ p)→ ^r(¬π ∧ ^r(¬π ∧ q))

asserts that “the output q of a device to strictly follow the
input p” [149]. Here, p and q are constraint to the instanta-
neous states. For this reason, the intervals are not to be al-
lowed be point intervals, which was done using the negation
of the modal constant π.

In [149] several sound and complete axiomatic systems
were provided for various classes of models. In addition to
strict linear models [149] also provides sound and complete
axiomatic systems for non-strict linear structures, complete
unbounded linear structures, unbounded structures, dense
structures, discrete structures, dense unbounded structures
and discrete unbounded structures. As for decidability re-
sults, [150] shows that the satisfiability problem for PNLπ+,
PNL+ and PNL− over the integers is NEXPTIME-complete.
[150] introduces a sound and complete tableau algorithm,
and shows that it is optimal. In [151], the expressive power
of PNLπ+, PNL+ and PNL− is compared, and it is shown
that PNLπ+ is strictly more expressive than PNL+ and PNL−.
[151] proves that “the satisfiability problem for PNLπ+ over
the class of all linear orders, as well as over some natural sub-
classes of it, such as the class of all well-orders and the class
of all finite linear orders, can be decided in NEXPTIME by
reducing it to the satisfiability problem for the two-variable
fragment of first-order logic over the same classes of struc-
tures”.

An important fragment of the PNL is the Right Proposi-
tional Neighbourhood Logic (RPNL) which is based on the
right neighbourhood relation between intervals. The lan-
guage with non-strict semantics is called RPNLπ+. The non-
strict fragment without the modal constant π is denoted by
RPNL+, and the strict fragment without the modal constant
π is denoted by RPNL−. As for decidability results, in [152]
an EXPSPACE tableau-based decision procedure is devised
for RPNL− interpreted over natural numbers. In [153] an-
other NEXPTIME decision procedure is developed. This
method works for all classes of RPNL, which are RPNLπ+,
RPNL+, and RPNL−, interpreted over natural numbers. [153]
also proves the optimality of the decision procedure.

Recently, PNL has been extended with metric operators.
[154] introduces the logic MPNL which extends PNL with
a new operator len∼k (where ∼∈ {<, >,=,≤,≥}) which de-
notes a metric constraint for the current interval. For exam-
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ple, len=2 imposes the current interval to be have a length 2.
Constraining the length of the intervals allows writing quan-
titive properties, such as the formula

^r(len=k ∧ ^r(len=0 ∧ p))

asserting that p holds at some future point within a distance
k from the current interval. [154] show that MPNL is decid-
able in 2-EXPTIME and “expressively complete with respect
to a well-defined sub-fragment of the two-variable fragment
of first-order logic for linear orders with successor function,
interpreted over natural numbers”.

6.1.5 Subinterval Logics

For many years, the high computational complexity of inter-
val logics (such as HS and CDT) restricted these logics in
practical applications and semantic investigation. Recently,
the trend has shifted to finding expressive decidable frag-
ments. The most important decidable fragments are PNL and
its fragments, logics of neighbourhood [155], sub-interval
and superinterval structures. In particular, the logic of sub-
intervals has received more attention. It was first studied
in [20], where the subinterval relation ⊆ is considered. The
logic includes the modal operator 〈D〉, which allows looking
inside the current interval [17]. The semantic definition of
modal operator 〈D〉 is defined as follows:

M, [t1, t2] |= 〈D〉ϕ iff ∃[t′1, t
′
2] ⊆ [t1, t2] s.t.M, [t′1, t

′
2] |= ϕ.

〈D〉ϕ informally means that ϕ is true during the current inter-
val. When the strict semantics is considered and formulas are
interpreted over the rational numbers or the class of all lin-
ear orderings, the logic D becomes equivalent to the standard
modal logic S4; when formulas are interpreted over integers,
the logic D becomes equivalent to the modal logic S4 with the
axiom [D] ([D] (p → [D]p) → p) → p, expressing that ⊆ is
well-formed [145]. The satisfiability problem for both S4 and
S4 with the above axiom is known to be PSPACE-complete
( [156, 157]). In [158] the logics of subinterval structures
over dense linear orders is shown to be decidable. [158] also
provides a tableau-based decision procedure, which is shown
to be PSPACE-complete. [159] shows that “the satisfiability
problem for interval logics of the reflexive sub-interval and
super-interval relations interpreted over finite linear orders is
PSPACE-complete”.

The decidability of subinterval logics depends not only on
the choice of the domain, but also on the definition of the
semantics of the operators. In this respect, some negative
results have been published in [160], where the authors show

that the logic D is undecidable when interpreted over the class
of finite orderings and over the class of all discrete orderings.
The undecidability results from [160] holds when the subin-
terval relation is unreflexive (i.e. [t′1, t

′
2] is a strict subset of

[t1, t2]) or when it corresponds to the Allen’s relation “dur-
ing" (t1 < t′1 and t′2 < t2).

Subinterval logics have also been investigated in natural
language discourse. In [161] a sub-interval logic, which is
used in capturing temporal prepositions of a natural language,
is introduced. In [162] a quantitative extension of this logic is
represented. Both logics are decidable, and their satisfiability
problems are in NEXPTIME.

6.2 First-Order Interval Temporal Logics

First-order interval temporal logics were originally defined
to formally specify and verify hardware components of real-
time systems. ITL is the most commonly known first-order
interval temporal logic. Numerous extensions of ITL, such
as Duration Calculus [163], Neighbourhood Logic [163] etc.,
have been introduced. Below we will review well-known
first-order interval temporal logics.

6.2.1 The Logic ITL

ITL was first introduced in [13] (which was “interpreted over
discrete linear orderings with finite time intervals” [7]). ITL
syntax and semantics can be defined as follows [6, 13]:

The alphabet is constructed from the following: an infinite
set of global variables x, y, z, ..., an infinite set of temporal
variables t, t′, ..., an infinite set of global function symbols
f n, gm, ..., where f n is a function of arity n and gm is a func-
tion of arity m, an infinite set of predicate symbols Pn,Rm, ...,
where Pn is a predicate of arity n and Rm is a predicate of
arity m, and an infinite set of propositions p, q, ... . The set of
terms θ is defined by:

θ ::= x | t | f n (θ1, ..., θn)

The formulas of ITL can be recursively defined as follows:

ϕ ::= p | Pn (θ1, ..., θn) | ¬ϕ | ϕ ∧ ψ | ϕ_ψ | (∃x)ϕ

where _ denotes the chop operator (similar to CDT’s chop
operator C ). Let ∆ be the set of temporal variables, AP
be the set of temporal propositional letters and I(R) be the
set of all bounded and closed intervals of real numbers
{[t1, t2] : t1 ≤ t2 ∧ t1, t2 ∈ R}. The meanings of temporal vari-
ables and propositions, i.e. the interval-dependent symbols,
are given by the interpretation:

J ∈ (∆→ (I(R)→ R)) ∪ (AP→ (I(R)→ {>,⊥}))



20
Savas KONUR. A survey on temporal logics for specifying and verifying real-time systems

where J (t) ([t1, t2]) ∈ R for all t ∈ ∆, J (`) ([t1, t2]) = t2 − t1
(` is a special temporal variable denoting the interval length),
J (p) ([t1, t2]) ∈ {>,⊥} for all p ∈ AP.

A valuation is a mapping L which associates a real number
with each global variable. Given a variable x, two valuations
L and L′ are said to be x − equivalent if L (y) = L′ (y) for
every global variable y which is different from x.

Assume that a total function f̄ n∈ Rn→R is associated with
each n-ary function symbol f n. The semantics of a term θ at
an interval [t1, t2] under a valuation L is denoted byJL

[t1,t2] (θ).
The function JL

[t1,t2] is recursively defined as follows:

– for a global variable x, JL
[t1,t2] (x) = L (x)

– for a temporal variable t, JL
[t1,t2] (t) = J (t) ([t1, t2])

– for a term θ of the form f n (θ1, ..., θn), JL
[t1,t2] (θ) =

f̄ n (α1, ..., αn)

where αi = JL
[t1,t2] (θi) for 1 ≤ i ≤ n.

Assume that a total function Ḡn∈ Rn→{>,⊥} is associated
with each n-ary relation symbol Gn. Let M = 〈J , L〉 be a
model for ITL. The formal semantics of ITL formulas is then
defined as follows:

M, [t1, t2] |= Gn (θ1, ..., θn) iff Ḡn (α1, ..., αn) = > where
αi = JL

[t1,t2] (θi) for 1 ≤ i ≤ n
M, [t1, t2] |= ϕCψ iff (∃t3 : t1 ≤ t3 ≤ t2) M, [t1, t3] |= ϕ and

M, [t3, t2] |= ψ

M, [t1, t2] |= (∃x)ϕ iffM, [t1, t2] |= ϕ for some value
assignment L′ which is x-equivalent to L

To show ITL at work we formally specify the statement
“the process p2 finishes t seconds later the process p1” in ITL
as follows:

(∃t1, t2) p1(t1) ∧ p2(t2) ∧ ` = t2 ∧ (` = t1 _ ` = t).

This property informally says that t1 and t2 are two time
points, where p1 and p2 holds, respectively, and the distance
between t2 and t1 is t.

Not surprisingly ITL is highly undecidable. A sound and
complete axiomatic system is represented in [164]. [164,165]
consider some local variants of ITL, and provide sound and
complete proof systems for ITL with the locality constraint.
[166] provides a complete proof system for ITL extended
with projection.

ITL’s reach language provides a suitable notation for rea-
soning about time periods, which finds applications in hard-
ware and software systems. Many temporal logics can-
not deal with both sequential and parallel composition; but
ITL offers a formal framework which allows dealing with

both and provides “powerful and extensible specification and
proof techniques for reasoning about properties involving
safety, liveness and projected time” [167].

6.2.2 The Logic DC

Duration Calculus (DC) [163] is a first-order interval tempo-
ral logic with the additional notion of state, which is charac-
terised by a duration9).

DC is an extension of ITL in the sense that temporal vari-
ables other than ` have a structure

∫
S , where

∫
S is called a

state duration and S is called a state expression. The rest of
the alphabet is same as ITL. The syntax and semantics of DC
are defined as follows [6]:

The set of state expressions is constructed from a set of
state variables:

S ::= 0 | 1 | P | ¬S 1 | S 1 ∨ S 2

Let S be a set of state variables. The meanings of state vari-
ables, temporal variable `, and propositional letters are given
by the interpretation:

J ∈ (S → (R→ {0, 1})) ∪ ({`} → (I(R)→ R))∪
(AP→ (I(R)→ {>,⊥}))

whereJ (S ) (t) ∈ {0, 1} for all state variables S∈ S and t ∈ R,
J (`) ([t1, t2]) = t2−t1,J (p) ([t1, t2]) ∈ {>,⊥} for all p ∈ AP.

Given the interpretationJ , the semantics of a state expres-
sion S is a total function = [S ] : R→ {0, 1} which has a finite
number of discontinuity points only. For any time point t, the
semantics can be defined inductively on the structure of state
expressions as follows:

= [0] (t) = 0
= [1] (t) = 1
= [P] (t) = J (P) (t)
= [¬S 1] (t) = 1 − = [S 1] (t)

= [S 1 ∨ S 2] (t) =

{
0 i f = [S 1] (t) = 0 and = [S 2] (t) = 0
1 otherwise

The semantics of a duration
∫

S in a given model, with
respect to an interval [t1, t2], can be defined by

=
[∫

S
]

([t1, t2]) =
∫ t2

t1
= [S ] (t) dt.

We can define some useful abbreviations in DC:

dS e ≡ ` = 0
dS e ≡

∫
S = ` ∧ ` > 0

9) “The duration of a state is the length of the time period during which
the system remains in the state” [7].
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All axioms and inference rules of ITL can be adopted
for DC. However, additional axioms are needed for tempo-
ral variables.

DC has been used in the specification and verification of
various complex systems. Due to its continuous and inter-
val nature it provides more expressive power to specify the
accumulated existence of a state over an interval. For exam-
ple, the properties, such as within an interval of length ` the
total presence of the state s is 1/3 of length of the interval.
This property cannot be expressed in any real-time logic we
discussed above, such as MTL, RTL, etc. We show the for-
mal specification of this property by considering a real-time
requirement of a gas burner system. The requirement, “the
proportion of leak time in any interval is not more than one-
twentieth of the interval, if the interval is at least one minute
long”, is expressed in DC as follows [163]:

�(` ≥ 60→ 20
∫

Leak ≤ `).

All axioms and inference rules of ITL can be adopted
in DC. However, additional axioms are needed for temporal
variables. In [6] an axiomatic system for Duration Calculus
is given. The satisfiability problem for both first-order and
propositional DC is shown to be undecidable [168].

Several fragments of DC have been investigated so far.
In [168] a fragment of propositional DC, called RDC, was
introduced. It was shown that RDC has a decidable satisfia-
bility problem when interpreted over N, Q and R. In [169]
the satisfiability problems of several extensions of RDC were
studied. In [170] an extension of RDC was presented on con-
tinuous time “with a restriction on the finite variability such
that the number of discontinuous points of any state in any
unit interval has a fixed upper bound”. In [171] a decidable
variant of DC was presented, where negation is removed from
the syntax; but an iteration operator is introduced together
with some form of inequalities. In [172] another fragment of
propositional DC, which can capture Allen’s relations [18],
was introduced by imposing some syntactic restrictions. By
proposing a sound, complete and terminating decision algo-
rithm, it was shown that the satisfiability problem is decid-
able. In [173] a logic with quantification over states was in-
troduced. It was shown that the satisfiability of formulas is
decidable. In [148] Duration Calculus and first-order neigh-
bourhood logic were combined, and a axiomatic systems for
DC and NL were merged. It was proved that “the fragment
of DC/NL obtained by restricting the formulas” of state ex-
pressions is decidable [7]. An extension with formulas with
equality becomes undecidable.

Model checking problem for DC is a challenging task. In
general, there has not been a general model checking tech-
nique for this logic. To have efficient model checking tech-
niques, it is necessary to consider a fragment of the logic.
In [170] some model checking tools were developed for a
class of models which are restricted to some possible be-
haviours of real-time systems. In [174–177] some techniques
were developed to check if a timed automaton satisfies a for-
mula of the type “linear duration invariants”. In [178] some
algorithms were developed to check the satisfiability over in-
teger models. In [173] a DC validity checker, called DC-
VALID, to check the satisfiability of formulas which are in-
terpreted over discrete-time. [179] suggested bounded valid-
ity checking [180] of “a discrete-time DC without timing con-
straints by polynomial-sized reduction to propositional SAT
solving”. In [181] a decidability result and a model-checking
algorithm are presented “for a rich subset of DC through re-
ductions to first-order logic over the real-closed field and to
multi-priced timed automata (MPTA)”.

6.2.3 The Logic NL

Although DC is a very expressive logic, it has a limitation
that it does not allow to reason about outside of the current
interval. The logic NL, proposed in [163], solves this prob-
lem. It replaces DC’s C operator with the left neighbourhood
modality ^l and right neighbourhood modality ^r, which al-
low us to look outside of the interval.

The semantics of the modal operators ^l and ^r is defined
as in PNL, and the rest of the semantics is defined as in DC.
NL can express any of the Allen’s interval relations; thus,
it can represent important properties, such as discreteness,
density, boundedness, etc; for example, the chop operator _

can be expressed in terms of the modalities ^l and ^r as fol-
lows [7]:

ϕ_ψ = ∃x, y (` = x + y)∧^l^r ((` = x) ∧ ϕ ∧ ^r ((` = y) ∧ ψ)) .

NL is a highly expressive logic, which can specify many
interesting real-time aspects such as concurrency, scheduling,
shared resources, periodic behaviour, which many logics can-
not express. Here, we give an example (from [182]) to show
how NL expresses complex scheduling properties, such as

�(` ≥ T → (
∫

p ≤ (1 − x).`))

which asserts that the server provides a service to the process
p for at least a fraction x of the time, if the server runs for at
least T time units.
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NL is an undecidable logic like DC. In [183] a sound and
complete axiomatic system is given for the logic NL. In [184]
the up and down modalities, represented by ^u, ^d respec-
tively, were introduced, and a two dimensional version of NL
was proposed.

6.2.4 The Logic IDL

Duration Calculus is a very expressive logic for specifying
real-time requirements; but the automata theory for DC mod-
els is rather primitive and there are no available tools. By
contrast, the state sequences with time has been widely used
in real-time system behaviour [185]. The automata theory
of timed state sequences have been applied to tools such as
Hytec [186], Uppaal [187], Kronos [188] etc.

[189] introduced Interval Duration Logic (IDL), which
is defined on timed state sequence models and incorporates
formulas with cumulative amount of time. Due to its expres-
sive syntax it can express complex real-time properties, e.g.
scheduling and planning constraints. As an example, we give
a specification example from a gas burner system. The prop-
erty ‘between two instances of Leak there is at least k sec-
onds’ is specified in IDL as follows:

�((dLeake_d¬Leake_dLeake)⇒ ` ≥ k)

IDL is a very expressive logic, but it is undecidable. How-
ever, there are some methods which have been proposed for
the satisfiability and model checking problems of IDL. [190]
applies bounded validity checking techniques [180] to IDL
“by polynomially reducing this to checking unsatisfiability of
lin-sat formulae”. [190] also compares various methods for
the satisfiability problem “including digitization technique
[191], combined with an automata-theoretic analysis [173];
digitization technique [191] followed by pure propositional
SAT solving [179]; and (c) lin-sat solving [192]”.

[189] presents a decidable subset of IDL, which has a re-
striction that only located time constraints are allowed. The
paper shows that the models of this subset can be considered
as “timed words accepted by a finite state event-recording in-
tegrator automaton”, which implies the satisfiability of the
subset. It is also shown that the defined subset and event-
recording automata have the same expressive power, which
makes this logic an important decidable subset in the domain
of DC.

7 Probabilistic Logics

Probabilistic reasoning has been the subject of computer sci-
ence for a long time. There is an extensive study about for-
mal systems with uncertainty. Probabilistic logics are used to
formally specify and verify dependability requirements, ex-
pressing that the probability of system behaviour should be
below a certain threshold [193], as well as functional require-
ments (depending on the syntax of the logic).

There are two main approaches: extending classical logic
with probabilistic operators (such as modal logic of knowl-
edge in [194]); combining a probabilistic approach with non-
classical logics (such as the probabilistic extension of intu-
itionistic logic [195]). Below we review well-known proba-
bilistic temporal logics.

7.1 Probabilistic Temporal Logics

7.1.1 The Logics PCTL and PCTL∗

Probabilistic Computation Tree Logic, PCTL [196, 197], is a
probabilistic extension of the branching time temporal logic
CTL. PCTL replaces the CTL path quantifiers with proba-
bilistic operators. Namely, it replaces the path formulas ∃ϕ
and ∀ϕ with the probabilistic formula P∼r[ϕ], where 0 ≤ r ≤
1 and ∼∈ {<, >,≤,≥,=}. The semantics of the probabilistic
operator is defined as follows:

M, s |= P∼r[ϕ] iff πm(σ ∈ Paths(s) s.t.M, σ |= ϕ) ∼ r.

PCTL is interpreted over discrete-time Markov chains. The
execution of a Markov chain constructs a set of paths, which
are infinite sequences of states. The semantics of the proba-
bility operator P refers to the probability for the sets of paths
for which a path formula holds. Namely, a probability mea-
sure πm for the set of paths σ (starting from s) with a com-
mon prefix of length n, s → s1 → ... → sn, is defined to
be the product of transition probabilities along the prefix, i.e.
µ((s0, s1)) × ... × µ((sn−1, sn)) [197]. P∼r[ϕ] informally means
that ϕ holds for a set of paths σ from s with a probability ∼ r.

Universal and existential quantification over paths is a sub-
set of probabilistic quantification. For example, the existen-
tial path quantification ∃ can be represented by the proba-
bilistic operator P>0. Therefore, PCTL’s probabilistic opera-
tor provides a more general quantification, because as well as
expressing a property is true at all/some paths, we can also
express a property is true at more than 50% of the paths.
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PCTL is very convenient to specify so-called soft deadline
properties, e.g. “after a request for a service, there is at least
a 98% probability that the service will be carried out within
2 seconds” [197]. Soft deadline properties are important in
real-time system specification. As an example, the property
that “the probability of ϕ eventually occurring is greater than
or equal to r” can expressed in PCTL as follows:

P≥r[true U ϕ] .

[197] presents a model checking algorithm for PCTL,
which is polynomially bounded by the size of the formula
and the Markov chain10) model. [198] analyses the decidabil-
ity problem of PCTL. The authors show that if the probability
constraint r is restricted to only 0 and 1, then the decidability
problem becomes EXPTIME-complete; on the other hand,
the decidability problem for arbitrary r values between 0 and
1 is still open.

[199] defines another probabilistic variant of CTL, namely
a probabilistic extension of CTL* [69]. This new logic is
called PCTL∗, which can specify quantitative probabilistic
properties of systems, e.g. quantitative bounds on the prob-
ability of system evolutions, modelled as discrete Markov
processes11). [69] also extends discrete Markov processes to
generalized Markov processes12), where transition probabil-
ity function is not total. Generalized Markov processes are
convenient to model ‘’abstraction” and “refinement”. [199]
also presents an elementary model checking algorithm for
PCTL∗ over discrete Markov processes, which is then ex-
tended for generalized discrete Markov processes. This al-
gorithm can also be used to determine the satisfiability of
PCTL∗ formulas. In fact, [199] shows that the decision prob-
lem for PCTL∗ formulas on generalized Markov processes
is decidable. However, no efficient computational method is
given for this problem. In addition, no sound and complete
axiomatisation of the logic is given.

PCTL∗ provides a richer syntax than PCTL, because it also
employs LTL semantics. For example, PCTL∗ formula

P≥r[�(true U ϕ)] .

asserts that the probability of ϕ occurring infinitely often is
greater than or equal to r” cannot be expressed in PCTL.

10) A Markov chain is a tuple (S , P) where S is a set of states and
P : S × S → [0,1] is the transition probability matrix such that (∀s ∈
S)

∑
s′∈S P(s, s′) = 1.

11) A (finite) Markov process is a 4-tuple (AP, S , P,L), where AP is a fi-
nite set of atomic propositions, S is a countable nonempty set of states,
P : S × S → [0,1] is the transition probability function such that (∀s ∈
S)

∑
s′∈S P(s, s′) = 1 and L : S → 2AP is a labeling function [199].

12) A generalized Markov process is a 3-tuple (AP, S ,L) (where AP, S and
L are defined as in Markov processes) and a finite set of constraints on the
transition probabilities [199].

[200] shows that model-checking algorithms for exten-
sions of PCTL and PCTL∗ to probabilistic-nondeterministic
models have a polynomial-time complexity in the size of the
model, which is same as the model checking complexity on
Markov chains [196,197,199]. This result shows that adding
nondeterminism does not increase model checking complex-
ity in the size of the model. When we consider time bounds
expressed in terms of the size of the formula, the situation is
different. The model checking complexity of PCTL is lin-
early bounded in the size of the formula for both Markov
chains and probabilistic-nondeterministic systems. However,
while model checking complexity of PCTL∗ on Markov chain
is exponentially bounded in the size of formula, it is in double
exponential time on probabilistic-nondeterministic systems.

7.1.2 The Logic PTCTL

A probabilistic extension of the real-time branching logic
TCTL is defined in [201]. The logic is called PTCTL, which
combines both the logics TCTL and PCTL. PTCTL syntax is
similar to PCTL; but the semantics is entirely different. Since
it employs real-time, the semantics of the path operatorsU∼k

is defined as in TCTL (see Section 3). On the other hand, the
path operators of PCTL is interpreted over discrete time.

PTCTL can formalise properties such as ‘with a probabil-
ity higher than 0.9 the message is delivered within 5 seconds’.
This can be expressed in PTCTL as follows:

P>0.9[true U≤5 rcv].

PTCTL’s rich language allows us to express very impor-
tant real-time properties which cannot be expressed by real-
time and interval logics, such as uncertainty, unpredicted be-
haviour e.g. system failure, communication and synchroniza-
tion protocols (with random, continuously distributed delay),
etc. [202].

Since PTCTL is a probabilistic extension of TCTL,
PTCTL is also an undecidable logic. [201] shows that the
model checking problem is “polynomial in the size of region
graph and linear in the size of formula”. It follows that the
model checking problem is EXPTIME due to the size of re-
gion graph, which is exponential in the size of the model.
[203] shows that the model checking problem is EXPTIME-
complete. [203] also shows that the model checking problems
of the subclass of PTCTL without punctual timing and the
subclass which restricts the probability constraint to only 0
and 1 are PTIME-complete.
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7.1.3 The Logic PLTL

A propositional probabilistic discrete-linear temporal logic,
called Probabilistic Propositional Temporal Logic (PLTL), is
introduced in [204]. PLTL allows probabilistic reasoning,
which is extended with temporal aspects. The logic is in-
terpreted over linear time points, and includes a probabilis-
tic operator as well as standard temporal operators, such as
‘next’, ‘until’, ‘sometime’ and ‘always’. The probabilistic
operator quantifies events along a single time line, therefore
it is possible to express sentences such as “(according to the
current set of information) the probability that sometime in
the future α is true is at least n” [204].

Given that d, ^ and � are the ‘next’, ‘sometime’ and ‘al-
ways’ operators, respectively, and P∼r (∼∈ {<,≤,=,≥, >}) is a
probabilistic operator, an example of a PLTL formula is [204]dP≥r[p] ∧ ^P<s[p→ q]→ � (P=t[q])

which asserts “if the probability of p in the next moment is at
least r and sometime in the future q follows from p with the
probability less than s, then the probability of q will always
be equal to t” [204].

[204] analyses completeness, decidability and complexity
of the logic PLTL. It describes a class of so-called ‘measur-
able models’. It is proved that “PLTL restricted to the class
of all measurable models (PLT LMeas)” has a sound and com-
plete (infinitary) axiomatisation. The term infinitary means
that the language and formulas are finite, but proofs can be in-
finite (Completeness cannot be proved with finitary axioma-
tisation). [204] shows that “a PLTLMeas-satisfiable formula
is satisfiable in an ultimately periodic model in which vari-
ous parameters are bounded by functions depending on the
size of the formula”. [204] also shows that “the satisfiability
problem for PLTLMeas is PSPACE-hard, and that it belongs
to NEXPTIME”.

[204] also introduces First-order Probabilistic Temporal
Logic (FOPLTL), which is the first-order version of PLTL.
The complete infinitary axiomatisation is extended for the
logic FOPLTL (No complete finitary axiomatisation is possi-
ble). The set of all FOPLTL-valid sentences is not recursively
enumerable [42].

7.1.4 The Logic pDC

The Probabilistic Duration Calculus (pDC) [205] is an ex-
tension of Duration Calculus [163] with probabilities. pDC
allows us to reason about probabilistic systems, and enables
to express requirements such as a property holds with a cer-
tain probability. In pDC the system model is described as a

finite automaton with fixed transition probabilities, which ac-
tually defines a discrete Markov process. The main idea as
described in [205] is to express properties in DC, define sat-
isfaction probabilities for formulas, and define a calculus to
compute the probability of a formula from its subformulas’
probabilities.

pDC satisfiability is described in [205] as follows: “Con-
sider some finite probabilistic timed automata A. The be-
haviours of A can be represented as a set ofM of DC mod-
els. The probabilistic principles that manage the working of
A used to introduce probability on the subsets ofM. Given
a DC formula ϕ, the term

π(ϕ)(t)

denotes the probability of those models fromM that satisfy
ϕ at the interval [0, t]. A term of this sort is the component of
pDC language” [205]. The term π(ϕ)(t) clearly combines the
probability and real-time aspects and can express the satisfac-
tion probability of a requirement with real-time constraints,
which cannot be expressed in pure DC. An example pDC for-
mula is given below:

πs0 ((true; dse); (ds′e; true))(t) = 0

which asserts that s′ cannot immediately follows s. In [205]
pDC is interpreted over discrete time; i.e. discrete transi-
tions are assumed in models, defined as probabilistic time
automata. In a later work, [193], pDC was defined for the
case of continuous time, in which transitions in probabilistic
automata take place in continuous time. In this logic, prop-
erties are written in terms of DC formulas. “Implementa-
tions of given requirements are modelled by continuous semi-
Markov processes with finite space, which are expressed as fi-
nite automata with stochastic delays of state transitions (such
an automaton is called continuous time probabilistic automa-
ton)” [193]. [193] also defines a probabilistic model for DC
formulas and a set of axioms/rules to calculate the satisfaction
probabilities of DC formulas with respect to probabilistic au-
tomata. To our best knowledge, there is no complete proof
system for this logic. pDC is, not surprisingly, an undecid-
able logic.

[206] defines the logic Probabilistic Duration Calculus
(PDC), which is another probabilistic extension of Duration
Calculus. PDC extends DC syntax with formulas of type

P∼r[ϕ]

where ϕ is a DC formula and ∼∈ {>,≥}. To show a formal
specification example in PDC we extend the formal specifi-
cation of the real-time requirement of a gas burner system as
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follows: the probability that “the proportion of leak time in
any interval is not more than one-twentieth of the interval if
the interval is at least one minute long” is greater than and
equal to 0.95. This requirement is expressed in PDC as fol-
lows:

P≥0.95[�(` ≥ 60→ 20
∫

Leak ≤ `)].

The syntax of PDC allows us “to reason about the proba-
bility of the satisfaction of a duration formula by a probabilis-
tic timed automaton as well as to specify real-time properties
of the system itself”. PDC is interpreted over behavioural
models13), proposed in [208], which are a variant of prob-
abilistic timed automata. [206] proposes a model checking
technique which is an extension of the technique introduced
in [177] “to check if a timed automaton satisfies a DC formula
in the form of linear duration invariants or discretisable DC
formulas based on searching the integral reachability graph of
the timed automaton” [206] . The model checking problem is
decidable “for a class of PDC formulas of the form linear du-
ration invariants, or a formula for bounded liveness” [206].

7.1.5 The Logic PNL

[209] introduces the Probabilistic Neighbourhood Logic
(PNL), which extends Neighbourhood Logic. [209] provides
a complete proof system by extending the proof system of
NL. In PNL, a more generalised version of probabilistic
timed automata (defined in [193]) is assumed.

PNL has a similar grammar to the logic NL. It contains
duration operators and probabilistic operators. The function
symbols take a duration as argument and return a term of the
probability. We now consider an example. Let ϕ denote a
formula which is true at any interval between two consecutive
processes. The following formula expresses “the assumption
that the probability for the duration of such a period to be no
bigger than x is a function of x which is the interpretation of
the function symbol f in the model” [210]:

P[ϕ ∧ ` ≤ x, x] = f (x).

PNL has the same expressive power as PDC, except for state
expressions and their durations. Therefore, PNL can express

13) A behavioural model is a variant of probabilistic timed automata, where
probabilistic transitions are discrete. “To resolve the nondeterminism be-
tween the passage of time and discrete transitions they use the concept of
adversary which is essentially a deterministic schedule policy. Then, the set
of executions of a probabilistic time automaton according to an adversary
forms a Markov chain, and hence the satisfaction of a probabilistic CTL for-
mula by this set can be defined, and then based on the region graph of the
timed automaton the satisfaction of a probabilistic CTL formula by the timed
automaton can be also verified” [207].

dependability requirements and functional requirements ex-
pressible in NL. Since PNL is an extension of NL, it is an
undecidable logic.

There are other probabilistic extensions of first-order inter-
val logics, such as the probabilistic extension of ITL [211];
but they did not attract much attention, we therefore do not
cover them in this paper.

7.2 Probabilistic Dynamic Logics

Another class of logics reasoning about actions, which are
events causing the changes in the state of the world, and com-
puter programs is dynamic logics. The early studies of these
logics go back to the time when temporal logics started be-
ing studied in computer science. Temporal logics can rea-
son about temporal evolution of the system state; but they
cannot express changes as a result of applying actions. Dy-
namic logics allow referring to actions explicitly and describ-
ing changes caused by actions.

One of the most widely known dynamic logics is propo-
sitional dynamic logic (PDL), which includes the modalities
‘sequence’, ‘choice’, ‘iteration’ and ‘test’ to model program
constructs. [212] gives a complete axiomatisation of PDL.
[213] shows that the decidability problem is EXPTIME-
complete. Other variants of PDL have also been introduced,
such as Deterministic PDL, where PDL formulas are inter-
preted over deterministic structures, Strict PDL, where only
deterministic while programs allowed, and strict determinis-
tic PDL, where both deterministic and strict restrictions are
applied. For a detailed and extensive discussion of dynamic
logics and its variants, we refer the reader to [214].

Actions have also been considered within temporal log-
ics. Here we give a few examples: [35] introduces an inter-
val temporal logic to reason about actions and events, [215]
proposes a temporal logic of actions to specify concurrent
programs, and [216] extends LTL to reason about actions
and programs. There are also numerous studies on action
and change: [217–220] are only a few to name. We refer
the reader to [221] for a detailed discussion on actions and
agents.

Since Kozen’s definition of formal semantics of proba-
bilistic programs [222], some work has been done in this di-
rection. Several systems have been introduced to formally
study probabilistic programs. In particular, probabilistic dy-
namic logics, used to reason about properties and principle
of probabilistic programs, received considerable attention. A
brief historical development in this area is given below:

In [223], Feldman and Harel introduced a first-order prob-
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abilistic dynamic logic, called Pr(DL), which can express
properties of probabilistic programs. The syntax of this logic
is similar to that of Pratt’s first-order dynamic logic [224]. We
can denote how probabilities occur in dynamic logics with an
example. The following formula:

P(true) = 1⇒ {α}P(true) ≥ r

asserts that a program α ends with probability at least r. We
refer the reader to [223] for the details. The semantics of
Pr(DL) is based on extension of Kozen’s formal semantics
of probabilistic programs [222]. [223] provides a complete
proof system for Pr(DL) relative to first-order analysis. [223]
shows that for discrete probabilities the logic reduces to first-
order analysis with integer variables. Since the underlying
theory is highly undecidable, the logic Pr(DL) is also unde-
cidable.

[225] defines the logic P-Pr(DL), which is a propositional
fragment of the first-order dynamic logic Pr(DL). P-Pr(DL)
has many important characteristics of Pr(DL), such as “the
ability to use full first-order real-number theory for dealing
with probabilities, and deterministic regular programs, while
still being decidable” [225]. Neither the complexity of the
decision procedure, nor a proof system is provided.

In [226] a probabilistic analog PPDL of Propositional Dy-
namic Logic is introduced. [226] proves the finite model
property by showing that models can be reduced to an equiv-
alent finite model with a bound on the number of states. A
polynomial-space decision procedure is given to decide the
validity of programs. [226] also provides “a deductive calcu-
lus” and shows its usefulness on an example program.

In [227] a Propositional Dynamic Logic with explicit prob-
abilities is introduced. The language allows formulas of
propositional probabilistic programs, where probabilistic op-
erators are applied in a limited form. [227] provides a 2-
EXPSPACE decision procedure for the logic by reducing it
to “the decision problem of the theory of real closed fields”.

[228] introduces a family of propositional calculi of qual-
itative probabilities (QP) with one binary operator ≤, which
intuitively means “at least as probable as”. Given that ϕ and ψ
are two arbitrary QP formulas, ϕ ≤ ψ means that “the proba-
bility of ϕ is not greater than the probability of ψ” [229]. [228]
presents a complete deductive system for QP, and shows that
QP is decidable.

[229] extends QP with “many ≤-operators and operations
among them that are analogous to the operations of com-
position, union, and iteration on modal operators known in
propositional dynamic logic”. The resulting logic (DQP) al-
lows us to reason about probabilistic processes. The formula

w |= ϕ ≤t ψ intuitively means that “the probability for a tran-
sition (experiment) t to transform w into a possible world that
satisfies ϕ is smaller or equal to the probability for t to trans-
form w into a possible world that satisfies ψ” [229]. An ω-
complete proof system is presented for DQP in [229], which
requires the building an infinite canonical model. This im-
plies that DQP is undecidable.

7.3 Probabilistic Mu-Calculus

[230] presents the logic Generalised Probabilistic Logic
(GPL), which is a Mu-Calculus-based modal logic, in order
to reason about “reactive probabilistic labelled transition sys-
tems (RPLTSs)”. An RPLTS structure includes (probabilis-
tic) transitions and (nonprobabilistic) actions, where non-
probabilistic actions are chosen externally, in contrary to
Markov decision processes where nonprobabilistic choices
are done internally.

GPL can be considered as a framework to define tempo-
ral logics on reactive models. GPL is an expressive logic.
It provides a formal framework for reactive systems which
includes probabilistic element regarding action and execu-
tion choices. Such systems include distributed systems,
communications systems, etc. Some standard probabilistic
(modal/temporal) logics, such as PLTL, PCTL, PCTL∗ etc.,
are subsumed by the logic GPL. For example, the PCTL for-
mula

P≥0.5[true U ϕ]

can be encoded in GPL as follows:

P≥0.5[µX.(ϕ ∨ 〈a〉X)]

where µ denotes the least fixed points expressing for some
states of the execution path and 〈a〉ψ holds of an observation
if there is an a−transition leading to the satisfaction of ψ (here
a is an action).

[230] presents a model-checking algorithm which em-
ploys techniques to solve non-linear equations.

8 Conclusion

In this paper we have analysed various temporal formalisms,
including propositional/first-order linear temporal logics,
branching temporal logics, interval temporal logics, real-time
temporal logics and probabilistic temporal logics. We have
shown which aspects of real-time systems that these logics
can express by providing various specification examples. In
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Table 1: Specification of the gas burner requirement any
leak should not last more than 4 seconds in different logics.

L represents Leak.

Logic Formal Specification
TPTL �x1. (L→ L U x2.(¬L ∧ x2 ≤ x1 + 4))

RTPLTL �
((

L
∗
L
)

true→
(
L
∗
L
)≤4

(¬L)true
)

CLTL �
(
L→ L U[]L≤4] (¬L)

)
MTL �

(
L→ L U[0,4] (¬L)

)
RTCTL ∀�

(
L→ ∀

(
L U≤4 (¬L)

))
TCTL ∀�

(
L→ ∀

(
L U≤4 (¬L)

))
TPCTL ∀�

(
L→ ∀

(
L U≤4

≥1 (¬L)
))

CCTL ∀�
(
L→ ∀

(
L U[]L≤4] (¬L)

))
RTL ∀i (@ (↑ L, i) ≤ @ (↓ L, i) + 4)
RTTL �T (L ∧ t = T → L U (¬L) ∧ t ≤ T + 4)
RTIL � (�L+ → L) (duration ≥ 4)
TRIO ∀(t > 0 ∧ Futr(L, t)→ ∃t′(t < t′ ≤ t + 4 ∧

Futr(¬L, t′) ∧ ∀t′′(t < t′′ < t′ →
Futr(L, t′′))))

TILCO (L→ ¬L ? [0, 4]) @ [0,+∞)
MPNL [G] (¬ (len>4 ∧ L))
ITL ∀t1∃t2 L(t1) ∧ ¬L(t2) ∧ ` = t2 ∧

((` = t1) _ (` ≤ 4))
DC, NL, IDL � (dLe → ` ≤ 4)
PTCTL P≥1�

(
L→ P≥1

(
L U≤4 (¬L)

))
PDC P≥1� (dLe → ` ≤ 4)

order to show how a real-time system property can be ex-
pressed in different logics, we now use the gas burner design
requirement [6] as a running example. Namely, we formally
specify the property any leak should not last more than 4 sec-
onds. Table 1 shows different formalisms of this real-time
requirement using different logics. Note that since this prop-
erty is a quantitative functional property, we only show the
logics which can express this type of properties, i.e. the log-
ics which employ metric operators.

Remark 1: The formal specifications of some logics can be
syntactically very similar; but their semantics might be actu-
ally very different. For example, RTCTL and TCTL formu-
las of the property analysed are same, but these two formulas
are represented by very different models. The former is in-
terpreted over discrete structures, but the latter is interpreted
over dense structures, which results in significantly different
theoretical implications.

Remark 2: In Table 1, we have not included the logics which
do not employ metric operators. In some cases, metric oper-
ators can be simulated by modal operators. For example, this

property can be expressed in LTL as follows:

�(L→ LU(¬L ∧ ddddd¬L))

Such translations in general cause exponential blow-up in the
size of formula, and therefore are not practical. In many
cases, the translation is even not possible at all.
Remark 3: The bound constraints in some of the above for-
mulas actually restrict the length of the duration that Leak
occurs to less than 4. For example, in discrete-time logics the
constraint ‘≤ 4’ forces Leak to hold maximum 3 seconds. In
order not to disturb the unity of the formulations, we ignore
this type of minor oversights.

In the paper, we have also summarised important results on
decidability, axiomatizability, expressiveness, model check-
ing, etc. for each logic analysed, whenever possible. For a
comparison of features of the temporal logics we discussed
see Table 2, which is an extension of the one presented in [1].
Note that we use the following abbreviations: No*: Unde-
cidable in general, but decidable for some fragments or spe-
cific cases; No**: No deduction system in general, but avail-
able for some fragments or specific cases; No***: No model
checking algorithm in general, but available for some frag-
ments or specific cases; Yes*: Decidable for some time do-
mains; Yes**: Available for some time domains; Yes***:
Available for some time domains.
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