
Проектирование больших систем на
C++

Коноводов В. А.

кафедра математической кибернетики ВМК

Лекция 6
13.10.2017



Операторы new и delete

Зачем они нужны?
#include <iostream>
class C {
public:
int arr[100];
C(int a) { /*...*/ }

};
int main() {

C * c = new C(123);
// ...
delete c;

};

I Создание и удаление динамических объектов

Проблема: Временем жизни таких объектов приходится
управлять вручную.



Проблемы new и delete

1. Можно забыть написать delete.
2. Можно написать лишний delete.
3. Утечки памяти при исключениях и т.п.
4. delete / delete[].

Как решать?

I Оставить delete умным указателям.
I Оставить new make-функциям.



Но всё-таки про new/delete

Оператор new состоит из двух частей:
1. Выделение сырой (свободный кусок динамической)

памяти. Может возникнуть исключение.
2. Конструирование объекта в сырой памяти.

Оператор new гарантирует, что если в конструкторе произошло
исключение, то выделенная динамическая память
автоматически очистится.

Оператор delete делает все наоборот:
1. Вызывается деструктор.
2. Освобождается память.



Размещающий оператор new

Как было раньше:
int * p = (int*)(malloc(sizeof(int));
// ...
free(p);

Два способа нельзя смешивать (malloc + delete, new + free)

Способ с new предпочтительнее, и его реализацию можно
перегружать:
void *p = malloc(sizeof(C));
C * c = new (p) C(123); // placement new;
// ...
c -> ~C();
free(p);



Размещающий оператор new
Как-то надо бороться с исключениями:

void * p = malloc(sizeof(C));
if (!p) return 1;
C * c;
try {

c = new (p) C(123);
} catch (...) {

free(p);
throw;

}
try {

// ...
} catch (...) {

c -> ~C();
free(p);
throw;

}
c -> ~C();
free(p);



operator new, operator delete

//new C(x)
void *p = operator new(sizeof(C));
C * c;
try {

c = new(p) C(x);
} catch (...) {

operator delete(p);
throw;

}
//delete p

if (p!=NULL) {
p->~C();
operator delete(p);

}



Перегрузка

void * operator new (size_t sz) {
std::cout << "operator new with " << sz << std::endl;
void * p = malloc(sz);
if (!p) throw std::bad_alloc();
return p;

}

void operator delete(void * p) {
std::cout << "operator delete" << std::endl;
free(p);

}



Перегрузка

Можно перегрузить так:
void*operator new (size_t sz, double a, int x) {

// ...
return ::operator new(sz);

}

Но тогда нужно написать парный ему
void operator delete(void * p, double a, int x) {

// ...
::operator delete(p);

}

Как тогда их вызвать?

C* p = new(1.23, 123) C(111);
delete p;



Перегрузка
Оператор new/delete внутри класса обязан быть статическим.
static можно не писать.
class A {

int param;
public:

A(int a): param(a) {
cout << "A::A(" << a << ")" << std::endl;

}
virtual ~A() { cout << "A::~A()" << std::endl; }
static void* operator new(size_t sz) {

cout << "A::operator new" << std::endl;
return ::operator new(sz);

}
static void operator delete(void* ptr) {

cout << "A::operator delete" << std::endl;
::operator delete(ptr);

}
};



Аллокаторы

Класс, который выделяет память каким-то специальным образом.

map<int, string> m;
// map<int, string, less<int>, allocator<pair<int, string>> > m;

Обязательно определяются:

I value_type — тип, для которого работает аллокатор

I allocate — выделение памяти под n объектов, но не
конструирование

I deallocate — особождение памяти

Необязательно:

I construct — инициализация заданной памяти заданным
значением

I destroy — уничтожение памяти без освобождения



Аллокаторы
template <class T>
struct TMyAllocator {

using value_type = T;
TMyAllocator() = default;
template <class U>
constexpr TMyAllocator(const TMyAllocator<U>&) noexcept {}

T* allocate(size_t n) {
std::cout << "allocate n = " << n << std::endl;
if (n > size_t(-1) / sizeof(T))

throw std::bad_alloc();
auto p = static_cast<T*>(malloc(n * sizeof(T)));
if (!p)

throw std::bad_alloc();
return p;

}
void deallocate(T* p, std::size_t) noexcept {

free(p);
}

};



Аллокаторы

int main() {
std::vector<int, TMyAllocator<int>> vec;
for (int i = 0; i < 6; ++i)

vec.push_back(0);
}

allocate n = 1
allocate n = 2
allocate n = 4
allocate n = 8

Решение о том, сколько памяти запросить и в какой момент,
целиком принимается контейнером, вне зависимости от
аллокатора, который используется для поставки этой памяти.
Стандартный аллокатор хорошо подходит для вектора, но
часто не самое лучшее решение для списка.



Smart pointers

Чем плохи обычные встроенные указатели?
I Указывают на массив или на объект?
I Владеет ли указатель тем, на что указывает?
I Трудно обеспечить уничтожение ровно один раз.
I Обычно сложно определить, является ли указатель

висячим.
I Нельзя предоставить информацию компилятору о том,

могут ли два указателя указывать на одну область памяти.
«Умный» («интеллектуальный») указатель притворяется
обычным указателем с дополнительными функциями.
Обертка над обычными указателями.



Smart pointers

Хочется что-то вроде такого
SmartPointer sp(new C);

и дальше пользоваться как обычным указателем, не
задумываясь об удалении.
А что делать тут?
SmartPointer sp2 = sp;

Всегда можно обмануть умный указатель:

C * ptr = new C;
SmartPointer sp(ptr);
SmartPointer sp2(ptr);



Smart pointers: стратегии

I Запрет копирования и присваивания.
I Глубокое копирование.
I Подсчет ссылок в специальных счетчиках.
I Список ссылок.
I Передача владения.



Стратегия передачи владения

Если кто-то пытается скопировать указатель, то ему и
передается владение, и исходный умный указатель не
указывает больше на объект. Такой указатель не нужно класть
в контейнер .
std::auto_ptr<int> p (new int(123));
std::vector<std::auto_ptr<int> > v;
v.push_back(p);



Умные указатели в C++ 11 / 14

std::auto_ptr<> // deprecated
std::unique_ptr<>
std::shared_ptr<>
std::weak_ptr<>



std::unique_ptr

I Реализует семантику исключительного владения
I Перемещение передает владение от исходного указателя

целевому, целевой при этом обнуляется.
I Копирование не разрешается.
I При деструкции освобождает ресурс, которым владеет.

Обычное использование – возвращаемый тип фабричных
функций для объектов иерархии:
template <typename T>
std::unique_ptr<Base> makeObject(T&& params);



Некоторые методы std::unique_ptr

I reset — заменяет объект;
I release — освобождает владение;
I get — возвращает указатель на объект, которым владеет;

Запрещены неявные преобразования обычного указателя в
умный:
std::unique_ptr<Base> p;
p = new A();



std::unique_ptr

Две разновидности для индивидуальных объектов и для
массивов:
std::unique_ptr<T> // *, ->
std::unique_ptr<T[]> // []

std::unique_ptr можно присваивать в std::shared_ptr
(можно не задумываться над тем, как будет использован
возвращаемый указатель).



Как избавиться от new?

Написать обертку!
template <typename T, typename... Ts>
std::unique_ptr<T> make_unique(Ts&&... params) {

return std::unique_ptr<T>(
new T(std::forward<Ts>(params)...)

)
}

Чего не хватает? Массивов, пользовательских удалителей.
Функция уже есть — std::make_unique в C++14.

std::unique_ptr<Base> p(new Base); // дважды пишем Base
auto p1(std::make_unique<Base>()); // make


