MpoekTupoBaHue BoNbLINX CUCTEM Ha

Cot

Konosogos B. A.

kacbegpa MaTemaTudeckoli knubepHetnkn BMK

Jlekumsa 6
13.10.2017

OnepaTtopbl new u delete

3a4emM OHUN HyXKHbI?

#include <iostream>
class C {
public:
int arr[100];
C(int a) { /*...#/}
};
int main() {
C * ¢ = new C(123);
/.
delete c;
};

» CozpaHuve v yganeHne AMHaAMNYECKUX 0OBEKTOB

Mpobnema: BpemeHeM XuU3HN Takmx 0b6BEKTOB NMPUXOAUTCS
yNpaBAsiTb BPYUHYHO.

NMpobnembl new n delete

1. MoxHo 3abbITe HanucaTb delete.

2. MoxHo HanucaTe anwHwuii delete.

3. VTe4kM NamsaTn Npu NCKIIOHEHNSX U T.1.
4. delete / delete]].

Kak pewats?

» OctaButb delete ymHbIM yKaszaTensm.

» OctaButb new make-cbyHKUNSM.

Ho Bcé-taku npo new/delete

OnepaTop new cocTouT U3 ABYX YacTeii:

1. Bbigenetne cbipoii (cBODOAHbIN KYCOK ANHAMUYECKOIA)
namsiTu. MoXeT BOSHUKHYTb UCKJIOYEHNE.

2. KoHcTpynpoBaHue obbekTa B CbIpoli namMsTu.

OnepaTop Nnew rapaHTUpYeT, YTO €C/IN B KOHCTPYKTOPE MPON30LLIIO
NCKtOYeHNE, TO BblAeseHHas AMHAMUYecKast NaMsiThb
aBTOMATNYECKN OHNCTUTCS.

OnepaTop delete genaet Bce HaoboporT:
1. BbI3biBaeTca gecTpykTop.

2. OceoboxpaeTcs naMaThb.

Pasmewatrowuii onepatop new

Kak 6b1n10 paHblue:

int * p = (int*) (malloc(sizeof (int));
/).
free(p);

[Ba cnocoba Henb3s cmewmnsatb (malloc + delete, new + free)

Cnocob ¢ new npegnoyTuTeNnLHee, 1 €ro peann3auunio MOXHO
neperpy»aTb:

void *p = malloc(sizeof(C));

C * ¢ = new (p) C(123); // placement new;

//

c -> "CO;

free(p);

Pasmewatrowuii onepatop new

Kak-to Hago 60pOTbCﬂ C NCKNKOYEHNAMN!

void * p = malloc(sizeof(C));
if (!'p) return 1;
C * c;
try {
c = new (p) C(123);
} catch (...) {
free(p);
throw;
}
try {
/7.
} catch (...) {
c -> 7CO;
free(p);
throw;
}
c -> 7CO;
free(p);

operator new, operator delete

//new C(z)

void *p = operator new(sizeof(C));

C * c;

try {

c = new(p) C(x);

} catch ([:]) {
operator delete(p);
throw;

}

//delete p

if (p!=NULL) {
p->"CO;
operator delete(p);

}

lNeperpy3ka

void * operator new (size_t sz) {
std::cout << "operator new with " << sz << std::endl;
void * p = malloc(sz);
if (!p) throw std::bad_alloc();
return p;

void operator delete(void * p) {
std::cout << "operator delete" << std::endl;
free(p);

}

lNeperpy3ka

Mo>xHO neperpy3uTb Tak:

void*operator new (size_t sz, double a, int x) {

/.

return ::operator new(sz);
}

Ho Torpa Hy>xHO HanucaTb NapHbI emy

void operator delete(void * p, double a, int x) {
/.
::operator delete(p);

}

Kak Torga nx Bbi3BaTh?!

C+ p = new(1.23, 123) C(111);

delete p;

lNeperpy3ka
Onepatop new/delete BHyTpn knacca obsizaH BbITb CTaTUHECKUM.
static MOXXHO He nucaTeb.
class A {
int param;
public:
A(int a): param(a) {
cout << "A::A(" << a << ")" << std::endl;
}
virtual “A() { cout << "A::7A()" << std::endl; }
static void* operator new(size_t sz) {
cout << "A::operator new" << std::endl;
return ::operator new(sz);
}
static void operator delete(void* ptr) {
cout << "A::operator delete" << std::endl;
: :operator delete(ptr);

AnnokaTtopbl

Knacc, KOTOprﬁ BblAENAET NAaMATb KaKUM-TO CneynanbHbIM o6pa30M.

map<int, string> m;
// map<int, string, less<int>, allocator<patir<int, string>> > m;

ObsazaTeNnbHO OnpenensioTCs:
> value_type — Tun, ANsi KOTOporo paboTaeT anjokaTop

» allocate — BblAeNE€HNE NAMATU MO T OOBEKTOB, HO He
KOHCTpyMpoBaHune

» deallocate — ocoboxieHue namsaTu
HeobsizaTtesnbHo:

> construct — mHMLMANM3aums 3a4aHHON NAaMATN 3a4aHHBIM
3Ha4YeHnem

> destroy — YHUHTOXEHNE NaMATN bes OCBO60)KA€HVI$I

AnnokaTtopbl

template <class T>
struct TMyAllocator {
using value_type = T;
TMyAllocator() = default;
template <class U>
constexpr TMyAllocator(const TMyAllocator<U>&) noexcept {}

T* allocate(size_t n) {
std::cout << "allocate n = " << n << std::endl;
if (n > size_t(-1) / sizeof(T))
throw std::bad_alloc();
auto p = static_cast<T*>(malloc(n * sizeof(T)));

if (1p)
throw std::bad_alloc();
return p;
}
void deallocate(T* p, std::size_t) noexcept {
free(p);
}

};

AnnokaTtopbl

int main() {
std: :vector<int, TMyAllocator<int>> vec;
for (int i = 0; i < 6; ++1i)
vec.push_back(0);
}

allocate
allocate
allocate
allocate

B B B B
1]
0 N =

PelueHne o ToM, CkONbKO NAaMATU 3aNPOCUTb U B KAKO MOMEHT,
Le/IMKOM MPUHNMAETCA KOHTEHEPOM, BHE 3aBUCMMOCTN OT
aNiokaTopa, KOTOPLIA NCMOAb3YeTCA As NOCTAaBKW 3TON NaMsTH.
CTaHaapTHbIA annoKaTop XOPOLUO MOAXOAUT AJ1si BEKTOPA, HO
4acTo He CaMoe Jly4lliee peLleHne 4SS CNNCKa.

Smart pointers

Yem nnoxm obbluHblE BCTPOEHHbIE yKa3aTenu?
» VKa3bIBalOT Ha MaccuB Win Ha ObbeKT?
» Bnapgeet nm ykasatesnb TeM, Ha 4TO yKasbiBaeT?
> TpygHo obecnednTb YHUHTOXEHUE POBHO OAMH Pas.

» OBbIYHO CNOXHO onpeaennTb, ABNAETCA NN YKA3aTE b
BNCAYUM.

> Henb3s npepoctaBuTh MHDOPMALINIO KOMMUASATOPY O TOM,
MOTYT /N ABa YKa3aTeNsi yKasblBaTb Ha OAHY obnacTb mamsTu.
«YMHBIA» («MHTENNEKTYaNbHbIN») yKa3aTeslb NPUTBOPSIETCS

ODbIYHBIM yKa3aTenem C AONONHUTENbHBIMU DYHKLUAMN.
ObepTka Hap OObIYHBIMU yKa3aTeNsIMU.

Smart pointers

XOYETCS 4TO-TO BPOAE TaKOro

SmartPointer sp(new C);

M Aafiblie NOJIb30BaThCs KakK ODbIYHLIM yKa3aTesieM, He
3afyMbiBasick 06 yganeHum.

A uTto penatb TyT?

SmartPointer sp2 = sp;

Bcerga MoxxHO 0bMaHyTb yMHbIN yKasaTesb:

C * ptr = new C;

SmartPointer sp(ptr);

SmartPointer sp2(ptr);

Smart pointers: cTtpaterum

v

3anpeT KOMMPOBAHNA N NpUCBanBaHNA.

v

[nybokoe konupoBaHue.

v

rlO/J,C‘-IeT CCbIJIOK B CneunanbHbIX CHETHUKAX.

v

CRncok cchbInok.

v

MNepepaya BnageHus.

CTpaTervm nepegaydiumn BjaageHunms

Ecnm kTo-TO NMbITaeTcss ckonmpoBaTb yKasaTesb, TO eMy 1
nepefaeTcs BRafeHNE, N UCXOAHbIVE YMHbBIA yKa3aTenb He
yKasblBaeT bonblie Ha obbekT. Takoll yKasaTesilb HE HYXXHO KNacTb
B KOHTEliHep .

std: :auto_ptr<int> p (new int(123));
std: :vector<std::auto_ptr<int> > v;
v.push_back(p);

YmHble ykazatenu B C++ 11 / 14

std:
std:
std:
std:

rauto_ptr<> // deprecated
:unique_ptr<>
:shared_ptr<>

:weak_ptr<>

std::unique ptr

> Peanm3yeT CEMAHTUKY UCKNHOYUTENIBHOIO BJ1aEHUA

> [lepeMelleHne nepefaeT BRafeHNe OT UCXOLHOMO yKasaTens
LLeNeBOMY, LeNEeBON Npyu 3TOM obHynsieTcs.

» KonuposaHue He paspeLuaeTcs.

» [lpun pecTpykuum oceoboXkaaeT pecypc, KOTOPbIM BlajeerT.
Obbi4HOe ncnonb3oBaHWe — BO3BPaLLaeMblii Tun habpuyHbix
byHKUN Ans 0BBEKTOB nepapxun:

template <typename T>
std: :unique_ptr<Base> makeObject(T&& params);

HekoTopblie meToabl std::unique ptr

> reset — 3ameHseT ODBEKT;
» release — 0cBODOXJaeT BNAAEHUE;

> get — BO3BpaLLLAET yKa3aTesb Ha O6'beKT, KOTOPbIM BNALEET,

3anpelueHbl HesiBHble Npeobpa3oBaHns 0bbIYHOMO yKasaTess B
YMHBbIA:

std: :unique_ptr<Base> p;

p = new AQ);

std::unique ptr

[lBe pasHOBMAHOCTU A/t UHANBUAYANbHBIX ODBEKTOB 1 ANs
MaCCUBOB:

std: :unique_ptr<T> // *, ->
std: :unique_ptr<T[1> // []

std: :unique_ptr MOXHO npucsamsaTh B std: :shared_ptr
(MOXXHO He 3aAyMbIBaTbCs Haf TEM, Kak DyfeT ncnosnb3oBaH
BO3BpaLLaeMblii yKasaTesb).

Kak nsbasntbcs ot new?

Hanucatb obeptky!
template <typename T, typename... Ts>
std: :unique_ptr<T> make_unique(Ts&&... params) {
return std::unique_ptr<T>(
new T(std::forward<Ts>(params)...)

}

Yero ne xBaTaetr? MaccnBoB, NoNb30BaTENLCKUX yAAAUTENEN.
DyHKuMs yxe ecTb — std: :make_unique B C++14.

std: :unique_ptr<Base> p(new Base); // deaxdst nuwem Base
auto pl(std::make_unique<Base>()); // make

